50
Views
0
CrossRef citations to date
0
Altmetric
Reviews

The stress response as a target for treatment of central serous chorioretinopathy

, &
Pages 457-468 | Published online: 09 Jan 2014

References

  • Yannuzzi LA. Type A behavior and central serous chorioretinopathy. Trans. Am. Ophthalmol. Soc. 84, 799–845 (1986).
  • Kitzmann AS, Pulido JS, Diehl NN, Hodge DO, Burke JP. The incidence of central serous chorioretinopathy in Olmsted County, Minnesota, 1980–2002. Ophthalmology 115(1), 169–173 (2008).
  • Gelber GS, Schatz H. Loss of vision due to central serous chorioretinopathy following psychological stress. Am. J. Psychiatry 144(1), 46–50 (1987).
  • Gemenetzi M, De Salvo G, Lotery AJ. Central serous chorioretinopathy: an update on pathogenesis and treatment. Eye (Lond). 24(12), 1743–1756 (2010).
  • Nicholson B, Noble J, Forooghian F, Meyerle C. Central serous chorioretinopathy: update on pathophysiology and treatment. Surv. Ophthalmol. 58(2), 103–126 (2013).
  • Bujarborua D, Borooah S, Dhillon B. Getting serious with retinopathy: Approaching an integrated hypothesis for central serous chorioretinopathy. Med. Hypotheses 81(2), 268–273 (2013).
  • Caccavale A, Romanazzi F, Imparato M, Negri A, Morano A, Ferentini F. Central serous chorioretinopathy: a pathogenetic model. Clin. Ophthalmol. 5, 239–243 (2011).
  • Wang M, Munch Ic, Hasler PW, Prunte C, Larsen M. Central serous chorioretinopathy. Acta Ophthalmol 86(2), 126–145 (2008).
  • Todd KC, Hainsworth DP, Lee LR, Madsen RW. Longitudinal analysis of central serous chorioretinopathy and sex. Can. J. Ophthalmol. 37(7), 405–408 (2002).
  • Wynn Pa. Idiopathic central serous chorioretinopathy – a physical complication of stress? Occup. Med. (Lond) 51(2), 139–140 (2001).
  • Marmor MF. New hypotheses on the pathogenesis and treatment of serous retinal detachment. Graefes Arch. Clin. Exp. Ophthalmol. 226(6), 548–552 (1988).
  • Burchfield SR. The stress response: a new perspective. Psychosom. Med. 41(8), 661–672 (1979).
  • Ventura LM. Psychoneuroimmunology: application to ocular diseases. J. Ocul. Biol. Dis. Inform. 2, 109–118 (2009).
  • Watson CS, Gametchu B. Proteins of multiple classes may participate in nongenomic steroid actions. Exp. Biol. Med. (Maywood) 228(11), 1272–1281 (2003).
  • Lipowski ZJ, Kiriakos Rz. Psychosomatic aspects of central serous retinopathy. A review and case report. Psychosomatics 12(6), 398–401 (1971).
  • Horniker E. Su di una forma retinite centrale di origine vasoneurotica (retinite central capillaro spastica). Ann. Otol. Rhinol. Laryngol. 55 578–600 (1927).
  • Cordes F. A type of foveo-macular retinitis observed in the US Navy. American Journal of Ophthalmology (27), 803–816 (1944).
  • Harrington DO. Psychosomatic inter-relationships in ophthalmology. Am. J. Ophthal. 31, 1241–1251 (1948).
  • Zeligs MA. Central angiospastic retinopathy; a psychosomatic study of its occurrence in military personnel. Psychosom. Med. 9(2), 110–117 (1947).
  • Hartmann E. [Central angiospastic retinopathy]. Bull. Soc. Ophtalmol. Fr. 2, 110–120 (1953).
  • Tittl MK, Spaide RF, Wong D et al. Systemic findings associated with central serous chorioretinopathy. Am. J. Ophthalmol. 128(1), 63–68 (1999).
  • Gass JD. Pathogenesis of disciform detachment of the neuroepithelium. Am J Ophthalmol 63(3 Suppl.), 1–139 (1967).
  • Conrad R, Bodeewes I, Schilling G, Geiser F, Imbierowicz K, Liedtke R. [Central serous chorioretinopathy and psychological stress]. Ophthalmologe 97(8), 527–531 (2000).
  • Bennett G. Central serous retinopathy. Br. J. Ophthalmol. 39(10), 605–618 (1955).
  • Bujarborua D, Choudhury A. Diffuse retinal pigment epitheliopathy among the inhabitants of Brahmaputra Valley of India. Eur. J. Ophthalmol. 18(4), 578–586 (2008).
  • Bujarborua D, Nagpal Pn, Deka M. Smokestack leak in central serous chorioretinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 248(3), 339–351 (2010).
  • Gass Jd, Little H. Bilateral bullous exudative retinal detachment complicating idiopathic central serous chorioretinopathy during systemic corticosteroid therapy. Ophthalmology 102(5), 737–747 (1995).
  • Makara GB. Mechanisms by which stressful stimuli activate the pituitary-adrenal system. Fed. Proc. 44(1 Pt 2), 149–153 (1985).
  • Spahn C, Wiek J, Burger T, Hansen L. Psychosomatic aspects in patients with central serous chorioretinopathy. Br. J. Ophthalmol. 87(6), 704–708 (2003).
  • Conrad R, Weber NF, Lehnert M, Holz FG, Liedtke R, Eter N. Alexithymia and emotional distress in patients with central serous chorioretinopathy. Psychosomatics 48(6), 489–495 (2007).
  • Pomerleau OF, Pomerleau CS. Behavioural studies in humans: anxiety, stress and smoking. Ciba Found. Symp. 152, 225–235; discussion 235–229 (1990).
  • Friedman M, Byers SO, Diamant J, Rosenman RH. Plasma catecholamine response of coronary-prone subjects (type A) to a specific challenge. Metabolism 24(2), 205–210 (1975).
  • Friedman M, St George S, Byers SO, Rosenman RH. Excretion of catecholamines, 17-ketosteroids, 17-hydroxycorticoids and 5-hydroxyindole in men exhibiting a particular behavior pattern (A) associated with high incidence of clinical coronary artery disease. J. Clin. Invest. 39, 758–764 (1960).
  • Friedlander L, Lumley MA, Farchione T, Doyal G. Testing the alexithymia hypothesis: physiological and subjective responses during relaxation and stress. J. Nerv. Ment. Dis. 185(4), 233–239 (1997).
  • Jula A, Salminen JK, Saarijarvi S. Alexithymia: a facet of essential hypertension. Hypertension 33(4), 1057–1061 (1999).
  • Haimovici R, Koh S, Gagnon DR, Lehrfeld T, Wellik S. Risk factors for central serous chorioretinopathy: a case-control study. Ophthalmology 111(2), 244–249 (2004).
  • Bernasconi P, Messmer E, Bernasconi A, Tholen A. Assessment of the sympatho-vagal interaction in central serous chorioretinopathy measured by power spectral analysis of heart rate variability. Graefes Arch. Clin. Exp. Ophthalmol. 236(8), 571–576 (1998).
  • Tewari Hk, Gadia R, Kumar D, Venkatesh P, Garg Sp. Sympathetic-parasympathetic activity and reactivity in central serous chorioretinopathy: a case-control study. Invest. Ophthalmol. Vis. Sci. 47(8), 3474–3478 (2006).
  • Garg SP, Dada T, Talwar D, Biswas NR. Endogenous cortisol profile in patients with central serous chorioretinopathy. Br. J. Ophthalmol. 81(11), 962–964 (1997).
  • Mayo GL, Tolentino Mj. Images in clinical medicine. Central serous chorioretinopathy in pregnancy. N. Engl J. Med. 353(7), e6 (2005).
  • Michael JC, Pak J, Pulido J, De Venecia G. Central serous chorioretinopathy associated with administration of sympathomimetic agents. Am. J. Ophthalmol. 136(1), 182–185 (2003).
  • Leveque TK, Yu L, Musch DC, Chervin RD, Zacks DN. Central serous chorioretinopathy and risk for obstructive sleep apnea. Sleep Breath 11(4), 253–257 (2007).
  • Kloos P, Laube I, Thoelen A. Obstructive sleep apnea in patients with central serous chorioretinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 246(9), 1225–1228 (2008).
  • Grover DP. Obstructive sleep apnea and ocular disorders. Curr. Opin. Ophthalmol. 21(6), 454–458 (2010).
  • Grunstein RR. Metabolic aspects of sleep apnea. Sleep 19(10 Suppl.), S218–S220 (1996).
  • Fletcher EC, Miller J, Schaaf JW, Fletcher JG. Urinary catecholamines before and after tracheostomy in patients with obstructive sleep apnea and hypertension. Sleep 10(1), 35–44 (1987).
  • Fletcher EC. Sympathetic activity and blood pressure in the sleep apnea syndrome. Respiration 64( Suppl. 1), 22–28 (1997).
  • Dimsdale JE, Coy T, Ancoli-Israel S, Mills P, Clausen J, Ziegler MG. Sympathetic nervous system alterations in sleep apnea. The relative importance of respiratory disturbance, hypoxia, and sleep quality. Chest 111(3), 639–642 (1997).
  • Spath-Schwalbe E, Gofferje M, Kern W, Born J, Fehm Hl. Sleep disruption alters nocturnal ACTH and cortisol secretory patterns. Biol. Psychiatry 29(6), 575–584 (1991).
  • Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet 354(9188), 1435–1439 (1999).
  • Jain Ak, Kaines A, Schwartz S. Bilateral central serous chorioretinopathy resolving rapidly with treatment for obstructive sleep apnea. Graefes Arch. Clin. Exp. Ophthalmol. 248(7), 1037–1039 (2010).
  • Mansuetta CC, Mason JO3rd, Swanner J et al. An association between central serous chorioretinopathy and gastroesophageal reflux disease. Am J Ophthalmol 137(6), 1096–1100 (2004).
  • Mann RM, Riva CE, Stone RA, Barnes GE, Cranstoun SD. Nitric oxide and choroidal blood flow regulation. Invest. Ophthalmol. Vis. Sci. 36(5), 925–930 (1995).
  • Hardy P, Lamireau D, Hou X et al. Major role for neuronal NO synthase in curtailing choroidal blood flow autoregulation in newborn pig. J. Appl. Physiol. 91(4), 1655–1662 (2001).
  • Arndt C, Sari A, Ferre M et al. Electrophysiological effects of corticosteroids on the retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 42(2), 472–475 (2001).
  • Sibayan Sa, Kobuch K, Spiegel D et al. Epinephrine, but not dexamethasone, induces apoptosis in retinal pigment epithelium cells in vitro: possible implications on the pathogenesis of central serous chorioretinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 238(6), 515–519 (2000).
  • Cotticelli L, Borrelli M, D'alessio AC et al. Central serous chorioretinopathy and Helicobacter pylori. Eur. J. Ophthalmol. 16(2), 274–278 (2006).
  • Giusti C, Mauget-Faysse M. Helicobacter pylori and idiopathic central serous chorioretinopathy. Swiss. Med. Wkly. 134(27–28), 395–398 (2004).
  • Keates S, Sougioultzis S, Keates Ac et al. cag+ Helicobacter pylori induce transactivation of the epidermal growth factor receptor in AGS gastric epithelial cells. J. Biol. Chem. 276(51), 48127–48134 (2001).
  • Misiuk-Hojlo M, Michalowska M, Turno-Krecicka A. Helicobacter pylori – a risk factor for the developement of the central serous chorioretinopathy. Klin. Oczna. 111(1–3), 30–32 (2009).
  • Wassermann Ge, Olivera-Severo D, Uberti Af, Carlini Cr. Helicobacter pylori urease activates blood platelets through a lipoxygenase-mediated pathway. J. Cell. Mol. Med. 14(7), 2025–2034 (2010).
  • Rahbani-Nobar MB, Javadzadeh A, Ghojazadeh L, Rafeey M, Ghorbanihaghjo A. The effect of Helicobacter pylori treatment on remission of idiopathic central serous chorioretinopathy. Mol. Vis. 17, 99–103 (2011).
  • Costen Mt, Olson Ja. Central serous chorioretinopathy may be a manifestation of the primary antiphospholipid syndrome. Br. J. Ophthalmol. 84(6), 667 (2000).
  • Nucci C, Corsi A, Mancino R, Macri G. Central serous chorioretinopathy in patients with psoriasis. Acta. Ophthalmol. Scand. 82(1), 105–107 (2004).
  • Bouzas EA, Scott MH, Mastorakos G, Chrousos Gp, Kaiser-Kupfer MI. Central serous chorioretinopathy in endogenous hypercortisolism. Arch. Ophthalmol. 111(9), 1229–1233 (1993).
  • Wakakura M, Ishikawa S. Central serous chorioretinopathy complicating systemic corticosteroid treatment. Br. J. Ophthalmol. 68(5), 329–331 (1984).
  • Carvalho-Recchia Ca, Yannuzzi La, Negrao S et al. Corticosteroids and central serous chorioretinopathy. Ophthalmology 109(10), 1834–1837 (2002).
  • Koyama M, Mizota A, Igarashi Y, Adachi-Usami E. Seventeen cases of central serous chorioretinopathy associated with systemic corticosteroid therapy. Ophthalmologica 218(2), 107–110 (2004).
  • Yoshioka H, Katsume Y, Akune H. Experimental central serous chorioretinopathy in monkey eyes: fluorescein angiographic findings. Ophthalmologica 185(3), 168–178 (1982).
  • Yoshioka H, Katsume Y. Experimental central serous chorioretinopathy: III. Ultrastructural findings. Jpn. J. Ophthalmol. 26, 397–409 (1982).
  • Beato M, Arnemann J, Chalepakis G, Slater E, Willmann T. Gene regulation by steroid hormones. J. Steroid Biochem. 27(1–3), 9–14 (1987).
  • Schacke H, Schottelius A, Docke WD et al. Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc. Natl Acad. Sci. USA 101(1), 227–232 (2004).
  • Verma L, Purohit A, Tewari Hk et al. A study of endogenous cortislo profile in patients with central serous retinopathy with single and multiple leaks. Indian J. Pharmacol. 33, 96–99 (2001).
  • Zakir SM, Shukla M, Simi ZU, Ahmad J, Sajid M. Serum cortisol and testosterone levels in idiopathic central serous chorioretinopathy. Indian J. Ophthalmol. 57(6), 419–422 (2009).
  • Haimovici R, Rumelt S, Melby J. Endocrine abnormalities in patients with central serous chorioretinopathy. Ophthalmology 110(4), 698–703 (2003).
  • Sun J, Tan J, Wang Z, Yang H, Zhu X, Li L. Effect of catecholamine on central serous chorioretinopathy. J. Huazhong Univ. Sci. Technolog. Med. Sci. 23(3), 313–316 (2003).
  • Rocha EM, Wickham LA, Da Silveira LA et al. Identification of androgen receptor protein and 5alpha-reductase mRNA in human ocular tissues. Br. J. Ophthalmol. 84(1), 76–84 (2000).
  • Ahad MA, Chua CN, Evans NM. Central serous chorioretinopathy associated with testosterone therapy. Eye (Lond). 20(4), 503–505 (2006).
  • Grieshaber MC, Staub JJ, Flammer J. The potential role of testosterone in central serous chorioretinopathy. Br. J. Ophthalmol. 91(1), 118–119 (2007).
  • Forooghian F, Meleth Ad, Cukras C, Chew Ey, Wong Wt, Meyerle Cb. Finasteride for chronic central serous chorioretinopathy. Retina 31(4), 766–771 (2011).
  • Bill A, Sperber Go. Control of retinal and choroidal blood flow. Eye (Lond). 4 ( Pt 2), 319–325 (1990).
  • Matsuura M, Ando F. [Stellate ganglion block therapy in central serous chorioretinopathy (author's transl)]. Nihon Ganka Gakkai Zasshi 85(9), 1485–1491 (1981).
  • Kim CS, Park CM, Suh JH, Kim SN. Stellate ganglion block for treatment of central serous chorioretinopathy. J. Korean Pain. Soc. 8(2), 324–327 (1995).
  • Ghiadoni L, Donald Ae, Cropley M et al. Mental stress induces transient endothelial dysfunction in humans. Circulation 102(20), 2473–2478 (2000).
  • Spieker LE, Hurlimann D, Ruschitzka F et al. Mental stress induces prolonged endothelial dysfunction via endothelin-A receptors. Circulation 105(24), 2817–2820 (2002).
  • Gottdiener JS, Kop WJ, Hausner E, Mcceney MK, Herrington D, Krantz DS. Effects of mental stress on flow-mediated brachial arterial dilation and influence of behavioral factors and hypercholesterolemia in subjects without cardiovascular disease. Am. J. Cardiol. 92(6), 687–691 (2003).
  • De Hoz Montañana R, Ramírez Sebastián AI. Implications of nerve control of choroidal blood flow in ocular diseases. Archivos de la Sociedad Española de Oftalmología 81, 241–242 (2006).
  • Hayashi K Hy, Tokoro T. Indocyanine green angiography of central serous chorioretinopathy. Int. Ophthalmol. 9, 37–41 (1986).
  • Prunte C, Flammer J. Choroidal capillary and venous congestion in central serous chorioretinopathy. Am. J. Ophthalmol. 121(1), 26–34 (1996).
  • Spaide Rf, Hall L, Haas A et al. Indocyanine green videoangiography of older patients with central serous chorioretinopathy. Retina 16(3), 203–213 (1996).
  • Piccolino Fc, Borgia L, Zinicola E, Zingirian M. Indocyanine green angiographic findings in central serous chorioretinopathy. Eye (Lond). 9 ( Pt 3), 324–332 (1995).
  • Yamada R, Yamada S, Ishii A, Tane S. [Evaluation of tissue plasminogen activator and plasminogen activator inhibitor-1 in blood obtained from patients of idiopathic central serous chorioretinopathy]. Nihon Ganka Gakkai Zasshi 97(8), 955–960 (1993).
  • Iijima H, Iida T, Murayama K, Imai M, Gohdo T. Plasminogen activator inhibitor 1 in central serous chorioretinopathy. Am. J. Ophthalmol. 127(4), 477–478 (1999).
  • Raikkonen K, Lassila R, Keltikangas-Jarvinen L, Hautanen A. Association of chronic stress with plasminogen activator inhibitor-1 in healthy middle-aged men. Arterioscler. Thromb. Vasc. Biol. 16(3), 363–367 (1996).
  • Tsai Sj, Hong Cj, Liou Yj, Yu Yw, Chen Tj. Plasminogen activator inhibitor-1 gene is associated with major depression and antidepressant treatment response. Pharmacogenet. Genomics 18(10), 869–875 (2008).
  • Casonato A, Pontara E, Bertomoro A, Sartorello F, Girolami A. Which assay is the most suitable to investigate von Willebrand factor activity? Thromb. Haemost. 81, 994–995 (1999).
  • Gopal S, Garibaldi S, Goglia L et al. Estrogen regulates endothelial migration via plasminogen activator inhibitor (PAI-1). Mol. Hum. Reprod. 18(8), 410–416 (2012).
  • Guyer Dr, Yannuzzi La, Slakter Js, Sorenson Ja, Ho A, Orlock D. Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch. Ophthalmol. 112(8), 1057–1062 (1994).
  • Klein B. Macular and extramacular serous chorioretinopathy. Am. J. Ophthalmol. 51, 231–242 (1961).
  • Stern Wh, Ernest Jt. Microsphere occlusion of the choriocapillaris in rhesus monkeys. Am J. Ophthalmol. 78(3), 438–448 (1974).
  • Friedman M, Rosenman Rh, Byers S. Serum lipids and conjunctival circulation after fat ingestion in men exhibiting type-a behavior pattern. Circulation 29, 874–886 (1964).
  • Dvorak Hf, Nagy Ja, Feng D, Brown Lf, Dvorak Am. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr. Top. Microbiol. Immunol. 237, 97–132 (1999).
  • Dvorak Am, Kohn S, Morgan Es, Fox P, Nagy Ja, Dvorak Hf. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J. Leukoc. Biol. 59(1), 100–115 (1996).
  • Alomran Ms. Intravitreal Bevacizumab for the treatment of central serous chorioretinopathy. Ophthalmic. Surg. Lasers Imaging 1–3 (2010).
  • Artunay O, Yuzbasioglu E, Rasier R, Sengul A, Bahcecioglu H. Intravitreal bevacizumab in treatment of idiopathic persistent central serous chorioretinopathy: a prospective, controlled clinical study. Curr. Eye Res. 35(2), 91–98 (2010).
  • Torres-Soriano Me, Garcia-Aguirre G, Kon-Jara V et al. A pilot study of intravitreal bevacizumab for the treatment of central serous chorioretinopathy (case reports). Graefes Arch. Clin. Exp. Ophthalmol. 246(9), 1235–1239 (2008).
  • Lim Sj, Roh Mi, Kwon Ow. Intravitreal bevacizumab injection for central serous chorioretinopathy. Retina 30(1), 100–106 (2010).
  • Wang Zy, Shen Lj, Tu L et al. Erythropoietin protects retinal pigment epithelial cells from oxidative damage. Free Radic. Biol. Med. 46(8), 1032–1041 (2009).
  • Garcia-Ramirez M, Hernandez C, Simo R. Expression of erythropoietin and its receptor in the human retina: a comparative study of diabetic and nondiabetic subjects. Diabetes Care 31(6), 1189–1194 (2008).
  • Ksiazek A, Zaluska Wt, Ksiazek P. Effect of recombinant human erythropoietin on adrenergic activity in normotensive hemodialysis patients. Clin. Nephrol. 56(2), 104–110 (2001).
  • Garcia-Ramirez M, Hernandez C, Ruiz-Meana M et al. Erythropoietin protects retinal pigment epithelial cells against the increase of permeability induced by diabetic conditions: essential role of JAK2/ PI3K signaling. Cell. Signal 23(10), 1596–1602 (2011).
  • Ray Pd, Huang Bw, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal 24(5), 981–990 (2012).
  • Nwose Eu, Ewing Gw. Computer diagnosis in cardiology: oxidative stress hypothesis. N. Am. J. Med. Sci. 1(5), 220–225 (2009).
  • Strauss O. The retinal pigment epithelium in visual function. Physiol. Rev. 85(3), 845–881 (2005).
  • Wang Y, Shen D, Wang Vm et al. Enhanced apoptosis in retinal pigment epithelium under inflammatory stimuli and oxidative stress. Apoptosis 17(11), 1144–1155 (2012).
  • Chen M, Forrester Jv, Xu H. Synthesis of complement factor H by retinal pigment epithelial cells is down-regulated by oxidized photoreceptor outer segments. Exp. Eye Res. 84(4), 635–645 (2007).
  • Krohne Tu, Stratmann Nk, Kopitz J, Holz Fg. Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp. Eye Res. 90(3), 465–471 (2010).
  • Yang D, Elner Sg, Chen X, Field Mg, Petty Hr, Elner Vm. MCP-1-activated monocytes induce apoptosis in human retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 52(8), 6026–6034 (2011).
  • Inoue R, Sawa M, Tsujikawa M, Gomi F. Association between the efficacy of photodynamic therapy and indocyanine green angiography findings for central serous chorioretinopathy. Am. J. Ophthalmol. 149(3), e441–e442 (2010).
  • Spitznas M. Pathogenesis of central serous retinopathy: a new working hypothesis. Graefes Arch. Clin. Exp. Ophthalmol. 224(4), 321–324 (1986).
  • Ahlers C, Geitzenauer W, Stock G, Golbaz I, Schmidt-Erfurth U, Prunte C. Alterations of intraretinal layers in acute central serous chorioretinopathy. Acta. Ophthalmol. 87(5), 511–516 (2009).
  • Frambach Da, Fain Gl, Farber Db, Bok D. Beta adrenergic receptors on cultured human retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 31(9), 1767–1772 (1990).
  • Friedman Z, Hackett Sf, Campochiaro Pa. Characterization of adenylate cyclase in human retinal pigment epithelial cells in vitro. Exp. Eye Res. 44(4), 471–479 (1987).
  • Marmor Mf, Yao Xy. The metabolic dependency of retinal adhesion in rabbit and primate. Arch. Ophthalmol. 113(2), 232–238 (1995).
  • Sharma T, Shah N, Rao M et al. Visual outcome after discontinuation of corticosteroids in atypical severe central serous chorioretinopathy. Ophthalmology 111(9), 1708–1714 (2004).
  • Meyerle Cb, Freund Kb, Bhatnagar P, Shah V, Yannuzzi La. Ketoconazole in the treatment of chronic idiopathic central serous chorioretinopathy. Retina 27(7), 943–946 (2007).
  • Nielsen Js, Jampol Lm. Oral mifepristone for chronic central serous chorioretinopathy. Retina 31(9), 1928–1936 (2011).
  • Zhao M, Celerier I, Bousquet E et al. Mineralocorticoid receptor is involved in rat and human ocular chorioretinopathy. J. Clin. Invest. 122(7), 2672–2679 (2012).
  • Steinle Nc, Gupta N, Yuan A, Singh Rp. Oral rifampin utilisation for the treatment of chronic multifocal central serous retinopathy. Br. J. Ophthalmol. 96(1), 10–13 (2012).
  • Caccavale A, Imparato M, Romanazzi F, Negri A, Porta A, Ferentini F. A new strategy of treatment with low-dosage acetyl salicylic acid in patients affected by central serous chorioretinopathy. Med. Hypotheses 73(3), 435–437 (2009).
  • Seong Hk, Bae Jh, Kim Es, Han Jr, Nam Wh, Kim Hk. Intravitreal bevacizumab to treat acute central serous chorioretinopathy: short-term effect. Ophthalmologica 223(5), 343–347 (2009).
  • Schaal Kb, Hoeh Ae, Scheuerle A, Schuett F, Dithmar S. Intravitreal bevacizumab for treatment of chronic central serous chorioretinopathy. Eur. J. Ophthalmol. 19(4), 613–617 (2009).
  • Lim Jw, Ryu Sj, Shin Mc. The effect of intravitreal bevacizumab in patients with acute central serous chorioretinopathy. Korean J. Ophthalmol. 24(3), 155–158 (2010).
  • Lim Jw, Kim Mu. The efficacy of intravitreal bevacizumab for idiopathic central serous chorioretinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 249(7), 969–974 (2011).
  • Koss Mj, Beger I, Koch Fh. Subthreshold diode laser micropulse photocoagulation versus intravitreal injections of bevacizumab in the treatment of central serous chorioretinopathy. Eye (Lond) 26(2), 307–314 (2012).
  • Nishijima K, Ng Ys, Zhong L et al. Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am. J. Pathol. 171(1), 53–67 (2007).
  • Ford Km, Saint-Geniez M, Walshe T, Zahr A, D'amore Pa. Expression and role of VEGF in the adult retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 52(13), 9478–9487 (2011).
  • Leal Ec, Martins J, Voabil P et al. Calcium dobesilate inhibits the alterations in tight junction proteins and leukocyte adhesion to retinal endothelial cells induced by diabetes. Diabetes 59(10), 2637–2645 (2010).
  • Yamagishi S, Abe R, Jinnouchi Y, Matsui T, Imaizumi T, Inoue H. Pigment epithelium-derived factor inhibits vascular endothelial growth factor-induced vascular hyperpermeability both in vitro and in vivo. J. Int. Med. Res. 35(6), 896–899 (2007).
  • Ratanasukon M, Bhurayanontachai P, Jirarattanasopa P. High-dose antioxidants for central serous chorioretinopathy; the randomized placebo-controlled study. BMC Ophthalmol 12, 20 (2012).
  • Turkcu Fm, Yuksel H, Sahin A et al. Serum dehydroepiandrosterone sulphate, total antioxidant capacity, and total oxidant status in central serous chorioretinopathy. Graefes Arch. Clin. Exp. Ophthalmol. doi:10.1007/s00417-013-2396-2 (2013) ( Epub ahead of print).
  • Mazzolani F, Togni S. Oral administration of a curcumin-phospholipid delivery system for the treatment of central serous chorioretinopathy: a 12-month follow-up study. Clin Ophthalmol 7, 939–945 (2013).
  • Castro-Correia J, Coutinho Mf, Rosas V, Maia J. Long-term follow-up of central serous retinopathy in 150 patients. Doc. Ophthalmol. 81(4), 379–386 (1992).
  • Bujarborua D. Long-term follow-up of idiopathic central serous chorioretinopathy without laser. Acta. Ophthalmol. Scand. 79(4), 417–421 (2001).
  • Weenink Ac, Borsje Ra, Oosterhuis Ja. Familial chronic central serous chorioretinopathy. Ophthalmologica 215(3), 183–187 (2001).
  • Gamboa Ol, Pu J, Townend J et al. Electrical estimulation of retinal pigment epithelial cells. Exp. Eye. Res. 91(2), 195–204 (2010).
  • Singh R, Shen W, Kuai D et al. iPS cell modeling of Best disease: insights into the pathophysiology of an inherited macular degeneration. Hum. Mol. Genet. 22(3), 593–607 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.