138
Views
1
CrossRef citations to date
0
Altmetric
Reviews

A focus on the imaging of the retina

, &

References

** Updated summary of current standard imaging modalities in diabetic retinopathy

  • Gregori G, Yehoshua Z, Garcia Filho CA, et al. Change in drusen area over time compared using spectral-domain optical coherence tomography and color fundus imaging. Invest Ophthalmol Vis Sci. 2014;55(11):7662–7668.
  • Mokwa NF, Ristau T, Keane PA, et al. Grading of age-related macular degeneration: comparison between color fundus photography, fluorescein angiography, and spectral domain optical coherence tomography. J Ophthalmol. 2013;2013:385915.
  • Munk MR, Dunavoelgyi R, Baratsits M, et al. Detection and differentiation of intraretinal hemorrhage in spectral domain optical coherence tomography. Curr Eye Res. 2015;40(10):1046–1054.
  • Beavers AJ, Stagner AM, Allbery SM, et al. MR detection of retinal hemorrhages: correlation with graded ophthalmologic exam. Pediatr Radiol. 2015;45:1363–1371.
  • Daniel E, Toth CA, Grunwald JE, et al. Risk of scar in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2014;121(3):656–666.
  • Gupta V, Al-Dhibi HA, Arevalo JF. Retinal imaging in uveitis. Saudi J Ophthalmology: Off J Saudi Ophthalmological Soc. 2014;28(2):95–103.

* Short review of current imaging modalities in posterior uveitis

  • Gass JDM. Stereoscopic atlas of macular diseases; a funduscopic and angiographic presentation. Saint Louis: C. V. Mosby Co.; 1970.
  • Yannuzzi LA. The retinal atlas. Philadelphia: Saunders/Elsevier; 2010.
  • Agarwal A, Gass JDM, Gass JDM. Gass’ atlas of macular diseases. Edinburgh: Elsevier Saunders; 2012.
  • Korb CA, Kottler UB, Wolfram C, et al. Prevalence of age-related macular degeneration in a large European cohort: results from the population-based Gutenberg Health Study. Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie [Graefe’s Archive Clinical Experimental Ophthalmology]. 2014;252(9):1403–1411.
  • Chew EY, Clemons TE, Agron E, et al. Ten-year follow-up of age-related macular degeneration in the age-related eye disease study: AREDS report no. 36. JAMA Ophthalmol. 2014;132(3):272–277.
  • Danis RP, Domalpally A, Chew EY, et al. Methods and reproducibility of grading optimized digital color fundus photographs in the Age-Related Eye Disease Study 2 (AREDS2 Report Number 2). Invest Ophthalmol Vis Sci. 2013;54(7):4548–4554.
  • Bernardes R, Serranho P, Lobo C. Digital ocular fundus imaging: a review. Ophthalmologica J Int D’ophtalmologie Int J Ophthalmology. Zeitschrift Fur Augenheilkunde. 2011;226(4):161–181.
  • Blanckenberg M, Worst C, Scheffer C. Development of a mobile phone based ophthalmoscope for telemedicine. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5236–5239.
  • Duchin KS, Asefzadeh B, Poulaki V, et al. Teleretinal Imaging for detection of referable macular degeneration. Optom Vis Sci. 2015;92(6):714–718.
  • Li Z, Wu C, Olayiwola JN, et al. Telemedicine-based digital retinal imaging vs standard ophthalmologic evaluation for the assessment of diabetic retinopathy. Conn Med. 2012;76(2):85–90.
  • Ting DS, Tay-Kearney ML, Kanagasingam Y. Light and portable novel device for diabetic retinopathy screening. Clin Experiment Ophthalmol. 2012;40(1):e40–46.
  • De Bats F, Vannier Nitenberg C, Fantino B, et al. Age-related macular degeneration screening using a nonmydriatic digital color fundus camera and telemedicine. Ophthalmologica J Int d’ophtalmologie. 2014;231(3):172–176.
  • Fierson WM, Capone A Jr. American Academy of Pediatrics Section on O, American Academy of Ophthalmology AAoCO. Telemedicine for evaluation of retinopathy of prematurity. Pediatrics. 2015;135(1):e238–254.
  • Prakalapakorn SG, Wallace DK, Freedman SF. Retinal imaging in premature infants using the Pictor noncontact digital camera. J AAPOS Off Publ Am Assoc Pediatr Ophthalmol Strabismus/American Assoc Pediatr Ophthalmol Strabismus. 2014;18(4):321–326.
  • Bastawrous A. Smartphone fundoscopy. Ophthalmology. 2012;119(2):432–433.e2.
  • Maamari RN, Keenan JD, Fletcher DA, et al. A mobile phone-based retinal camera for portable wide field imaging. Br J Ophthalmol. 2014;98(4):438–441.
  • Haddock LJ, Kim DY, Mukai S. Simple, inexpensive technique for high-quality smartphone fundus photography in human and animal eyes. J Ophthalmol. 2013;2013. Article ID 518479. doi:10.1155/2013/518479
  • Owsley C, McGwin G Jr., Lee DJ, et al. Diabetes eye screening in urban settings serving minority populations: detection of diabetic retinopathy and other ocular findings using telemedicine. JAMA Ophthalmol. 2015;133(2):174–181.
  • Vinekar A, Gilbert C, Dogra M, et al. The KIDROP model of combining strategies for providing retinopathy of prematurity screening in underserved areas in India using wide-field imaging, tele-medicine, non-physician graders and smart phone reporting. Indian J Ophthalmol. 2014;62(1):41–49.
  • Li HK, Hubbard LD, Danis RP, et al. Monoscopic versus stereoscopic retinal photography for grading diabetic retinopathy severity. Invest Ophthalmol Vis Sci. 2010;51(6):3184–3192.
  • Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961;24:82–86.
  • Wilde C, Patel M, Lakshmanan A, et al. The diagnostic accuracy of spectral-domain optical coherence tomography for neovascular age-related macular degeneration: a comparison with fundus fluorescein angiography. Eye. 2015;29(5):602–610.
  • Castillo MM, Mowatt G, Elders A, et al. Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review. Ophthalmology. 2015;122(2):399–406.
  • Schmidt-Erfurth U, Chong V, Loewenstein A, et al. Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA). Br J Ophthalmol. 2014;98(9):1144–1167.
  • Ilginis T, Clarke J, Patel PJ. Ophthalmic imaging. Br Med Bull. 2014;111(1):77–88.

* Review of the most commonly used imaging modalities of the anterior and posterior eye segments

  • Yannuzzi LA, Slakter JS, Sorenson JA, et al. Digital indocyanine green videoangiography and choroidal neovascularization. Retina. 1992;12(3):191–223.
  • Yannuzzi LA. Indocyanine green angiography: a perspective on use in the clinical setting. Am J Ophthalmol. 2011;151(5):745–751.e1.
  • Kim H, Lee SC, Kim SM, et al. Identification of underlying causes of spontaneous submacular hemorrhage by indocyanine green angiography. Ophthalmologica J Int D’ophtalmologie Int J Ophthalmology Zeitschrift Fur Augenheilkunde. 2015;233:146–154.
  • Karim SP, Adelman RA. Profile of verteporfin and its potential for the treatment of central serous chorioretinopathy. Clin Ophthalmol. 2013;7:1867–1875.
  • Tsipursky MS, Golchet PR, Jampol LM. Photodynamic therapy of choroidal hemangioma in sturge-weber syndrome, with a review of treatments for diffuse and circumscribed choroidal hemangiomas. Surv Ophthalmol. 2011;56(1):68–85.
  • Wong RL, Lai TY. Polypoidal choroidal vasculopathy: an update on therapeutic approaches. J Ophthalmic Vis Res. 2013;8(4):359–371.
  • De Smet MD, Gad Elkareem AM, Zwinderman AH. The vitreous, the retinal interface in ocular health and disease. Ophthalmologica J Int D’ophtalmologie Int J Ophthalmology Zeitschrift Fur Augenheilkunde. 2013;230(4):165–178.
  • Kilker BA, Holst JM, Hoffmann B. Bedside ocular ultrasound in the emergency department. Eur J Emerg Medicine: Off J Eur Soc Emerg Med. 2014;21(4):246–253.
  • Parchand S, Singh R, Bhalekar S. Reliability of ocular ultrasonography findings for pre-surgical evaluation in various vitreo-retinal disorders. Semin Ophthalmol. 2014;29(4):236–241.
  • Roque PJ, Hatch N, Barr L, et al. Bedside ocular ultrasound. Critical Care Clinics. 2014;30(2):227–241.
  • Vrablik ME, Snead GR, Minnigan HJ, et al. The diagnostic accuracy of bedside ocular ultrasonography for the diagnosis of retinal detachment: a systematic review and meta-analysis. Ann Emerg Med. 2015;65(2):199–203.e1.

* Review and meta-analysis of bedside ocular ultrasound in an emergency setting

  • Shah SU, Kaliki S, Shields CL, et al. Enhanced depth imaging optical coherence tomography of choroidal nevus in 104 cases. Ophthalmology. 2012;119(5):1066–1072.
  • Agarwal A, Fan S, Invernizzi A, et al. Characterization of retinal structure and diagnosis of peripheral acquired retinoschisis using high-resolution ultrasound B-scan. Graefes Arch Clin Exp Ophthalmol. 2015. [Epub a head of print]. doi:10.1007/s00417-015-3013-3
  • Shields JA, Shields CL. Management of posterior uveal melanoma: past, present, and future: the 2014 Charles L. Schepens lecture. Ophthalmology. 2015;122(2):414–428.
  • Shields CL, Kels JG, Shields JA. Melanoma of the eye: revealing hidden secrets, one at a time. Clin Dermatol. 2015;33(2):183–196.
  • Gramatikov BI. Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer. Biomed Eng Online. 2014;13(1):52.
  • Webb RH, Hughes GW, Pomerantzeff O. Flying spot TV ophthalmoscope. Appl Opt. 1980;19(17):2991–2997.
  • LaRocca F, Nankivil D, Farsiu S, et al. True color scanning laser ophthalmoscopy and optical coherence tomography handheld probe. Biomed Opt Express. 2014;5(9):3204–3216.
  • Reznicek L, Dabov S, Kayat B, et al. Scanning laser ‘en face’ retinal imaging of epiretinal membranes. Saudi J Ophthalmol Off J Saudi Ophthalmological Soc. 2014;28(2):134–138.
  • Castro Lima V, Rodrigues EB, Nunes RP, et al. Simultaneous confocal scanning laser ophthalmoscopy combined with high-resolution spectral-domain optical coherence tomography: a review. J Ophthalmol. 2011;2011(743670):1–6.
  • Larocca F, Nankivil D, Farsiu S, et al. Handheld simultaneous scanning laser ophthalmoscopy and optical coherence tomography system. Biomed Opt Express. 2013;4(11):2307–2321.
  • Sparrow JR, Duncker T. Fundus Autofluorescence and RPE lipofuscin in age-related macular degeneration. J Clin Med. 2014;3(4):1302–1321.
  • Schmitz-Valckenberg S. Fundus autofluorescence imaging. Klin Monbl Augenheilkd. 2015;232(9):1050–1053.
  • Sayegh RG, Simader C, Scheschy U, et al. A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy. Ophthalmology. 2011;118(9):1844–1851.
  • Lindner M, Boker A, Mauschitz MM, et al. Directional kinetics of geographic atrophy progression in age-related macular degeneration with foveal sparing. Ophthalmology. 2015;122(7):1356–1365.
  • Burke TR, Duncker T, Woods RL, et al. Quantitative fundus autofluorescence in recessive Stargardt disease. Invest Ophthalmol Vis Sci. 2014;55(5):2841–2852.
  • Duncker T, Greenberg JP, Ramachandran R, et al. Quantitative fundus autofluorescence and optical coherence tomography in best vitelliform macular dystrophy. Invest Ophthalmol Vis Sci. 2014;55(3):1471–1482.
  • Duncker T, Tsang SH, Lee W, et al. Quantitative fundus autofluorescence distinguishes ABCA4-associated and non-ABCA4-associated bull’s-eye maculopathy. Ophthalmology. 2015;122(2):345–355.
  • Greenberg JP, Duncker T, Woods RL, et al. Quantitative fundus autofluorescence in healthy eyes. Invest Ophthalmol Vis Sci. 2013;54(8):5684–5693.

* Study aiming to quantify fundus autofluorescence in a large sample (277 healthy participants) and generate normative data

* Review of different techniques and applications for widefield retinal imaging

  • Kernt M, Kampik A. Imaging of the peripheral retina. Oman J Ophthalmol. 2013;6(Suppl 4):S32–35.
  • Price LD, Au S, Chong NV. Optomap ultrawide field imaging identifies additional retinal abnormalities in patients with diabetic retinopathy. Clin Ophthalmol. 2015;9:527–531.
  • Spaide RF. Peripheral areas of nonperfusion in treated central retinal vein occlusion as imaged by wide-field fluorescein angiography. Retina. 2011;31(5):829–837.
  • Patel M, Kiss S. Ultra-wide-field fluorescein angiography in retinal disease. Curr Opin Ophthalmol. 2014;25(3):213–220.

* Review of the role of ultra widefield fluorescein angiography in retinal disease

  • Wessel MM, Aaker GD, Parlitsis G, et al. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina. 2012;32(4):785–791.
  • Orlin A, Fatoo A, Ehrlich J, et al. Ultra-widefield fluorescein angiography of white without pressure. Clin Ophthalmol. 2013;7:959–964.
  • Kafieh R, Rabbani H, Kermani S. A review of algorithms for segmentation of optical coherence tomography from retina. J Med Signals Sens. 2013;3(1):45–60.

* Review of optical coherence tomography and segmentation algorithms for volume scans

  • Schmidt-Erfurth U, Kaiser PK, Korobelnik JF, et al. Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies. Ophthalmology. 2014;121(1):193–201.
  • Braithwaite T, Nanji AA, Lindsley K, et al. Anti-vascular endothelial growth factor for macular oedema secondary to central retinal vein occlusion. Cochrane Database Syst Rev. 2014;5:CD007325.
  • Solomon SD, Lindsley K, Vedula SS, et al. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst Rev. 2014;8:CD005139.
  • Virgili G, Parravano M, Menchini F, et al. Anti-vascular endothelial growth factor for diabetic macular oedema. Cochrane Database Syst Rev. 2014;10:CD007419.
  • Cuilla TA, Ying GS, Maguire MG, et al. Influence of the vitreomacular interface on treatment outcomes in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2015;122(6):1203–1211.
  • Mayr-Sponer U, Waldstein SM, Kundi M, et al. Influence of the vitreomacular interface on outcomes of ranibizumab therapy in neovascular age-related macular degeneration. Ophthalmology. 2013;120(12):2620–2629.
  • Waldstein SM, Ritter M, Simader C, et al. Impact of vitreomacular adhesion on ranibizumab mono- and combination therapy for neovascular age-related macular degeneration. Am J Ophthalmol. 2014;158(2):328–336.e1.
  • Schmidt-Erfurth U, Waldstein SM, Deak GG, et al. Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration. Ophthalmology. 2015;122(4):822–832.
  • Simader C, Ritter M, Bolz M, et al. Morphologic parameters relevant for visual outcome during anti-angiogenic therapy of neovascular age-related macular degeneration. Ophthalmology. 2014;121(6):1237–1245.
  • Jaffe GJ, Martin DF, Toth CA, et al. Macular morphology and visual acuity in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2013;120(9):1860–1870.
  • Roberts P, Mittermueller TJ, Montuoro A, et al. A quantitative approach to identify morphological features relevant for visual function in ranibizumab therapy of neovascular AMD. Invest Ophthalmol Vis Sci. 2014;55(10):6623–6630.
  • Saxena S, Srivastav K, Cheung CM, et al. Photoreceptor inner segment ellipsoid band integrity on spectral domain optical coherence tomography. Clin Ophthalmol. 2014;8:2507–2522.
  • Sulzbacher F, Roberts P, Munk MR, et al. Relationship of retinal morphology and retinal sensitivity in the treatment of neovascular age-related macular degeneration using aflibercept. Invest Ophthalmol Vis Sci. 2015;56(2):1158–1167.
  • Staurenghi G, Sadda S, Chakravarthy U, et al. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN*OCT consensus. Ophthalmology. 2014;121(8):1572–1578.

** Description of the retinal and choroidal layers imaged by optical coherence tomography and guideline for a uniform international labeling

  • Sun JK, Lin MM, Lammer J, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol. 2014;132(11):1309–1316.
  • Deak GG, Bolz M, Prager S, et al. Photoreceptor layer regeneration is detectable in the human retina imaged by SD-OCT after laser treatment using subthreshold laser power. Invest Ophthalmol Vis Sci. 2012;53(11):7019–7025.
  • Schmidt-Erfurth U, Waldstein SM. A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Prog Retin Eye Res. 2015. [Epub a head of print]. doi:10.1016/j.preteyeres.2015.07.007

** Comprehensive review of the significance of different imaging modalities in neovascular AMD

  • Wu Z, Luu CD, Ayton LN, et al. Optical coherence tomography-defined changes preceding the development of drusen-associated atrophy in age-related macular degeneration. Ophthalmology. 2014;121(12):2415–2422.
  • Ristau T, Keane PA, Walsh AC, et al. Relationship between visual acuity and spectral domain optical coherence tomography retinal parameters in neovascular age-related macular degeneration. Ophthalmologica J Int D’ophtalmologie Int J Ophthalmology Zeitschrift Fur Augenheilkunde. 2014;231(1):37–44.
  • Christenbury JG, Folgar FA, O’Connell RV, et al. Progression of intermediate age-related macular degeneration with proliferation and inner retinal migration of hyperreflective foci. Ophthalmology. 2013;120(5):1038–1045.
  • Drexler W, Liu M, Kumar A, et al. Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt. 2014;19(7):071412.

** Extensive review of optical coherence tomography systems and novelties in multimodal imaging

* Extensive review of choroidal imaging in healthy and diseased eyes using different imaging modalities

  • Koinzer S. Optical coherence tomography–high-resolution tissue imaging, but not histology!. Klin Monbl Augenheilkd. 2014;231(7):709–717.
  • Spaide RF, Curcio CA. Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina. 2011;31(8):1609–1619.
  • Anger EM, Unterhuber A, Hermann B, et al. Ultrahigh resolution optical coherence tomography of the monkey fovea. Identification of retinal sublayers by correlation with semithin histology sections. Exp Eye Res. 2004;78(6):1117–1125.
  • Toth CA, Narayan DG, Boppart SA, et al. A comparison of retinal morphology viewed by optical coherence tomography and by light microscopy. Arch Ophthalmol. 1997;115(11):1425–1428.
  • Huang Y, Cideciyan AV, Papastergiou GI, et al. Relation of optical coherence tomography to microanatomy in normal and rd chickens. Invest Ophthalmol Vis Sci. 1998;39(12):2405–2416.
  • Berger A, Cavallero S, Dominguez E, et al. Spectral-domain optical coherence tomography of the rodent eye: highlighting layers of the outer retina using signal averaging and comparison with histology. Plos One. 2014;9(5):e96494.
  • Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20(4):4710–4725.
  • Kim DY, Fingler J, Zawadzki RJ, et al. Optical imaging of the chorioretinal vasculature in the living human eye. Proc Natl Acad Sci USA. 2013;110(35):14354–14359.
  • Jia Y, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci USA. 2015;112(18):E2395–2402.

** Presentation of optical coherence tomography angiographic imaging in retinal vascular diseases

  • Jia Y, Bailey ST, Wilson DJ, et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology. 2014;121(7):1435–1444.
  • Spaide RF. Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization. Am J Ophthalmol. 2015;160(1):6–16.

* Presentation of a disease model in neovascular age-related macular degeneration treated with antivascular endothelium growth factor based on optical coherence tomography angiographic imaging

  • De Carlo TE, Bonini Filho MA, Chin AT, et al. Spectral-domain optical coherence tomography angiography of choroidal neovascularization. Ophthalmology. 2015;122(6):1228–1238.
  • Hong Y-J, Miura M, Ju MJ, et al. Simultaneous investigation of vascular and retinal pigment epithelial pathologies of exudative macular diseases by multifunctional optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55(8):5016–5031.
  • Willoughby AS, Ying G-S, Toth CA, et al. Subretinal hyperreflective material in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2015;122(9):1846–1853 e1845.
  • Pircher M, Hitzenberger CK, Schmidt-Erfurth U. Polarization sensitive optical coherence tomography in the human eye. Prog Retin Eye Res. 2011;30(6):431–451.

** Review of polarization-sensitive optical coherence tomography and its applications in ophthalmology

  • Sugita M, Pircher M, Zotter S, et al. Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT. Biomed Opt Express. 2015;6(3):1030–1054.
  • Lammer J, Bolz M, Baumann B, et al. Imaging retinal pigment epithelial proliferation secondary to PASCAL photocoagulation in vivo by polarization-sensitive optical coherence tomography. Am J Ophthalmol. 2013;155(6):1058–1067 e1051.
  • Schlanitz FG, Baumann B, Spalek T, et al. Performance of automated drusen detection by polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(7):4571–4579.
  • Schutze C, Bolz M, Sayegh R, et al. Lesion size detection in geographic atrophy by polarization-sensitive optical coherence tomography and correlation to conventional imaging techniques. Invest Ophthalmol Vis Sci. 2013;54(1):739–745.
  • Sayegh RG, Zotter S, Roberts PK, et al. Polarization-sensitive optical coherence tomography and conventional retinal imaging strategies in assessing foveal integrity in geographic atrophy. Invest Ophthalmol Vis Sci. 2015;56(9):5246–5255.
  • Carroll J, Kay DB, Scoles D, et al. Adaptive optics retinal imaging–clinical opportunities and challenges. Curr Eye Res. 2013;38(7):709–721.

** Review of applications and issues of adaptive optics imaging

  • Doble N. High-resolution, in vivo retinal imaging using adaptive optics and its future role in ophthalmology. Expert Rev Med Devices. 2005;2(2):205–216.
  • Wang Q, Tuten WS, Lujan BJ, et al. Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions. Invest Ophthalmol Vis Sci. 2015;56(2):778–786.
  • Felberer F, Kroisamer JS, Baumann B, et al. Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo. Biomed Opt Express. 2014;5(2):439–456.

* Presentation of a novel instrument combining adaptive optics scanning laser ophthalmoscopy and optical coherence tomography

  • Lombardo M, Lombardo G, Ducoli P, et al. Adaptive optics photoreceptor imaging. Ophthalmology. 2012;119(7):1498–1498 e1492.
  • Querques G, Kamami-Levy C, Georges A, et al. Appearance of regressing Drusen on adaptive optics in age-related macular degeneration. Ophthalmology. 2014;121(2):611–612.
  • Gocho K, Sarda V, Falah S, et al. Adaptive optics imaging of geographic atrophy. Invest Ophthalmol Vis Sci. 2013;54(5):3673–3680.
  • Kanagasingam Y, Bhuiyan A, Abramoff MD, et al. Progress on retinal image analysis for age related macular degeneration. Prog Retin Eye Res. 2014;38:20–42.

** Review of imaging techniques and novel methods for computer-aided image analysis in age-related macular degeneration

  • Schlegl T, Waldstein SM, Schmidt-Erfurth U, et al. Predicting semantic descriptions from medical images with convolutional neural networks. Inf Process Med Imaging. 2015;24:437–448.
  • Bogunovic H, Kwon YH, Rashid A, et al. Relationships of retinal structure and humphrey 24-2 visual field thresholds in patients with glaucoma. Invest Ophthalmol Vis Sci. 2015;56(1):259–271.
  • De Sisternes L, Simon N, Tibshirani R, et al. Quantitative SD-OCT imaging biomarkers as indicators of age-related macular degeneration progression. Invest Ophthalmol Vis Sci. 2014;55(11):7093–7103.
  • Vogl WD, Waldstein SM, Gerendas BS, et al. Spatio-temporal signatures to predict retinal disease recurrence. Inf Process Med Imaging. 2015;24:152–163.
  • Wu J, Gerendas BS, Waldstein SM. Stable registration of pathological 3D SD-OCT scans using retinal vessels. In: Chen X, Garvin MK, Liu JJ, et al. editors. Ophthalmic Medical Image Analysis First International Workshop OMIA 2014, Held in Conjunction with MICCAI 2014. Boston (MA): Iowa Research Online; 2014. p. 1–8.
  • Montuoro A, Wu J, Waldstein S, et al. Motion Artefact correction in retinal optical coherence tomography using local symmetry. Med Image Comput Comput Assist Interv. 2014;17(Pt 2):130–137.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.