50
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Imaging the intraocular tumor

&

References

  • Van Cader T. History of ophthalmic photography. J Ophthalmic Photogr 1978;17-19
  • Pomerantzeff O. Equator-plus camera. Invest Ophthalmol 1975;14(5):401-6
  • Novotny HR, Alvis D. A method of photographing fluorescence in circulating blood of the human eye. Tech Doc Rep SAMTDR USAF Sch Aerosp Med 1960;60-82:1-4
  • Vannas A. Fluorescein angiography of the vessels of the iris in pseudoexfoliation of the lens capsule, capsular glaucoma and some other forms of glaucoma. Acta Ophthalmol Suppl 1969;105:1-75
  • Staurenghi G, Viola F, Mainster MA, et al. Scanning laser ophthalmoscopy and angiography with a wide-field contact lens system. Arch Ophthalmol 2005;123(2):244-52
  • Horgan N, Shields CL, Mashayekhi A, Shields JA. Classification and treatment of radiation maculopathy. Curr Opin Ophthalmol 2010;21(3):233-8
  • Bianciotto C, Shields CL, Pirondini C, et al. Proliferative radiation retinopathy after plaque radiotherapy for uveal melanoma. Ophthalmology 2010;117(5):1005-12
  • Heimann H, Jmor F, Damato B. Imaging of retinal and choroidal vascular tumours. Eye (Lond) 2013;27(2):208-16
  • Bernard JA, Dhermy P. [Orange pigment and hyperfluorescent pin-point dots on the angiographic data of malignant melanoma (author’s transl)]. J Fr Ophtalmol 1978;1(8-9):529-34
  • Augsburger JJ, Golden MI, Shields JA. Fluorescein angiography of choroidal malignant melanomas with retinal invasion. Retina 1984;4(4):232-41
  • Gass JD. Fluorescein angiography. An aid in the differential diagnosis of intraocular tumors. Int Ophthalmol Clin 1972;12(1):85-120
  • Fineschi V, Monasterolo G, Rosi R, Turillazzi E. Fatal anaphylactic shock during a fluorescein angiography. Forensic Sci Int 1999;100(1-2):137-42
  • Ascaso FJ, Tiestos MT, Navales J, et al. Fatal acute myocardial infarction after intravenous fluorescein angiography. Retina 1993;13(3):238-9
  • Arevalo JF, Shields CL, Shields JA, et al. Circumscribed choroidal hemangioma: characteristic features with indocyanine green videoangiography. Ophthalmology 2000;107(2):344-50
  • Schalenbourg A, Piguet B, Zografos L. Indocyanine green angiographic findings in choroidal hemangiomas: a study of 75 cases. Ophthalmologica 2000;214(4):246-52
  • Nilsson SE, Sundelin SP, Wihlmark U, Brunk UT. Aging of cultured retinal pigment epithelial cells: oxidative reactions, lipofuscin formation and blue light damage. Doc Ophthalmol 2003;106(1):13-16
  • Kitagawa K, Nishida S, Ogura Y. In vivo quantitation of autofluorescence in human retinal pigment epithelium. Ophthalmologica 1989;199(2-3):116-21
  • Lavinsky D, Belfort RN, Navajas E, et al. Fundus autofluorescence of choroidal nevus and melanoma. Br J Ophthalmol 2007;91(10):1299-302
  • Shields CL, Bianciotto C, Pirondini C, et al. Autofluorescence of choroidal melanoma in 51 cases. Br J Ophthalmol 2008;92(5):617-22
  • Shields CL, Furuta M, Berman EL, et al. Choroidal nevus transformation into melanoma: analysis of 2514 consecutive cases. Arch Ophthalmol 2009;127(8):981-7
  • Casady M, Faia L, Nazemzadeh M, et al. Fundus autofluorescence patterns in primary intraocular lymphoma. Retina 2014;34(2):366-72
  • Singh AD, Damato B. Clinical ophthalmic oncology : basic principles and diagnostic techniques. 2nd edition. Springer; Berlin, Germany: 2014
  • Mundt GH, Hughes WF. Ultrasonics in ocular diagnosis. Am J Ophthalmol 1956;41(3):488-98
  • Oksala A, Lehtinen A. Diagnostics of detachment of the retina by means of ultrasound. Acta Ophthalmol (Copenh) 1957;35(5):461-7
  • Baum G, Greenwood I. The application of ultrasonics locating techniques to ophthalmology; theoretic considerations and acoustic properties of ocular media. I. Reflective properties. Am J Ophthalmol 1958;46(5 Part 2):319-29
  • Daftari IK, Mishra KK, O’Brien JM, et al. Fundus image fusion in EYEPLAN software: an evaluation of a novel technique for ocular melanoma radiation treatment planning. Med Phys 2010;37(10):5199-207
  • Kujala E, Damato B, Coupland SE, et al. Staging of ciliary body and choroidal melanomas based on anatomic extent. J Clin Oncol 2013;31(22):2825-31
  • Shields CL, Kaliki S, Furuta M, et al. American Joint Committee on Cancer classification of posterior uveal melanoma (tumor size category) predicts prognosis in 7731 patients. Ophthalmology 2013;120(10):2066-71
  • Haritoglou C, Neubauer AS, Herzum H, et al. Interobserver and intraobserver variability of measurements of uveal melanomas using standardised echography. Br J Ophthalmol 2002;86(12):1390-4
  • Mosci C, Lanza FB, Mosci S, Barla A. Quantitative echography in primary uveal melanoma treated by proton beam therapy. Can J Ophthalmol 2014;49(1):60-5
  • Chang MY, Kamrava M, Demanes DJ, et al. Intraoperative ultrasonography-guided positioning of iodine 125 plaque brachytherapy in the treatment of choroidal melanoma. Ophthalmology 2012;119(5):1073-7
  • Berry JL, Dandapani SV, Stevanovic M, et al. Outcomes of choroidal melanomas treated with eye physics: a 20-year review. JAMA Ophthalmol 2013;131(11):1435-42
  • Kook D, Kreutzer TC, Wolf A, Haritoglou C. Variability of standardized echographic ultrasound using 10 mHz and high-resolution 20 mHz B scan in measuring intraocular melanoma. Clin Ophthalmol 2011;5:477-82
  • Silverman RH. High-resolution ultrasound imaging of the eye - a review. Clin Experiment Ophthalmol 2009;37(1):54-67
  • Jensen PK, Hansen MK. Ultrasonographic, three-dimensional scanning for determination of intraocular tumor volume. Acta Ophthalmol (Copenh) 1991;69(2):178-86
  • Romero JM, Finger PT, Rosen RB, Iezzi R. Three-dimensional ultrasound for the measurement of choroidal melanomas. Arch Ophthalmol 2001;119(9):1275-82
  • Maberley D, Fisher Y, Carvahlo C, et al. Variability of three-dimensional ultrasonography for assessment of intraocular tumours. Can J Ophthalmol 2002;37(5):283-9
  • Leung E, Diaz-Barbosa M, Alabiad C, et al. Prenatal ultrasonographic detection of ophthalmic diseases. J Pediatr Ophthalmol Strabismus 2012;49: Online e26-9
  • Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science 1991;254(5035):1178-81
  • Shields CL, Furuta M, Mashayekhi A, et al. Clinical spectrum of choroidal nevi based on age at presentation in 3422 consecutive eyes. Ophthalmology 2008;115(3):546-52; e542
  • Bakri SJ, Larson TA. The Variable efficacy of intravitreal bevacizumab and triamcinolone acetonide for cystoid macular edema due to radiation retinopathy. Semin Ophthalmol 2013. [Epub ahead of print]
  • Egawa M, Mitamura Y, Hayashi Y, Naito T. Spectral-domain optical coherence tomographic and fundus autofluorescence findings in eyes with primary intraocular lymphoma. Clin Ophthalmol 2014;8:335-41
  • Spaide RF, Koizumi H, Pozzoni MC, Pozonni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 2008;146(4):496-500
  • Torres VL, Brugnoni N, Kaiser PK, Singh AD. Optical coherence tomography enhanced depth imaging of choroidal tumors. Am J Ophthalmol 2011;151(4):586-93; e582
  • Shah SU, Kaliki S, Shields CL, et al. Enhanced depth imaging optical coherence tomography of choroidal nevus in 104 cases. Ophthalmology 2012;119(5):1066-72
  • Shields CL, Kaliki S, Rojanaporn D, et al. Enhanced depth imaging optical coherence tomography of small choroidal melanoma: comparison with choroidal nevus. Arch Ophthalmol 2012;130(7):850-6
  • Shields CL, Arepalli S, Pellegrini M, et al. Choroidal lymphoma shows calm, rippled, or undulating topography on enhanced depth imaging optical coherence tomography in 14 eyes. Retina 2014;34(7):1347-53
  • Fung AT, Pellegrini M, Shields CL. Congenital hypertrophy of the retinal pigment epithelium: enhanced-depth imaging optical coherence tomography in 18 cases. Ophthalmology 2014;121(1):251-6
  • Demirci H, Cullen A, Sundstrom JM. Enhanced depth imaging optical coherence tomography of choroidal metastasis. Retina 2013;34(7):1354-9
  • Scott AW, Farsiu S, Enyedi LB, et al. Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device. Am J Ophthalmol 2009;147(2):364-73; e362
  • Rootman DB, Gonzalez E, Mallipatna A, et al. Hand-held high-resolution spectral domain optical coherence tomography in retinoblastoma: clinical and morphologic considerations. Br J Ophthalmol 2013;97(1):59-65
  • Pavlin CJ, Vásquez LM, Lee R, et al. Anterior segment optical coherence tomography and ultrasound biomicroscopy in the imaging of anterior segment tumors. Am J Ophthalmol 2009;147(2):214-19; e212
  • Bianciotto C, Shields CL, Guzman JM, et al. Assessment of anterior segment tumors with ultrasound biomicroscopy versus anterior segment optical coherence tomography in 200 cases. Ophthalmology 2011;118(7):1297-302
  • Shields CL, Shields PW, Manalac J, et al. Review of cystic and solid tumors of the iris. Oman J Ophthalmol 2013;6(3):159-64
  • Schwartz DM, Fingler J, Kim DY, et al. Phase-variance optical coherence tomography: a technique for noninvasive angiography. Ophthalmology 2014;121(1):180-7
  • Zayit-Soudry S, Duncan JL, Syed R, et al. Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 2013;54(12):7498-509
  • Srinivasan VJ, Adler DC, Chen Y, et al. Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Invest Ophthalmol Vis Sci 2008;49(11):5103-10
  • de Jong MC, de Graaf P, Noij DP, et al. Diagnostic performance of magnetic resonance imaging and computed tomography for advanced retinoblastoma: a systematic review and meta-analysis. Ophthalmology 2014;121(5):1109-18
  • Khurana A, Eisenhut CA, Wan W, et al. Comparison of the diagnostic value of MR imaging and ophthalmoscopy for the staging of retinoblastoma. Eur Radiol 2013;23(5):1271-80
  • Hosten N, Bornfeld N, Wassmuth R, et al. Uveal melanoma: detection of extraocular growth with MR imaging and US. Radiology 1997;202(1):61-7
  • Tartaglione T, Pagliara MM, Sciandra M, et al. Uveal melanoma: evaluation of extrascleral extension using thin-section MR of the eye with surface coils. Radiol Med 2014. [Epub ahead of print]
  • Sepahdari AR, Kapur R, Aakalu VK, et al. Diffusion-weighted imaging of malignant ocular masses: initial results and directions for further study. AJNR Am J Neuroradiol 2012;33(2):314-19
  • Brennan RC, Wilson MW, Kaste S, et al. US and MRI of pediatric ocular masses with histopathological correlation. Pediatr Radiol 2012;42(6):738-49
  • Marnitz S, Cordini D, Bendl R, et al. Proton therapy of uveal melanomas: intercomparison of MRI-based and conventional treatment planning. Strahlenther Onkol 2006;182(7):395-9
  • Daftari I, Aghaian E, O’Brien JM, et al. 3D MRI-based tumor delineation of ocular melanoma and its comparison with conventional techniques. Med Phys 2005;32(11):3355-62
  • Jokl DH, Tsai N, Kreps S. Detection of choroidal calcium by computed tomography scan quantitative computerized tomography: a clinically useful diagnostic tool. Ophthalmology 1999;106(9):1841-6
  • Vajaranant TS, Mafee MF, Kapur R, et al. Medulloepithelioma of the ciliary body and optic nerve: clinicopathologic, CT, and MR imaging features. Neuroimaging Clin N Am 2005;15(1):69-83
  • Bellmann C, Fuss M, Holz FG, et al. Stereotactic radiation therapy for malignant choroidal tumors: preliminary, short-term results. Ophthalmology 2000;107(2):358-65

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.