159
Views
33
CrossRef citations to date
0
Altmetric
Review

Congenital aniridia: etiology, manifestations and management

, , &
Pages 135-144 | Received 01 Dec 2015, Accepted 05 Feb 2016, Published online: 09 Mar 2016

References

  • Nelson LB, Spaeth GL, Nowinski TS, et al. Aniridia. A review. Surv Ophthalmol. 1984;28:621–642.
  • Sharma V, Mohan M. Traumatic aniridia and self-sealed globe rupture following blunt trauma. Eye. 2010;24:1526.
  • Grant WM, Walton DS. Progressive changes in the angle in congenital aniridia, with development of glaucoma. Am J Ophthalmol. 1974;78:842–847.
  • Peter NM, Leyland M, Mudhar HS, et al. PAX6 mutation in association with ptosis, cataract, iris hypoplasia, corneal opacification and diabetes: a new variant of familial aniridia? Clin Experiment Ophthalmol. 2013;41:835–841.
  • Lim HT, Seo E-J, Kim G-H, et al. Comparison between aniridia with and without PAX6 mutations: clinical and molecular analysis in 14 Korean patients with aniridia. Ophthalmology. 2012;119:1258–1264.
  • Khan AO, Aldahmesh MA, Mohamed JY, et al. Congenital glaucoma with acquired peripheral circumferential iris degeneration. J Aapos. 2013;17:105–107.
  • Perveen R, Lloyd IC, Clayton-Smith J, et al., et al. Phenotypic variability and asymmetry of Rieger syndrome associated with PITX2 mutations. Invest Ophthalmol Vis Sci. 2000;41:2456–2460.
  • Khan AO, Aldahmesh MA, Alkuraya FS. Genetic and genomic analysis of classic aniridia in Saudi Arabia. Mol Vis. 2011;17:708–714.
  • Dubey SK, Mahalaxmi N, Vijayalakshmi P, et al. Mutational analysis and genotype-phenotype correlations in southern Indian patients with sporadic and familial aniridia. Mol Vis. 2015;21:88–97.
  • Sadagopan KA, Liu GT, Capasso JE, et al. Anirdia-like phenotype caused by 6p25 dosage aberrations. Am J Med Genet A. 2015;167A:524–528.
  • Alzuhairy S, Abu-Amero KK, Al-Shahwan S, et al. A novel CYP1B1 mutation with congenital glaucoma and total aniridia. Ophthalmic Genet. 2015;36:89–91.
  • Kloss BA, Reis LM, Bremond-Gignac D, et al. Analysis of FOXD3 sequence variation in human ocular disease. Mol Vis. 2012;18:1740–1749.
  • Zhang X, Qin G, Chen G, et al., et al. Variants in TRIM44 cause aniridia by impairing PAX6 expression. Hum Mutat. 2015;36:1164–1167.
  • Shaham O, Menuchin Y, Farhy C, et al. Pax6: a multi-level regulator of ocular development. Prog Retin Eye Res. 2012;31:351–376.
  • Walther C, Gruss P. Pax-6, a murine paired box gene, is expressed in the developing CNS. Development. 1991;113:1435–1449.
  • Chauhan BK, Reed NA, Yang Y, et al. A comparative cDNA microarray analysis reveals a spectrum of genes regulated by Pax6 in mouse lens. Genes Cells. 2002;7:1267–1283.
  • Chauhan BK, Reed NA, Zhang W, et al. Identification of genes downstream of Pax6 in the mouse lens using cDNA microarrays. J Biol Chem. 2002;277:11539–11548.
  • Lakowski J, Majumder A, Lauderdale JD. Mechanisms controlling Pax6 isoform expression in the retina have been conserved between teleosts and mammals. Dev Biol. 2007;307:498–520.
  • Kim J, Lauderdale JD. Analysis of Pax6 expression using a BAC transgene reveals the presence of a paired-less isoform of Pax6 in the eye and olfactory bulb. Dev Biol. 2006;292:486–505.
  • Kidson SH, Kume T, Deng K, et al. The forkhead/winged-helix gene, Mf1, is necessary for the normal development of the cornea and formation of the anterior chamber in the mouse eye. Dev Biol. 1999;211:306–322.
  • Hjalt TA, Semina EV, Amendt BA, et al. The Pitx2 protein in mouse development. Dev Dynam. 2000;218:195–200.
  • Berry FB, Lines MA, Oas JM, et al. Functional interactions between FOXC1 and PITX2 underlie the sensitivity to FOXC1 gene dose in Axenfeld-Rieger syndrome and anterior segment dysgenesis. Hum Mol Genet. 2006;15:905–919.
  • Nishina S, Kohsaka S, Yamaguchi Y, et al. PAX6 expression in the developing human eye. Br J Ophthalmol. 1999;83:723–727.
  • Furimsky M, Wallace VA. Complementary Gli activity mediates early patterning of the mouse visual system. Dev Dynam. 2006;235:594–605.
  • Markintantova I, Firsova V, Smirnova NV, et al. [Localization of the PITX2 gene expression in human eye cells in the course of prenatal development]. Izv Akad Nauk Ser Biol. 2008;35:139–145.
  • Grimes G, Hanson I, Williamson K, et al. Human PAX6 mutation database. MRC Human Genetics Unit London. Edinburgh: MRC, IGMM; 2007. Available from: http://Isdb.hgu.mrc.ac.uk/home.php?select=PAX6
  • Prosser J, Van Heyningen V. PAX6 mutations reviewed. Hum Mutat. 1998;11:93–108.
  • Hingorani M, Hanson I, Van Heyningen V. Aniridia. Eur J Hum Genet. 2012;20:1011–1017.
  • Bhatia S, Bengani H, Fish M, et al. Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am J Hum Genet. 2013;93:1126–1134.
  • D’Elia AV, Pellizzari L, Fabbro D, et al. A deletion 3ʹ to the PAX6 gene in familial aniridia cases. Mol Vis. 2007;13:1245–1250.
  • Kokotas H, Petersen MB. Clinical and molecular aspects of aniridia. Clin Genet. 2010;77:409–420.
  • Tumer Z, Bach-Holm D. Axenfeld-Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. Eur J Hum Genet. 2009;17:1527–1539.
  • Mears AJ, Jordan T, Mirzayans F, et al., et al. Mutations of the forkhead/winged-helix gene, FKHL7, in patients with Axenfeld-Rieger anomaly. Am J Hum Genet. 1998;63:1316–1328.
  • Strungaru MH, Dinu I, Walter MA. Genotype-phenotype correlations in Axenfeld-Rieger malformation and glaucoma patients with FOXC1 and PITX2 mutations. Invest Ophthalmol Vis Sci. 2007;48:228–237.
  • Idrees F, Vaideanu D, Fraser SG, et al. A review of anterior segment dysgeneses. Surv Ophthalmol. 2006;51:213–231.
  • Franco D, Christoffels VM, Campione M. Homeobox transcription factor Pitx2: the rise of an asymmetry gene in cardiogenesis and arrhythmogenesis. Trends Cardiovasc Med. 2014;24:23–31.
  • L’Honore A, Drouin J, Buckingham M, et al. Pitx2 and Pitx3 transcription factors: two key regulators of the redox state in adult skeletal muscle stem cells and muscle regeneration. Free Radic Biol Med. 2014;75(Suppl 1):S37.
  • Reis LM, Tyler RC, Volkmann Kloss BA, et al., et al. PITX2 and FOXC1 spectrum of mutations in ocular syndromes. Eur J Hum Genet. 2012;20:1224–1233.
  • Kelberman D, Islam L, Holder SE, et al. Digenic inheritance of mutations in FOXC1 and PITX2: correlating transcription factor function and Axenfeld-Rieger disease severity. Hum Mutat. 2011;32:1144–1152.
  • Footz T, Idrees F, Acharya M, et al. Analysis of mutations of the PITX2 transcription factor found in patients with Axenfeld-Rieger syndrome. Invest Ophthalmol Vis Sci. 2009;50:2599–2606.
  • Faiq MA, Dada R, Sharma R, et al. CYP1B1: a unique gene with unique characteristics. Curr Drug Metab. 2014;15:893–914.
  • Doshi M, Marcus C, Bejjani BA, et al. Immunolocalization of CYP1B1 in normal, human, fetal and adult eyes. Exp Eye Res. 2006;82:24–32.
  • Zhao Y, Sorenson CM, Sheibani N. Cytochrome P450 1B1 and primary congenital glaucoma. J Ophthalmic Vis Res. 2015;10:60–67.
  • Calloni R, Cordero EA, Henriques JA, et al. Reviewing and updating the major molecular markers for stem cells. Stem Cells Dev. 2013;22:1455–1476.
  • Schunter JA, Loffler D, Wiesner T, et al., et al. A novel FoxD3 variant is associated with vitiligo and elevated thyroid auto-antibodies. J Clin Endocrinol Metab. 2015;100:E1335–E1342.
  • Eden U, Riise R, Tornqvist K. Corneal involvement in congenital aniridia. Cornea. 2010;29:1096–1102.
  • Chang JW, Kim JH, Kim S-J, et al. Congenital aniridia: long-term clinical course, visual outcome, and prognostic factors. Korean J Ophthalmol. 2014;28:479–485.
  • Singh B, Mohamed A, Chaurasia S, et al. Clinical manifestations of congenital aniridia. J Pediatr Ophthalmol Strabismus. 2014;51:59–62.
  • Lee H, Khan R, O’Keefe M. Aniridia: current pathology and management. Acta Ophthalmol. 2008;86:708–715.
  • Davis J, Duncan MK, Robison WG Jr, et al. Requirement for Pax6 in corneal morphogenesis: a role in adhesion. J Cell Sci. 2003;116:2157–2167.
  • Le Q, Deng SX, Xu J. In vivo confocal microscopy of congenital aniridia-associated keratopathy. Eye. 2013;27:763–766.
  • Eden U, Fagerholm P, Danyali R, et al. Pathologic epithelial and anterior corneal nerve morphology in early-stage congenital aniridic keratopathy. Ophthalmology. 2012;119:1803–1810.
  • Jastaneiah S, Al-Rajhi AA. Association of aniridia and dry eyes. Ophthalmology. 2005;112:1535–1540.
  • Schanilec P, Biernacki R. Aniridia: a comparative overview. Am Orthopt J. 2014;64:98–104.
  • Lopez-Garcia JS, Garcia-Lozano I, Rivas L, et al. [Congenital aniridia keratopathy treatment]. Arch Soc Esp Oftalmol. 2006;81:435–444.
  • Lagali N, Eden U, Utheim TP, et al. In vivo morphology of the limbal palisades of vogt correlates with progressive stem cell deficiency in aniridia-related keratopathy. Invest Ophthalmol Vis Sci. 2013;54:5333–5342.
  • Lopez-Garcia JS, Rivas L, Garcia-Lozano I, et al. Autologous serum eyedrops in the treatment of aniridic keratopathy. Ophthalmology. 2008;115:262–267.
  • Holland EJ, Djalilian AR, Schwartz GS. Management of aniridic keratopathy with keratolimbal allograft: a limbal stem cell transplantation technique. Ophthalmology. 2003;110:125–130.
  • Skeens HM, Brooks BP, Holland EJ. Congenital aniridia variant: minimally abnormal irides with severe limbal stem cell deficiency. Ophthalmology. 2011;118:1260–1264.
  • Ang AY, Chan CC, Biber JM, et al. Ocular surface stem cell transplantation rejection: incidence, characteristics, and outcomes. Cornea. 2013;32:229–236.
  • Hassanaly SI, Talajic JC, Harissi-Dagher M. Outcomes following Boston type 1 keratoprosthesis implantation in aniridia patients at the University of Montreal. Am J Ophthalmol. 2014;158:270–276 e271.
  • Akpek EK, Harissi-Dagher M, Petrarca R, et al. Outcomes of Boston keratoprosthesis in aniridia: a retrospective multicenter study. Am J Ophthalmol. 2007;144:227–231.
  • Tsai JH, Freeman JM, Chan -C-C, et al. A progressive anterior fibrosis syndrome in patients with postsurgical congenital aniridia. Am J Ophthalmol. 2005;140:1075–1079.
  • Netland PA, Scott ML, Boyle JWT, et al. Ocular and systemic findings in a survey of aniridia subjects. J Aapos. 2011;15:562–566.
  • Okamoto F, Nakano S, Okamoto C, et al. Ultrasound biomicroscopic findings in aniridia. Am J Ophthalmol. 2004;137:858–862.
  • Walton DS. Aniridic glaucoma: the results of gonio-surgery to prevent and treat this problem. Trans Am Ophthalmol Soc. 1986;84:59–70.
  • Swanner JC, Walton DS, Chen TC. Prevention of aniridic glaucoma with goniosurgery. Int Ophthalmol Clin. 2004;44:67–71.
  • Adachi M, Dickens CJ, Hetherington J Jr, et al. Clinical experience of trabeculotomy for the surgical treatment of aniridic glaucoma. Ophthalmology. 1997;104:2121–2125.
  • Almousa R, Lake DB. Intraocular pressure control with Ahmed glaucoma drainage device in patients with cicatricial ocular surface disease-associated or aniridia-related glaucoma. Int Ophthalmol. 2014;34:753–760.
  • Jain A, Gupta S, James MK, et al. Aniridic glaucoma: long-term visual outcomes and phenotypic associations. J Glaucoma. 2015;24:539–542.
  • Shiple D, Finklea B, Lauderdale JD, et al. Keratopathy, cataract, and dry eye in a survey of aniridia subjects. Clin Ophthalmol. 2015;9:291–295.
  • Hingorani M, Williamson KA, Moore AT, et al. Detailed ophthalmologic evaluation of 43 individuals with PAX6 mutations. Invest Ophthalmol Vis Sci. 2009;50:2581–2590.
  • Eden U, Lagali N, Dellby A, et al. Cataract development in Norwegian patients with congenital aniridia. Acta Ophthalmol. 2014;92:e165–e167.
  • Chan CC, Holland EJ. Cataract surgery after keratolimbal allograft surgery in patients with congenital aniridia. J Cataract Refract Surg. 2011;37:786–787.
  • Schneider S, Osher RH, Burk SE, et al. Thinning of the anterior capsule associated with congenital aniridia. J Cataract Refract Surg. 2003;29:523–525.
  • Aslam SA, Wong SC, Ficker LA, et al. Implantation of the black diaphragm intraocular lens in congenital and traumatic aniridia. Ophthalmology. 2008;115:1705–1712.
  • Holmstrom G, Eriksson U, Hellgren K, et al. Optical coherence tomography is helpful in the diagnosis of foveal hypoplasia. Acta Ophthalmol. 2010;88:439–442.
  • Aggarwal S, Jinda W, Limwongse C, et al. Run-on mutation in the PAX6 gene and chorioretinal degeneration in autosomal dominant aniridia. Mol Vis. 2011;17:1305–1309.
  • Tremblay F, Gupta SK, De Becker I, et al. Effects of PAX6 mutations on retinal function: an electroretinographic study. Am J Ophthalmol. 1998;126:211–218.
  • Lee H, Meyers K, Lanigan B, et al. Complications and visual prognosis in children with aniridia. J Pediatr Ophthalmol Strabismus. 2010;47:205–210; quiz 211–202.
  • Thomas S, Thomas MG, Andrews C, et al. Autosomal-dominant nystagmus, foveal hypoplasia and presenile cataract associated with a novel PAX6 mutation. Eur J Hum Genet. 2014;22:344–349.
  • Peralta RJ, Kersten RC, Holland EJ, et al. The clinical characterization and surgical correction of blepharoptosis associated with congenital aniridia. Ophthal Plast Reconstr Surg. 2015;31:38–42.
  • Fischbach BV, Trout KL, Lewis J, et al. WAGR syndrome: a clinical review of 54 cases. Pediatrics. 2005;116:984–988.
  • Gronskov K, Olsen JH, Sand A, et al. Population-based risk estimates of Wilms tumor in sporadic aniridia. A comprehensive mutation screening procedure of PAX6 identifies 80% of mutations in aniridia. Hum Genet. 2001;109:11–18.
  • Donald KA, Grotte R, Crutchley AC, et al. Gillespie syndrome: two further cases. J Child Neurol. 2006;21:337–340.
  • Lee WB, Brandt JD, Mannis MJ, et al. Aniridia and Brachmann-de Lange syndrome: a review of ocular surface and anterior segment findings. Cornea. 2003;22:178–180.
  • Sheehan WJ, Delmonte OM, Miller DT, et al. Novel presentation of Omenn syndrome in association with aniridia. J Allergy Clin Immunol. 2009;123:966–969.
  • Khan AO, Aldahmesh M. Bilateral Duane syndrome and bilateral aniridia. J Aapos. 2006;10:273–274.
  • Lipsky SN, Salim S. Concurrent presentation of aniridia and megalocornea without glaucoma. J Aapos. 2011;15:297–298.
  • Sarode B, Nowell CS, Ihm J, et al. Notch signaling in the pigmented epithelium of the anterior eye segment promotes ciliary body development at the expense of iris formation. Pigment Cell Melanoma Res. 2014;27:580–589.
  • Gregory-Evans CY, Wang X, Wasan KM, et al. Postnatal manipulation of Pax6 dosage reverses congenital tissue malformation defects. J Clin Invest. 2014;124:111–116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.