115
Views
36
CrossRef citations to date
0
Altmetric
Review

Molecular genetics and protein function involved in nocturnal vision

Pages 467-485 | Published online: 09 Jan 2014

References

  • Dryja TP, Berson EL, Rao VR, Oprian DD. Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nat. Genet.4(3), 280–283 (1993).
  • Schubert G, Bornschein H. Analysis of the human electroretinogram. Ophthalmologica123, 396–413 (1952).
  • Auerbach E, Godel V, Rowe H. An electrophysiological and psychophysical study of two forms of congenital night blindness. Invest. Ophthalmol.8(3), 332–345 (1969).
  • Krill AE, Martin D. Photopic abnormalities in congenital stationary nightblindness. Invest. Ophthalmol.10(8), 625–636 (1971).
  • Carr RE, Ripps H, Siegel IM, Weale RA. Visual functions in congenital night blindness. Invest. Ophthalmol.5(5), 508–514 (1966).
  • Hill DA, Arbel KF, Berson EL. Cone electroretinograms in congenital nyctalopia with myopia. Am. J. Ophthalmol.78(1), 127–136 (1974).
  • Carr RE. Congenital stationary nightblindness. Trans. Am. Ophthalmol. Soc.72, 448–487 (1974).
  • Heckenlively JR, Martin DA, Rosenbaum AL. Loss of electroretinographic oscillatory potentials, optic atrophy, and dysplasia in congenital stationary night blindness. Am. J. Ophthalmol.96(4), 526–534 (1983).
  • Lachapelle P, Little JM, Polomeno RC. The photopic electroretinogram in congenital stationary night blindness with myopia. Invest. Ophthalmol. Vis. Sci.24(4), 442–450 (1983).
  • Miyake Y, Yagasaki K, Horiguchi M, Kawase Y, Kanda T. Congenital stationary night blindness with negative electroretinogram. A new classification. Arch. Ophthalmol.104(7), 1013–1020 (1986).
  • Riggs LA. Electroretinography in cases of night blindness. Am. J. Ophthalmol.38, 70–78 (1954).
  • Carr RE, Ripps H, Siegel IM, Weale RA. Rhodopsin and the electrical activity of the retina in congenital night blindness. Invest. Ophthalmol.5(5), 497–507 (1966).
  • Francois J, Verriest G, de Rouck A. Ophthalmologica131(1), 1–40 (1956).
  • Dryja TP. Molecular genetics of Oguchi disease, fundus albipunctatus, and other forms of stationary night blindness: LVII Edward Jackson Memorial Lecture. Am. J. Ophthalmol.130, 547–563 (2000).
  • Rao VR, Cohen GB, Oprian DD. Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature367(6464), 639–642 (1994).
  • al Jandal N, Farrar GJ, Kiang AS et al. A novel mutation within the rhodopsin gene (Thr-94-Ile) causing autosomal dominant congenital stationary night blindness. Hum. Mutat.13(1), 75–81 (1999).
  • Dryja TP, Hahn LB, Reboul T, Arnaud B. Missense mutation in the gene encoding the alpha subunit of rod transducin in the Nougaret form of congenital stationary night blindness. Nat. Genet.13(3), 358–360 (1996).
  • Gal A, Orth U, Baehr W, Schwinger E, Rosenberg T. Heterozygous missense mutation in the rod cGMP phosphodiesterase β-subunit gene in autosomal dominant stationary night blindness. Nat. Genet.7(1), 64–68 (1994).
  • Yamamoto S, Sippel KC, Berson EL, Dryja TP. Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness. Nat. Genet.15(2), 175–178 (1997).
  • Fuchs S, Nakazawa M, Maw M, Tamai M, Oguchi Y, Gal A. A homozygous 1-base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nat. Genet.10(3), 360–362 (1995).
  • Nakamura M, Yamamoto S, Okada M, Ito S, Tano Y, Miyake Y. Novel mutations in the arrestin gene and associated clinical features in Japanese patients with Oguchi’s disease. Ophthalmology111, 1410–1414 (2004).
  • Maw M, Kumaramanickavel G, Kar B, John S, Bridges R, Denton M. Two Indian siblings with Oguchi disease are homozygous for an arrestin mutation encoding premature termination. Hum. Mutat. Suppl. 1, 317–319 (1998).
  • Nakamura M, Hotta Y, Tanikawa A, Terasaki H, Miyake Y. A high association with cone dystrophy in Fundus albipunctatus caused by mutations of the RDH5 gene. Invest. Ophthalmol. Vis. Sci.41(12), 3925–3932 (2000).
  • Yamamoto H, Simon A, Eriksson U, Harris E, Berson EL, Dryja TP. Mutations in the gene encoding 11-cis retinol dehydrogenase cause delayed dark adaptation and fundus albipunctatus. Nat. Genet.22, 188–191 (1999).
  • Hirose E, Inoue Y, Morimura H et al. Mutations in the 11-cis retinol dehydrogenase gene in Japanese patients with Fundus albipunctatus. Invest. Ophthalmol. Vis. Sci.41(12), 3933–3935 (2000).
  • Yamamoto H, Yakushijin K, Kusuhara S, Escano MF, Nagai A, Negi A. A novel RDH5 gene mutation in a patient with fundus albipunctatus presenting with macular atrophy and fading white dots. Am. J. Ophthalmol.136(3), 572–574 (2003).
  • Sekiya K, Nakazawa M, Ohguro H, Usui T, Tanimoto N, Abe H. Long-term fundus changes due to fundus albipunctatus associated with mutations in the RDH5 gene. Arch. Ophthalmol.121(7), 1057–1059 (2003).
  • Kuroiwa S, Kikuchi T, Yoshimura N. A novel compound heterozygous mutation in the RDH5 gene in a patient with fundus albipunctatus. Am. J. Ophthalmol.130(5), 672–675 (2000).
  • Driessen CA, Janssen BP, Winkens HJ et al. Null mutation in the human 11-cis retinol dehydrogenase gene associated with fundus albipunctatus. Ophthalmology108(8), 1479–1484 (2001).
  • Gonzalez-Fernandez F, Kurz D, Bao Y et al. 11-cis retinol dehydrogenase mutations as a major cause of the congenital night-blindness disorder known as fundus albipunctatus. Mol. Vis.5, 41 (1999).
  • Bech-Hansen NT, Naylor MJ, Maybaum TA et al. Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat. Genet.26(3), 319–323 (2000).
  • Pusch CM, Zeitz C, Brandau O et al. The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein. Nat. Genet.26(3), 324–327 (2000).
  • Bech-Hansen NT, Naylor MJ, Maybaum TA et al. Loss-of-function mutations in a calcium-channel α1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat. Genet.19(3), 264–267 (1998).
  • Strom TM, Nyakatura G, Apfelstedt-Sylla E et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat. Genet.19(3), 260–263 (1998).
  • Allen LE, Zito I, Bradshaw K et al. Genotype–phenotype correlation in British families with X-linked congenital stationary night blindness. Br. J. Ophthalmol.87(11), 1413–1420 (2003).
  • Zito I, Allen LE, Patel RJ et al. Mutations in the CACNA1F and NYX genes in British CSNBX families. Hum. Mutat.21(2), 169 (2003).
  • Nakamura M, Ito S, Terasaki H, Miyake Y. Novel CACNA1F mutations in Japanese patients with incomplete congenital stationary night blindness. Invest. Ophthalmol. Vis. Sci.42(7), 1610–1616 (2001).
  • Wutz K, Sauer C, Zrenner E et al. Thirty distinct CACNA1F mutations in 33 families with incomplete type of XLCSNB and Cacna1f expression profiling in mouse retina. Eur. J. Hum. Genet.10(8), 449–456 (2002).
  • Boycott KM, Maybaum TA, Naylor MJ et al. A summary of 20 CACNA1F mutations identified in 36 families with incomplete X-linked congenital stationary night blindness, and characterization of splice variants. Hum. Genet.108(2), 91–97 (2001).
  • Jacobi FK, Hamel CP, Arnaud B et al. A novel CACNA1F mutation in a french family with the incomplete type of X-linked congenital stationary night blindness. Am. J. Ophthalmol.135(5), 733–736 (2003).
  • Zeitz C, Minotti R, Feil S et al. Novel mutations in CACNA1F and NYX in Dutch families with X-linked congenital stationary night blindness. Mol. Vis.11, 179–183 (2005).
  • Dryja TP, McGee TL, Berson EL et al. Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc. Natl Acad. Sci. USA102(13), 4884–4889 (2005).
  • Zeitz C, van Genderen M, Neidhardt J et al. Mutations in GRM6 cause autosomal recessive congenital stationary night blindness with a distinctive scotopic 15 Hz flicker electroretinogram (ERG). Invest. Ophthalmol.46(11), 4328–4335 (2005).
  • Zeitz C, Kloeckener-Gruissem B, Forster U et al. Mutations in CABP4, the gene encoding the Ca2+-binding protein 4, cause autosomal recessive night blindness. Am. J. Hum. Genet.79(4), 657–667 (2006).
  • Neidhardt J, Barthelmes D, Farahmand F, Fleischhauer JC, Berger W. Different amino acid substitutions at the same position in rhodopsin lead to distinct phenotypes. Invest. Ophthalmol. Vis. Sci.47(4), 1630–1635 (2006).
  • Boycott KM, Pearce WG, Bech-Hansen NT. Clinical variability among patients with incomplete X-linked congenital stationary night blindness and a founder mutation in CACNA1F. Can. J. Ophthalmol.35(4), 204–213 (2000).
  • Nakamura M, Ito S, Terasaki H, Miyake Y. Incomplete congenital stationary night blindness associated with symmetrical retinal atrophy. Am. J. Ophthalmol.134, 463–465 (2002).
  • Nakamura M, Ito S, Piao CH, Terasaki H, Miyake Y. Retinal and optic disc atrophy associated with a CACNA1F mutation in a Japanese family. Arch. Ophthalmol.121(7), 1028–1033 (2003).
  • Hope CI, Sharp DM, Hemara-Wahanui A et al. Clinical manifestations of a unique X-linked retinal disorder in a large New Zealand family with a novel mutation in CACNA1F, the gene responsible for CSNB2. Clin. Experiment. Ophthalmol.33(2), 129–136 (2005).
  • Hemara-Wahanui A, Berjukow S, Hope CI et al. A CACNA1F mutation identified in an X-linked retinal disorder shifts the voltage dependence of Cav1.4 channel activation. Proc. Natl Acad. Sci. USA102(21), 7553–7558 (2005).
  • Tremblay F, Laroche RG, De BI. The electroretinographic diagnosis of the incomplete form of congenital stationary night blindness. Vis. Res.35, 2383–2393 (1995).
  • Rigaudiere F, Roux C, Lachapelle P et al. ERGs in female carriers of incomplete congenital stationary night blindness (I-CSNB). A family report. Doc. Ophthalmol.107(2), 203–212 (2003).
  • Jalkanen R, Mantyjarvi M, Tobias R et al. X linked cone-rod dystrophy, CORDX3, is caused by a mutation in the CACNA1F gene. J. Med. Genet.43(8), 699–704 (2006).
  • Tsang SH, Woodruff ML, Jun L et al. Transgenic mice carrying the H258N mutation in the gene encoding the β-subunit of phosphodiesterase-6 (PDE6B) provide a model for human congenital stationary night blindness. Hum. Mutat.28(3), 243–254 (2007).
  • Gross AK, Xie G, Oprian DD. Slow binding of retinal to rhodopsin mutants G90D and T94D. Biochemistry42(7), 2002–2008 (2003).
  • Gross AK, Rao VR, Oprian DD. Characterization of rhodopsin congenital night blindness mutant T94I. Biochemistry42(7), 2009–2015 (2003).
  • Rim J, Oprian DD. Constitutive activation of opsin: interaction of mutants with rhodopsin kinase and arrestin. Biochemistry34, 11938–11945 (1995).
  • Garriga P, Manyosa J. The eye photoreceptor protein rhodopsin. Structural implications for retinal disease. FEBS Lett.528, 17–22 (2002).
  • Muradov KG, Artemyev NO. Loss of the effector function in a transducin-α mutant associated with Nougaret night blindness. J. Biol. Chem.275(10), 6969–6974 (2000).
  • Muradov KG, Granovsky AE, Artemyev NO. Mutation in rod PDE6 linked to congenital stationary night blindness impairs the enzyme inhibition by its gamma-subunit. Biochemistry42(11), 3305–3310 (2003).
  • Hayashi T, Gekka T, Takeuchi T, Goto-Omoto S, Kitahara K. A novel homozygous GRK1 mutation (P391H) in 2 siblings with Oguchi disease with markedly reduced cone responses. Ophthalmology114(1), 134–141 (2007).
  • Cideciyan AV, Zhao X, Nielsen L, Khani SC, Jacobson SG, Palczewski K. Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man. Proc. Natl Acad. Sci. USA95, 328–333 (1998).
  • Barnes S, Kelly ME. Calcium channels at the photoreceptor synapse. Adv. Exp. Med. Biol.514, 465–476 (2002).
  • Morgans CW. Localization of the α(1F) calcium channel subunit in the rat retina. Invest. Ophthalmol. Vis. Sci.42(10), 2414–2418 (2001).
  • Catterall WA. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol.16, 521–555 (2000).
  • Song H, Nie L, Rodriguez-Contreras A, Sheng ZH, Yamoah EN. Functional interaction of auxiliary subunits and synaptic proteins with Ca(v)1.3 may impart hair cell Ca2+ current properties. J. Neurophysiol.89(2), 1143–1149 (2003).
  • Arikkath J, Campbell KP. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol.13(3), 298–307 (2003).
  • Gurnett CA, De Waard M, Campbell KP. Dual function of the voltage-dependent Ca2+ channel α 2 δ subunit in current stimulation and subunit interaction. Neuron16, 431–440 (1996).
  • Lee A, Westenbroek RE, Haeseleer F, Palczewski K, Scheuer T, Catterall WA. Differential modulation of Ca(v)2.1 channels by calmodulin and Ca2+-binding protein 1. Nat. Neurosci.5(3), 210–217 (2002).
  • Haeseleer F, Imanishi Y, Maeda T et al. Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nat. Neurosci.7(10), 1079–1087 (2004).
  • Weleber RG. Infantile and childhood retinal blindness: a molecular perspective (The Franceschetti Lecture). Ophthalmic Genet.23(2), 71–97 (2002).
  • Wycisk K, Zeitz C, Feil S et al. Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy. Am. J. Hum. Genet.79, 973–977 (2006).
  • Hoda JC, Zaghetto F, Koschak A, Striessnig J. Congenital stationary night blindness type 2 mutations S229P, G369D, L1068P, and W1440X alter channel gating or functional expression of Ca(v)1.4 L-type Ca2+ channels. J. Neurosci.25(1), 252–259 (2005).
  • Hoda JC, Zaghetto F, Singh A, Koschak A, Striessnig J. Effects of congenital stationary night blindness type 2 mutations R508Q and L1364H on Ca1.4 L-type Ca channel function and expression. J. Neurochem.96(6), 1648–1658 (2006).
  • McRory JE, Hamid J, Doering CJ et al. The CACNA1F gene encodes an L-type calcium channel with unique biophysical properties and tissue distribution. J. Neurosci.24(7), 1707–1718 (2004).
  • Singh A, Hamedinger D, Hoda JC et al. C-terminal modulator controls Ca2+-dependent gating of Ca(v)1.4 L-type Ca2+ channels. Nat. Neurosci.9, 1108–1116 (2006).
  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev.57(4), 411–425 (2005).
  • Lipscombe D, Pan JQ, Gray AC. Functional diversity in neuronal voltage-gated calcium channels by alternative splicing of Ca(v)alpha1. Mol. Neurobiol.26(1), 21–44 (2002).
  • Zeitz C, Forster U, Neidhardt J et al. Night blindness-associated mutations in the ligand-binding, cysteine-rich, and intracellular domains of the metabotropic glutamate receptor 6 abolish protein trafficking. Hum. Mutat. DOI: 17405131 (2007) (Epub ahead of print).
  • O’Connor E, Allen LE, Bradshaw K, Boylan J, Moore AT, Trump D. Congenital stationary night blindness associated with mutations in GRM6 encoding glutamate receptor MGluR6. Br. J. Ophthalmol.90(5), 653–654 (2006).
  • Xiao X, Jia X, Guo X, Li S, Yang Z, Zhang Q. CSNB1 in Chinese families associated with novel mutations in NYX. J. Hum. Genet.51(7), 634–640 (2006).
  • Jacobi FK, Andreasson S, Langrova H et al. Phenotypic expression of the complete type of X-linked congenital stationary night blindness in patients with different mutations in the NYX gene. Graefes Arch. Clin. Exp. Ophthalmol.240(10), 822–828 (2002).
  • Morgans CW, Ren G, Akileswaran L. Localization of nyctalopin in the mammalian retina. Eur. J. Neurosci.23(5), 1163–1171 (2006).
  • Pardue MT, McCall MA, LaVail MM, Gregg RG, Peachey NS. A naturally occurring mouse model of X-linked congenital stationary night blindness. Invest. Ophthalmol. Vis. Sci.39(12), 2443–2449 (1998).
  • Gregg RG, Mukhopadhyay S, Candille SI et al. Identification of the gene and the mutation responsible for the mouse nob phenotype. Invest. Ophthalmol. Vis. Sci.44(1), 378–384 (2003).
  • Gregg RG, Lukasiewicz PD, Peachey NS, Sagdullaev BT, McCall MA. Nyctalopin is required for signaling through depolarizing bipolar cells in the murine retina. ARVO (2003).
  • Ball SL, Pardue MT, McCall MA, Gregg RG, Peachey NS. Immunohistochemical analysis of the outer plexiform layer in the nob mouse shows no abnormalities. Vis. Neurosci.20(3), 267–272 (2003).
  • Zeitz C, Scherthan H, Freier S et al. NYX (nyctalopin on chromosome X), the gene mutated in congenital stationary night blindness, encodes a cell surface protein. Invest. Ophthalmol. Vis. Sci.44(10), 4184–4191 (2003).
  • O’Connor E, Eisenhaber B, Dalley J et al. Species specific membrane anchoring of nyctalopin, a small leucine-rich repeat protein. Hum. Mol. Genet.14(13), 1877–1887 (2005).
  • Kobe B, Deisenhofer J. The leucine-rich repeat: a versatile binding motif. Trends Biochem. Sci.19(10), 415–421 (1994).
  • Poopalasundaram S, Erskine L, Cheetham ME, Hardcastle AJ. Focus on molecules: nyctalopin. Exp. Eye Res.81(6), 627–628 (2005).
  • Sieving PA, Fowler ML, Bush RA et al. Constitutive “light” adaptation in rods from G90D rhodopsin: a mechanism for human congenital nightblindness without rod cell loss. J. Neurosci.21(15), 5449–5460 (2001).
  • Naash MI, Wu TH, Chakraborty D et al. Retinal abnormalities associated with the G90D mutation in opsin. J. Comp Neurol.478(2), 149–163 (2004).
  • Moussaif M, Rubin WW, Kerov V et al. Phototransduction in a transgenic mouse model of Nougaret night blindness. J. Neurosci.26(25), 6863–6872 (2006).
  • Salchow DJ, Gouras P, Doi K, Goff SP, Schwinger E, Tsang SH. A point mutation (W70A) in the rod PDE-γ gene desensitizing and delaying murine rod photoreceptors. Invest. Ophthalmol. Vis. Sci.40, 3262–3267 (1999).
  • Chen J, Simon MI, Matthes MT, Yasumura D, LaVail MM. Increased susceptibility to light damage in an arrestin knockout mouse model of Oguchi disease (stationary night blindness). Invest. Ophthalmol. Vis. Sci.40, 2978–2982 (1999).
  • Chen CK, Burns ME, Spencer M et al. Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc. Natl Acad. Sci. USA96, 3718–3722 (1999).
  • Xu J, Dodd RL, Makino CL, Simon MI, Baylor DA, Chen J. Prolonged photoresponses in transgenic mouse rods lacking arrestin. Nature389, 505–509 (1997).
  • Mansergh F, Orton NC, Vessey JP et al. Mutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina. Hum. Mol. Genet.14(20), 3035–3046 (2005).
  • Chang B, Heckenlively JR, Bayley PR et al. The nob2 mouse, a null mutation in Cacna1f: anatomical and functional abnormalities in the outer retina and their consequences on ganglion cell visual responses. Vis. Neurosci.23(1), 11–24 (2006).
  • Wycisk KA, Budde B, Feil S et al. Structural and functional abnormalities of retinal ribbon synapses due to Cacna2d4 mutation. Invest. Ophthalmol. Vis. Sci.47(8), 3523–3530 (2006).
  • Ruether K, Grosse J, Matthiessen E, Hoffmann K, Hartmann C. Abnormalities of the photoreceptor-bipolar cell synapse in a substrain of C57BL/10 mice. Invest. Ophthalmol. Vis. Sci.41(12), 4039–4047 (2000).
  • Bayley PR, Morgans CW. Rod bipolar cells and horizontal cells form displaced synaptic contacts with rods in the outer nuclear layer of the nob2 retina. J. Comp Neurol.500(2), 286–298 (2007).
  • Masu M, Iwakabe H, Tagawa Y et al. Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell80(5), 757–765 (1995).
  • Bahadori R, Biehlmaier O, Zeitz C et al. Nyctalopin is essential for synaptic transmission in the cone dominated zebrafish retina. Eur. J. Neurosci.24(6), 1664–1674 (2006).
  • Weng K, Lu C, Daggett LP et al. Functional coupling of a human retinal metabotropic glutamate receptor (hmGluR6) to bovine rod transducin and rat Go in an in vitro reconstitution system. J. Biol. Chem.272(52), 33100–33104 (1997).
  • Nawy S. The metabotropic receptor mGluR6 may signal through G(o), but not phosphodiesterase, in retinal bipolar cells. J. Neurosci.19(8), 2938–2944 (1999).
  • Dhingra A, Lyubarsky A, Jiang M et al. The light response of ON bipolar neurons requires Gαo. J. Neurosci.20(24), 9053–9058 (2000).
  • Dhingra A, Faurobert E, Dascal N, Sterling P, Vardi N. A retinal-specific regulator of G-protein signaling interacts with Gα(o) and accelerates an expressed metabotropic glutamate receptor 6 cascade. J. Neurosci.24(25), 5684–5693 (2004).
  • Nawy S, Jahr CE. Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature346(6281), 269–271 (1990).
  • Shiells RA, Falk G. Glutamate receptors of rod bipolar cells are linked to a cyclic GMP cascade via a G-protein. Proc. Biol. Sci.242(1304), 91–94 (1990).
  • Shiells RA, Falk G. Potentiation of ‘on’ bipolar cell flash responses by dim background light and cGMP in dogfish retinal slices. J. Physiol.542(Pt 1), 211–220 (2002).
  • de la Villa P, Kurahashi T, Kaneko A. L-glutamate-induced responses and cGMP-activated channels in three subtypes of retinal bipolar cells dissociated from the cat. J. Neurosci.15(5 Pt 1), 3571–3582 (1995).
  • Snellman J, Nawy S. cGMP-dependent kinase regulates response sensitivity of the mouse on bipolar cell. J. Neurosci.24(29), 6621–6628 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.