24
Views
2
CrossRef citations to date
0
Altmetric
Review

Role of retinal mitochondria in the development of diabetic retinopathy

&
Pages 237-247 | Published online: 09 Jan 2014

References

  • Grassi G. Diabetic retinopathy. Minerva Med.94, 419–435 (2003).
  • de Groot M, Anderson R, Freedland KE, Clouse RE, Lustman PJ. Association of depression and diabetes complications: a meta-analysis. Psychosom. Med.63, 619–630 (2001).
  • Sharma S, Oliver-Fernandez A, Liu W, Buchholz P, Walt J. The impact of diabetic retinopathy on health-related quality of life. Curr. Opin. Ophthalmol.16, 155–159 (2005).
  • Engerman RL, Kern TS. Hyperglycemia as a cause of diabetic retinopathy. Metabolism35(Suppl. 1), 20–23 (1986).
  • Aiello LP, Gardner TW, King GL et al. Diabetic retinopathy. Diabetes Care21, 143–156 (1998).
  • Frank RN. Diabetic Retinopathy. N. Engl. J. Med.350, 48–58 (2004).
  • Mizutani M, Kern TS, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J. Clin. Invest.97, 2883–2890 (1996).
  • Kern TS, Tang J, Mizutani M, Kowluru R, Nagraj R, Lorenzi M. Response of capillary cell death to aminoguanidine predicts the development of retinopathy: comparison of diabetes and galactosemia. Invest. Ophthalmol. Vis. Sci.41, 3972–3978 (2000).
  • Kowluru RA, Odenbach S. Effect of long-term administration of α lipoic acid on retinal capillary cell death and the development of retinopathy in diabetic rats. Diabetes53, 3233–3238 (2004).
  • Mizutani M, Gerhardinger C, Lorenzi M. Muller cell changes in human diabetic retinopathy. Diabetes47, 455–459 (1998).
  • Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J. Clin. Invest.102, 783–791 (1998).
  • de Venecia G, Davis MD, Engerman RL. Clinicopathologic correlations in diabetic retinopathy. 1. Histology and fluorescein angiography of microaneurysms. Arch. Ophthalmol.94, 1766–1773 (1976).
  • Schröder S, Palinski W, Schmid-Schönbein GW. Activated monocyte and granulocytes, capillary nonperfusion and neovascularization in diabetic retinopathy. Am. J. Pathol.139, 81–100 (1991).
  • Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med.329, 977–986 (1993).
  • United Kingdom Prospective Diabetes Study. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. Lancet352, 837–853 (1998).
  • Xia P, Inoguchi T, Kern TS, Engerman RL, Oates PJ, King GL. Characterization of the mechanism for the chronic activation of DAG–PKC pathway in diabetes and hypergalactosemia. Diabetes43, 1122–1129 (1994).
  • Sun W, Oates PJ, Coutcher JB, Gerhardinger C, Lorenzi M. A selective aldose reductase inhibitor of a new structural class prevents or reverses early retinal abnormalities in experimental diabetic retinopathy. Diabetes55, 2757–2762 (2006).
  • Baynes JW, Thrope SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes48, 1–9 (1999).
  • Stitt AW. The role of advanced glycation in the pathogenesis of diabetic retinopathy. Exp. Mol. Pathol.75, 95–108 (2003).
  • Kowluru RA, Tang J, Kern TS. Abnormalities of retinal metabolism in diabetes and experimental galactosemia. VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes50, 1938–1942 (2001).
  • Kowluru RA, Kennedy A. Therapeutic potential of anti-oxidants and diabetic retinopathy. Expert Opin. Invest. Drugs10, 1665–1676 (2001).
  • Miwa K, Nakamura J, Hamada Y et al. The role of polyol pathway in glucose-induced apoptosis of cultured retinal pericytes. Diabetes Res. Clin. Pract.60, 1–9 (2003).
  • Kowluru RA. Diabetes-induced elevations in retinal oxidative stress, protein kinase C and nitric oxide are inter-related. Acta Diabetologica38, 179–185 (2001).
  • Wu Y, Wu G, Qi X et al. Protein kinase C β inhibitor LY333531 attenuates intercellular adhesion molecule-1 and monocyte chemotactic protein-1 expression in the kidney in diabetic rats. J. Pharmacol. Sci.101, 335–343 (2006).
  • Aiello LP, Wong JS. Role of vascular endothelial growth factor in diabetic vascular complications. Kidney Int.77, S113–S119 (2000).
  • Lu M, Kuroki M, Amano S et al. Advanced glycation end products increase retinal vascular endothelial growth factor expression. J. Clin. Invest.101, 1219–1224 (1998).
  • Aiello LP, Brusell SE, Clermont A et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective β isoform-selective inhibitor. Diabetes46, 1473–1480 (1997).
  • DeBosch BJ, Baur E, Deo BK, Hiraoka M, Kumagai AK. Effects of insulin-like growth 5 factor-1 on retinal endothelial cell glucose transport and proliferation. J. Neurochem.77, 1157–1167 (2001).
  • Haskins K, Bradley B, Powers K et al. Oxidative stress in Type 1 diabetes. Ann. NY Acad. Sci.1005, 43–54 (2003).
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature414, 813–820 (2001).
  • Kowluru RA, Kern TS, Engerman RL. Abnormalities of retinal metabolism in diabetes or experimental galactosemia. IV. Antioxidant defense system. Free Rad. Biol. Med.22, 587–592 (1996).
  • Heath H, Rutter AC, Beck TC. Changes in the ascorbic acid and glutathione content of the retinae and adrenals from alloxan-diabetic rats. Vision Res.2, 431–437 (1962).
  • Du Y, Miller CM, Kern TS. Hyperglycemia increases mitochondrial superoxide in retina and retinal cells. Free Rad. Biol. Med.35, 1491–1499 (2003).
  • Ellis EA, Guberski DL, Somogyi-Mann M et al. Increased H2O2, vascular endothelial growth factor and receptors in the retina of the BBZ/Wor diabetic rat. Free Rad. Biol. Med.28, 91–101 (2000).
  • Li W, Yanoff M, Jian B, He Z. Altered mRNA levels of antioxidant enzymes in preapoptotic pericytes from human diabetic retinas. Cell Mol. Biol.45, 59–66 (1999).
  • Kowluru RA, Koppolu P. Diabetes-induced activation of caspase-3 in retina: effect of antioxidant therapy. Free Rad. Res.36, 993–999 (2002).
  • Colantuoni A, Longoni B, Marchiafava PL. Retinal photoreceptors of Syrian hamsters undergo oxidative stress during streptozotocin-induced diabetes. Diabetologia45, 121–124 (2002).
  • Li JM, Shah AM. Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am. J. Physiol. Regul. Integr. Comp. Physiol.287, 1014–1030 (2004).
  • Young TA, Cunningham CC, Bailey SM. Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondria: studies using myxothiazol. Arch. Biochem. Biophys.405, 65–72 (2002).
  • Kowluru RA, Kowluru A, Kanwar M. Small molecular weight G-protein, H-Ras, and retinal endothelial cell apoptosis in diabetes. Mol. Cell. Biochem.296, 69–76 (2007).
  • Kowluru RA, Kowluru V, Ho YS, Xiong Y. Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress. Free Rad. Biol. Med.41, 1191–1196 (2006).
  • Murphy MP. Nitric oxide and cell death. Biochim. Biophys. Acta1411, 401–414 (1999).
  • Costa NJ, Dahm CC, Hurrell F, Taylor ER, Murphy MP. Interactions of mitochondrial thiols with nitric oxide. Antioxid. Redox Signal.5, 291–305 (2003).
  • Bergamini CM, Gambetti S, Dondi A, Cervellati C. Oxygen, reactive oxygen species and tissue damage. Curr. Pharm. Des.10, 1611–1626 (2004).
  • Cui Y, Xu X, Bi H et al. Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose: the role of reactive oxygen species in diabetic retinopathy. Exp. Eye Res.4, 807–816 (2006).
  • Ferreira FM, Palmeira CM, Seica R, Moreno AJ, Santos MS. Diabetes and mitochondrial bioenergetics: alterations with age. J. Biochem. Mol. Toxicol.17, 214–222 (2003).
  • Duchen M. Roles of mitochondria in health and disease. Diabetes53, S96–S102 (2004).
  • Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med.350, 664–671 (2004).
  • Stauble B, Boscoboinik D, Tasinato A, Azzi A. Modulation of activator protein-1 (AP-1) transcription factor and protein kinase C by hydrogen peroxide and D-α-tocopherol in vascular smooth muscles. Eur. J. Biochem.226, 393–402 (1994).
  • Koya D, King G. Protein kinase C activation and the development of diabetic complications. Diabetes47, 859–866 (1998).
  • Maassen JA, ‘t Hart LM, Van Essen E et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes53, S103–S109 (2004).
  • Du X, Matsumura T, Edelstein D et al. Inhibition of GAPDH activity by poly(ADPribose) polymerase activates three major pathways of hyperglycemic damage in 5 endothelial cells. J. Clin. Invest.112, 1049–1057 (2003).
  • Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes54, 1615–1625 (2005).
  • Suzuki S, Hinokio Y, Komatu K et al. Oxidative damage to mitochondrial DNA and its relationship to diabetic complications. Diabetes Res. Clin. Pract.45, 161–168 (1999).
  • Kakimoto M, Inoguchi T, Sonta T et al. Accumulation of 8-hydroxy-2´-deoxyguanosine and mitochondrial DNA deletion in kidney of diabetic rats. Diabetes51, 1588–1595 (2002).
  • Maassen JA, Janssen GM, ‘t Hart LM. Molecular mechanisms of mitochondrial diabetes (MIDD). Ann. Med.37, 213–221 (2005).
  • Vincent AM, Olzmann JA, Brownlee M, Sivitz WI, Russell W. Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death. Diabetes53, 726–734 (2004).
  • Brownlee M. A radical explanation for glucose-induced β cell dysfunction. J. Clin. Invest.112, 1788–1790 (2003).
  • Grune T, Reinheckel T, Davies KJ. Degradation of oxidized proteins in mammalian cells. FASEB J.11, 526–534 (1997).
  • Turko IV, Li L, Aulak KS, Stuehr DJ, Chang JY, Murad F. Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J. Biol. Chem.278, 33972–33977 (2003).
  • Kowluru RA, Abbas SN. Diabetes-induced mitochondrial dysfunction in the retina. Invest. Ophthalmol. Vis. Sci.44, 5327–5334 (2003).
  • Kowluru RA. Diabetic retinopathy: mitochondrial dysfunction and retinal capillary cell death. Antiox. Redox Signal.7, 1581–1587 (2005).
  • Maassen JA, van den Ouweland JM, t’ Hart LM, Lemkes HH. Maternally inherited diabetes and deafness: a diabetic subtype associated with a mutation in mitochondrial 10 DNA. Horm. Metab. Res.29, 50–55 (1997).
  • Isashiki Y, Nakagawa M, Ohba N et al. Retinal manifestations in mitochondrial diseases associated with mitochondrial DNA mutation. Acta Ophthalmol. Scand.76, 6–13 (1998).
  • Fukuda M, Nakano S, Imaizumi N et al. Mitochondrial DNA mutations are associated with both decreased insulin secretion and advanced microvascular complications in 15 Japanese diabetic subjects. J. Diabetes Complications13, 277–283 (1999).
  • Suzuki S, Oka Y, Kadowaki T et al. Clinical features of diabetes mellitus with the mitochondrial DNA 3243 (A-G) mutation in Japanese: maternal inheritance and mitochondria-related complications. Diabetes Res. Clin. Pract.59, 207–217 (2003).
  • Holmes-Walker DJ, Mitchell P, Boyages SC. Does mitochondrial genome mutation in 20 subjects with maternally inherited diabetes and deafness decrease severity of diabetic retinopathy? Diabetic Med.15, 946–952 (1998).
  • Baumgartner-Parzer SM, Wagner L, Pettermann M, Grillari J, Gessl A, Waldhausl W. High-glucose-triggered apoptosis in cultured endothelial cells. Diabetes44, 1323–1327 (1995).
  • Droge W. Free radicals in the physiological control of cell function. Physiol. Rev.82, 47–95 (2002).
  • Hammes HP. Pathophysiological mechanisms of diabetic angiopathy. J. Diabetes Complications17, 16–19 (2003).
  • Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved 10 homolog, Bax, that accelerates programmed cell death. Cell74, 609–619 (1993).
  • Podesta F, Romeo G, Liu WH et al. Bax is increased in the retina of diabetic subjects and is associated with pericyte apoptosis in vivo and in vitro. Am. J. Pathol.156, 1025–1032 (2000).
  • Kowluru RA, Koppolu P, Chakrabarti S, Chen S. Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants. Free Rad. Res.37, 1169–1180 (2003).
  • Anuradha CD, Kanno S, Hirano S. Oxidative damage to mitochondria is a preliminary step to caspase-3 activation in fluoride-induced apoptosis in HL-60 cells. Free Rad. Biol. Med.31, 367–373 (2001).
  • Phaneuf S, Leeuwenburgh C. Cytochrome c release from mitochondria in the aging heart: a possible mechanism for apoptosis with age. Am. J. Physiol. Regul. Integr. Comp. Physiol.282, R423–R430 (2002).
  • Alnemri ES. Mammalian cell death proteases: a family of highly conserved aspartate specific cysteine proteases. J. Cell Biochem.64, 33–42 (1997).
  • Mohr S, Zech B, Lapetina EG, Brune B. Inhibition of caspase-3 by S-nitrosation and 5 oxidation caused by nitric oxide. Biochem. Biophys. Res. Commun.238, 387–391 (1997).
  • Kristal BS, Koopmans SJ, Jackson CT, Ikeno Y, Park BJ, Yu BP. Oxidant-mediated repression of mitochondrial transcription in diabetic rats. Free Rad. Biol. Med.22, 813–822 (1997).
  • Wolf BB, Schuler M, Echeverri F, Green DR. Caspase-3 is the primary activator of 10 apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspaseactivated DNase inactivation. J. Biol. Chem.274, 30651–30656 (1999).
  • Mohr S, Xi X, Tang J, Kern TS. Caspase activation in retinas of diabetic and galactosemic mice and diabetic patients. Diabetes51, 1172–1179 (2002).
  • Kowluru RA, Chakrabarti S, Chen S. Re-institution of good metabolic control in diabetic rats on the activation of caspase-3 and nuclear transcriptional factor (NF-κB) in the retina. Acta. Diabetologica44, 194–199 (2004).
  • Cregan SP, Dawson VL, Slack RS. Role of AIF in caspase-dependent and caspaseindependent cell death. Oncogene26, 2785–2796 (2004).
  • Packer L, Witt EH, Tritschler HJ. α-Lipoic acid as a biological antioxidant. Free Rad. Biol. Med.19, 227–250 (1995).
  • Kowluru RA, Atasi L, Ho YS. Role of mitochondrial superoxide dismutase in the development of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci.47, 1594–1599 (2006).
  • Lin J, Bierhaus A, Bugert P et al. Effect of R-(+)-α-lipoic acid on experimental diabetic retinopathy. Diabetologia49, 1089–1096 (2006).
  • Obrosova IG, Fathallah L, Greene DA. Early changes in lipid peroxidation and antioxidative defense in diabetic rat retina: effect of DL-α-lipoic acid. Eur. J. Pharmacol.398, 139–146 (2000).
  • Obrosova IG, Fathallah L, Liu E, Nourooz-Zadeh J. Early oxidative stress in the diabetic kidney: effect of DL-[α]-lipoic acid. Free Rad. Biol. Med.34, 186–195 (2003).
  • Sabu MC, Smitha K, Ramadasan K. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J. Ethnopharmacol.83, 109–116 (2002).
  • Mustata GT, Rosca M, Biemel KM et al. Paradoxical effects of green tea (Camellia sinensis) and antioxidant vitamins in diabetic rats: improved retinopathy and renal mitochondrial defects but deterioration of collagen matrix glycoxidation and cross-linking. Diabetes54, 517–526 (2005).
  • Mayer-Davis EJ, Bell RA, Reboussin BA, Rushing J, Marshall JA, Hamman RF. Antioxidant nutrient intake and diabetic retinopathy: the San Luis Vally diabetes study. Ophthalmology105, 226–2270 (1998).
  • Hammes HP, Du X, Edelstein D et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat. Med.9, 294–299 (2003).
  • Balasubramanyam M, Koteswari AA, Kumar RS, Monickaraj SF, Maheswari JU, Mohan V. Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications. J. Biosci.28, 715–721 (2003).
  • Suzuki S, Hinokio Y, Ohtomo M et al. The effects of coenzyme Q10 treatment on maternally inherited diabetes mellitus and deafness, and mitochondrial DNA 3243 (A to G) mutation. Diabetologia41, 584–588 (1998).
  • Rauscher FM, Sanders RA, Watkins JB III. Effects of coenzyme Q10 treatment on antioxidant pathways in normal and streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol.15, 41–46 (2001).
  • Littarru GP, Tiano L. Clinical aspects of coenzyme Q10: an update. Curr. Opin. Clin. Nutr. Metab. Care8, 641–646 (2005).
  • Chida M, Suzuki K, Nakanishi-Ueda T et al. In vitro testing of antioxidants and biochemical end-points in bovine retinal tissue. Ophthalmic. Res.31, 407–415 (1999).
  • Frei B, Kim MC, Ames BN. Ubiquinol-10 is an effective lipid-soluble antioxidant at 15 physiological concentrations. Proc. Natl Acad. Sci. USA87, 4879–4883 (1990).
  • Sheu SS, Nauduri D, Anders MW. Targeting antioxidants to mitochondria: a new therapeutic direction. Biochim. Biophys. Acta1762, 256–265 (2006).
  • Smith RA, Porteous CM, Coulter CV, Murphy MP. Selective targeting of an antioxidant to mitochondria. Eur. J. Biochem.263, 709–716 (1999).
  • Dhanasekaran A, Kotamraju S, Kalivendi SV et al. Supplementation of endothelial cells with mitochondria-targeted antioxidants inhibit peroxide-induced mitochondrial iron uptake, oxidative damage, and apoptosis. J. Biol. Chem.279, 37575–37587 (2004).
  • Kelso GF, Porteous CM, Coulter CV et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J. Biol. Chem.276, 4588–4596 (2001).
  • Adlam VJ, Harrison JC, Porteous CM et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J.19, 1088–1095 (2005).
  • Filipovska A, Kelso GF, Brown SE, Beer SM, Smith RA, Murphy MP. Synthesis and characterization of a triphenylphosphonium-conjugated peroxidase mimetic. Insights into the interaction of ebselen with mitochondria. J. Biol. Chem.280, 24113–24126 (2005).
  • Szeto HH. Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. Am. Assoc. Pharm. Scient.8, E521–E531 (2006).
  • Nassar T, Kadery B, Lotan C, Da’as N, Kleinman Y, Haj-Yehia A. Effects of the superoxide dismutase-mimetic compound Tempol on endothelial dysfunction in streptozotocin-induced diabetic rats. Eur. J. Pharmacol.436, 111–118 (2002).
  • Coppey LJ, Gellett JS, Davidson EP et al. Effect of M40403 treatment of diabetic rats on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve. Br. J. Pharmacol.134, 21–29 (2001).
  • Cuzzocrea S, Mazzon E, Dugo L et al. Protective effects of a new stable, highly active SOD mimetic, M40401 in splanchnic artery occlusion and reperfusion. Br. J. Pharmacol.132, 19–29 (2001).
  • Salvemini D, Riley DP, Lennon PJ et al. Protective effects of a superoxide dismutase mimetic and peroxynitrite decomposition catalysts in endotoxin-induced intestinal damage. Br. J. Pharmacol.127, 685–692 (1999).
  • Sharpe MA, Ollosson R, Stewart VC, Clark JB. Oxidation of nitric oxide by oxomanganese-salen complexes: a new mechanism for cellular protection by superoxide dismutase/catalase mimetics. Biochem. J.366, 97–107 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.