2,580
Views
26
CrossRef citations to date
0
Altmetric
Review

Developing novel anti-fibrotic therapeutics to modulate post-surgical wound healing in glaucoma: big potential for small molecules

&

References

  • Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006;90:262-7
  • Addicks EM, Quigley HA, Green WR, Robin AL. Histologic characteristics of filtering blebs in glaucomatous eyes. Arch Ophthalmol 1983;101(5):795-8
  • Battegay EJ, Raines EW, Seifert RA, et al. Transforming growth factor beta induces bimodal proliferation of connective tissue cells via complex control of an autocrine platelet-derived growth factor loop. Cell 1990;63:515-24
  • Roberts AB, Sporn MB, Assoian RK, et al. Transforming growth factor type B: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in-vitro. Proc Natl Acad Sci USA 1986;83:4167-71
  • Tomasek JJ, McRae J, Owens GK, Haaksma CJ. Regulation of alpha-smooth muscle actin expression in granulation tissue myofibroblasts is dependent on the intronic CArG element and the transforming growth factor-beta1 control element. Am J Pathol 2005;166(5):1343-51
  • Cordeiro MF, Gay J, Khaw PT. Human anti-transforming growth factor-beta2 antibody: a new glaucoma anti-scarring agent. Invest Ophthalmol Vis Sci 1999;40:2225-34
  • Khaw PT, Grehn F, Hollo G, et al. A phase III study of subconjunctival human anti-transforming growth factor beta(2) monoclonal antibody (CAT-152) to prevent scarring after first-time trabeculectomy. Ophthalmology 2007;114:1822-30
  • Mead AL, Wong TT, Cordeiro MF, et al. Evaluation of anti-TGF-beta2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Invest Ophthalmol Vis Sci 2003;44:3394-401
  • Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E, et al. TGF-beta signaling in vascular fibrosis. Cardiovasc Res 2007;74(2):196-206
  • Wang JM, Hui N, Fan YZ, et al. Filtering bleb area and intraocular pressure following subconjunctival injection of CTGF antibody after glaucoma filtration surgery in rabbits. Int J Ophthalmol 2011;4(5):480-3
  • Yuan HP, Li XH, Yang BB, et al. Expression of connective tissue growth factor after trabeculectomy in rabbits. Zhonghua Yan Ke Za Zhi 2009;45(2):168-74
  • Li Z, Bergen T, Veire S, et al. Inhibition of vascular endothelial growth factor reduces scar formation after glaucoma filtration surgery. Invest Ophthalmol Vis Sci 2009;50(11):5217-25
  • Wilgus TA, Ferreira AM, Oberyszyn TM, et al. Regulation of scar formation by vascular endothelial growth factor. Lab Invest 2008;88(6):579-90
  • Memarzadeh F, Varma R, Lin L, et al. Postoperative use of bevacizumab as an antifibrotic agent in glaucoma filtration surgery in the rabbit. Invest Ophthalmol Vis Sci 2009;50:3233-7
  • How A, Chua JLL, Charlton A, et al. Combined treatment with bevacizumab and 5-fluorouracil attenuates the postoperative scarring response after experimental glaucoma filtration surgery. Invest Ophthalmol Vis Sci 2010;51:928-32
  • Rodríguez-Agirretxe I, Vega SC, Rezola R, et al. The PLGA implant as an antimitotic delivery system after experimental trabeculectomy. Invest Ophthalmol Vis Sci 2013;54(8):5227-35
  • Nilforushan N, Yadgari M, Kish S, Nassiri N. Subconjunctival bevacizumab versus mitomycin C adjunctive to trabeculectomy. Am J Ophthalmol 2012;153:352-7
  • Akkan JU, Cilsim S. Role of Subconjunctival Bevacizumab as an Adjuvant to Primary Trabeculectomy: a Prospective Randomized Comparative 1-Year Follow-up Study. J Glaucoma 2013. [Epub ahead of print]
  • Vandewalle E, Pinto L, Bergen T, et al. Intracameral bevacizumab as an adjunct to trabeculectomy: a 1-year prospective, randomised study. Br J Ophthalmol 2014;98(1):73-8
  • Carmeliet P, Moons L, Luttun A, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001;7(5):575-83
  • Bergen T, Jonckx B, Hollanders K, et al. Inhibition of placental growth factor improves surgical outcome of glaucoma surgery. J Cell Mol Med 2013;17(12):1632-43
  • Rodríguez C, Rodríguez-Sinovas A, Martínez-González J. Lysyl oxidase as a potential therapeutic target. Drug News Perspect 2008;21(4):218-24
  • Bergen T, Marshall D, Veire S, et al. The role of LOX and LOXL2 in scar formation after glaucoma surgery. Invest Ophthalmol Vis Sci 2013;54(8):5788-96
  • Schwartz MA, Schaller MD, Ginsberg MH. Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol 1995;11:549-99
  • Paikal D, Zhang G, Cheng Q, Lee DA. The effect of integrin antibodies on the attachment and proliferation of human Tenon’s capsule fibroblasts. Exp Eye Res 2000;70(4):393-400
  • Gallas A, Alexander C, Davies M, et al. Chemistry and formulations for siRNA therapeutics. Chem Soc Rev 2013;42(20):7983-97
  • Paddison PJ, Caudy AA, Bernstein E, et al. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 2002;16:948-58
  • Duan Y, Guan X, Ge J, et al. Cationic nano-copolymers mediated IKKb targeting siRNA inhibit the proliferation of human Tenon’s capsule fibroblasts in vitro. Mol Vis 2008;14:2616-28
  • Nakamura H, Siddiqui SS, Shen X, et al. RNA interference targeting transforming growth factor-beta type II receptor suppresses ocular inflammation and fibrosis. Mol Vis 2004;10:703-11
  • Wang F, Qi LX, Su Y, et al. Inhibition of cell proliferation of Tenon’s capsule fibroblast by S-Phase kinase-interacting protein 2 targeting SiRNA through increasing p27 protein level. Invest Ophthalmol Vis Sci 2010;51(3):1475-82
  • Seet LF, Su R, Toh LZ, Wong TT. In vitro analyses of the anti-fibrotic effect of SPARC silencing in human Tenon’s fibroblasts: comparisons with mitomycin C. J Cell Mol Med 2012;16(6):1245-59
  • Yuan C, Zins EJ, Clark AF, Huang AJ. Suppression of keratoepithelin and myocilin by small interfering RNAs (siRNA) in vitro. Mol Vis 2007;13:2083-95
  • Comes N, Borrás T. Functional delivery of synthetic naked siRNA to the human trabecular meshwork in perfused organ cultures. Mol Vis 2007;13:1363-74
  • Kaiser PK, Symons RC, Shah SM, et al. RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027. Am J Ophthalmol 2010;150(1):33-9
  • Shen C, Buck AK, Liu X, et al. Gene silencing by adenovirus-delivered siRNA. FEBS Lett 2003;539:111-14
  • Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003;33:401-6
  • Templeton NS. Cationic liposomes as on vivo delivery vehicles. Curr Med Chem 2003;10:1279-87
  • Bartel D. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97
  • Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. PNAS 2008;105(35):13027-32
  • Xiao J, Meng XM, Huang XR, et al. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol Ther 2012;20(6):1251-60
  • Ogawa T, Lizuka M, Sekiya Y, et al. Suppression of type I collagen production by microRNA-29b in cultured human stellate cells. Biochem Biophys Res Commun 2010;391:316-21
  • Qin W, Chung ACK, Huang XR, et al. TGF-b/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol 2011;22:1462-74
  • Cheng J, Wang Y, Wang D, Wu Y. Identification of collagen 1 as a post-transcriptional target of miR-29b in skin fibroblasts: therapeutic implication for scar reduction. Am J Med Sci 2013;346(2):98-103
  • Sengupta S, Boon JA, Chen I, et al. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci USA 2008;105:5874-8
  • Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 2007;104(40):15805-10
  • Li N, Cui J, Duan X, et al. Suppression of type I collagen expression by miR-29b via PI3K, Akt, and Sp1 pathway in human Tenon’s fibroblasts. Invest Ophthalmol Vis Sci 2012;53(3):1670-8
  • Luna C, Li G, Qiu J, et al. Role of miR-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress. Mol Vis 2009;15:2488-97
  • Kapinas K, Kessler CB, Delany AM. miR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling. J Cell Biochem 2009;108(1):216-24
  • Luna C, Li G, Qiu J, et al. Cross-talk between miR-29 and transforming growth factor-betas in trabecular meshwork cells. Invest Ophthalmol Vis Sci 2011;52(6):3567-72
  • Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997;88:323-31
  • Park SY, Lee JH, Ha M, et al. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 2009;16:23-9
  • Small EM, Thatcher JE, Sutherland LB, et al. Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction. Circ Res 2010;107(2):294-304
  • Luchsinger LL, Patenaude CA, Smith BD, Layne MD. Myocardin-related transcription factor-A complexes activate type I collagen expression in lung fibroblasts. J Biol Chem 2011;286(51):44116-25
  • Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 2010;207(8):1589-97
  • Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008;456(7224):980-4
  • Chung A, Huang X, Meng X, Lan H. miR-192 Mediates TGF-β/Smad3-Driven Renal Fibrosis. J Am Soc Nephrol 2010;21:1317-25
  • Kato M, Putta S, Wang M, et al. TGF-β activates Akt kinase via a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 2009;11(7):881-9
  • Kurreck J, Wyszko E, Gillen C, Erdmann VA. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 2002;30:1911-18
  • Janssen H, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013;368:1685-94
  • Johnson KTM, Rodicker F, Heise K, et al. Adenoviral p53 gene transfer inhibits human Tenon’s capsule fibroblast proliferation. Br J Ophthalmol 2005;89:508-12
  • Perkins TW, Faha B, Ni M, et al. Adenovirus-mediated gene therapy using human p21WAF-1/Cip-1 to prevent wound healing in a rabbit model of glaucoma filtration surgery. Arch Ophthalmol 2002;120(7):941-9
  • Heatley G, Kiland J, Faha B, et al. Gene therapy using p21WAF-1/Cip-1 to modulate wound healing after glaucoma trabeculectomy surgery in a primate model of ocular hypertension. Gene Ther 2004;11:949-55
  • Akimoto M, Miyahara T, Arai J, et al. A new delivery system for 5-fluorouracil using prodrug and converting enzyme. Br J Ophthalmol 2002;86:581-6
  • Akimoto M, Hangai M, Okazaki K, et al. Growth inhibition of cultured human Tenon’s fibroblastic cells by targeting the E2F transcription factor. Exp Eye Res 1998;67:395-401
  • Yamanaka O, Ikeda K, Saika S, et al. Gene transfer of Smad7 modulates injury-induced conjunctival wound healing in mice. Mol Vis 2006;12:841-51
  • Yamanaka O, Saika S, Ohnishi Y, et al. Inhibition of p38MAP kinase suppresses fibrogenic reaction in conjunctiva in mice. Mol Vis 2007;13:1730-9
  • Tsai J, Whitsitt J, Davidson J. Transfection of luciferase gene by gold particle bombardment in rabbit organ cultured corneas. Invest Ophthalmol Vis Sci 1996;37(S683):3123
  • Abraham N, DaSilva J, Dunn M. Retinal pigment epithelial cell-based gene therapy against hemoglobin toxicity. Int J Mol Med 1998;1:657-63
  • Larkin DF, Oral HB, Ring CJ, et al. Adenovirus-mediated gene delivery to the corneal endothelium. Transplantation 1996;61(3):363-70
  • Kang EM, Tisdale JF. The leukemogenic risk of integrating retroviral vectors in hematopoietic stem cell gene therapy applications. Curr Hematol Rep 2004;3:274-81
  • Butler MR, Ponce CM, Weinstock YE, et al. Topical silver nanoparticles result in improved bleb function by increasing filtration and reducing fibrosis in a rabbit model of filtration surgery. Invest Ophthalmol Vis Sci 2013;54(7):4982-90
  • Tian J, Wong KK, Ho CM, et al. Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem 2007;2(1):129-36
  • Kim JS, Song KS, Sung JH, et al. Genotoxicity, acute oral and dermal toxicity, eye and dermal irritation and corrosion and skin sensitisation evaluation of silver nanoparticles. Nanotoxicology 2013;7(5):953-60
  • Lee KJ, Browning LM, Nallathamby PD, et al. In vivo quantitative study of sized-dependent transport and toxicity of single silver nanoparticles using zebrafish embryos. Chem Res Toxicol 2012;25(5):1029-46
  • Seet LF, Su R, Barathi VA, et al. SPARC deficiency results in improved surgical survival in a novel mouse model of glaucoma filtration surgery. PLoS One 2010;5(2):e9415
  • Tan YF, Mundargi RC, Chen MH, et al. Layer-by-layer nanoparticles as an efficient siRNA delivery vehicle for SPARC silencing. Small 2014;10(9):1790-8
  • Shao T, Li X, Ge J. Target drug delivery system as a new scarring modulation after glaucoma filtration surgery. Diagn Pathol 2011;6:64
  • Santos AL, Bochot A, Doyle A, et al. Sustained release of nanosized complexes of polyethylenimine and anti-TGF-β2 oligonucleotide improves the outcome of glaucoma surgery. J Control Release 2006;112:369-81
  • Ye H, Qian Y, Lin M, et al. Cationic nano-copolymers mediated IKKβ targeting siRNA to modulate wound healing in a monkey model of glaucoma filtration surgery. Mol Vis 2010;16:2502-10
  • Peng D, Yu K, Zeng S, et al. An experimental study on homoharringtonine liposome and glaucoma filtration surgery. Yan Ke Xue Bao 1999;15(1):51-4
  • Simmons ST, Sherwood MB, Nichols DA, et al. Pharmacokinetics of a 5-fluorouracil liposomal delivery system. Br J Ophthalmol 1988;72(9):688-91
  • Varma D, Sihota R, Agarwal HC. Evaluation of efficacy and safety of daunorubicin in glaucoma filtering surgery. Eye (Lond) 2007;21(6):784-8
  • Shinohara K, Tanaka M, Sakuma T, Kobayashi Y. Efficacy of daunorubicin encapsulated in liposome for the treatment of proliferative vitreoretinopathy. Ophthalmic Surg Lasers Imaging 2003;34(4):299-305
  • Tilleul P, Denis P, Maignen F, et al. Effects of different formulations of mitoxantrone (solutions, nanospheres, liposomes) on glaucoma surgery in rabbits. Ophthalmic Res 1997;29(4):218-26
  • Shaunak S, Thomas S, Gianasi E, et al. Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol 2004;22(8):977-84
  • Hildebrand A, Romarís M, Rasmussen LM, et al. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J 1994;302(Pt 2):527-34
  • Grisanti S, Szurman P, Warga M, et al. Decorin modulates wound healing in experimental glaucoma filtration surgery: a pilot study. Invest Ophthalmol Vis Sci 2005;46(1):191-6
  • Honjo M, Tanihara H, Kameda T, et al. Potential role of rhoassociated protein kinase inhibitor Y-27632 in glaucoma filtration surgery. Invest Ophthalmol Vis Sci 2007;48(12):5549-57
  • Inoue T, Tanihara H. Rho-associated kinase inhibitors: a novel glaucoma therapy. Prog Retin Eye Res 2013;37:1-12
  • Nobes CD, Hall A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 1999;144:1235-44
  • Xu SW, Liu S, Eastwood M, et al. Rac inhibition reverses the phenotype of fibrotic fibroblasts. PLoS One 2009;4(10):e7438
  • Tovell VE, Chau CY, Khaw PT, Bailly M. Rac1 inhibition prevents tissue contraction and MMP mediated matrix remodeling in the conjunctiva. Invest Ophthalmol Vis Sci 2012;53:4682-91
  • Evelyn CR, Wade SM, Wang Q, et al. CCG-1423: a small-molecule inhibitor of RhoA transcriptional signaling. Mol Cancer Ther 2007;6:2249-60
  • Bell JL, Haak AJ, Wade SM, et al. Optimization of novel nipecotic bis(amide) inhibitors of the Rho/MKL1/SRF transcriptional pathway as potential anti-metastasis agents. Bioorganic Med Chem Letters 2013;23:3826-32
  • Haak AJ, Tsou PS, Amin MA, et al. Targeting the myofibroblast genetic switch: inhibitors of MRTF/SRF-regulated gene transcription prevent fibrosis in a murine model of skin injury. J Pharmacol Exp Ther 2014. [ Epub ahead of print]
  • Johnson LA, Rodansky ES, Haak AJ, et al. Novel Rho/MRTF/SRF inhibitors block matrix-stiffness and TGF-β-induced fibrogenesis in human colonic myofibroblasts. Inflamm Bowel Dis 2014;20(1):154-65
  • Wong TTL, Mead AL, Khaw PT. Matrix metalloproteinase inhibition modulates postoperative scarring after experimental glaucoma filtration surgery. Invest Ophthalmol Vis Sci 2003;44(3):1097-103
  • Daniels JT, Cambrey AD, Occleston NL, et al. Matrix metalloproteinase inhibition modulates fibroblast-mediated matrix contraction and collagen production in vitro. Invest Ophthalmol Vis Sci 2003;44(3):1104-10
  • Wong TT, Mead AL, Khaw PT. Prolonged antiscarring effects of ilomastat and MMC after experimental glaucoma filtration surgery. Invest Ophthalmol Vis Sci 2005;46(6):2018-22
  • Sapitro J, Dunmire JJ, Scott SE, et al. Suppression of transforming growth factor-β effects in rabbit subconjunctival fibroblasts by activin receptor-like kinase 5 inhibitor. Mol Vis 2010;16:1880-92
  • Xiao YQ, Liu K, Shen JF, et al. SB-431542 inhibition of scar formation after filtration surgery and its potential mechanism. Invest Ophthalmol Vis Sci 2009;50(4):1698-706
  • Iyer SN, Gurujeyalakshmi G, Giri SN. Effects of pirfenidone on transforming growth factor-beta gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther 1999;291:367-73
  • Zhong H, Sun G, Lin X, et al. Evaluation of pirfenidone as a new postoperative antiscarring agent in experimental glaucoma surgery. Invest Ophthalmol Vis Sci 2011;52(6):3136-42
  • Chowdhury S, Guha R, Trivedi R. Pirfenidone nanoparticles improve corneal wound healing and prevent scarring following alkali burn. PLoS One 2013;8(8):e70528
  • Jung KI, Choi JS, Kim HK, Shin SY. Effects of an anti-transforming growth factor-β agent (pirfenidone) on strabismus surgery in rabbits. Curr Eye Res 2012;37(9):770-6
  • Choi K, Lee K, Ryu SW, et al. Pirfenidone inhibits transforming growth factor-β1-induced fibrogenesis by blocking nuclear translocation of Smads in human retinal pigment epithelial cell line ARPE-19. Mol Vis 2012;18:1010-20
  • Brantl S. Antisense-RNA regulation and RNA interference. Biochmical Biophysica Acta 2002;1575:15-25
  • Parkinson G, Gaisford S, Ru Q, et al. Characterisation of ilomastat for prolonged ocular drug release. AAPS Pharm Sci Tech 2012;13(4):1063-72
  • Sun JY, Anand-Jawa V, Chatterjee S, Wong KK. Immune responses to adeno-associated virus and its recombinant vectors. Gene Ther 2003;10:964-76
  • Bharadwaj AS, Appukuttan B, Wilmarth PA, et al. Role of the retinal vascular endothelial cell in ocular disease. Prog Retin Eye Res 2013;32:102-80