94
Views
15
CrossRef citations to date
0
Altmetric
Review

Inherited predisposition to chronic lymphocytic leukemia

Pages 51-61 | Published online: 10 Jan 2014

References

  • Caporaso N, Marti GE, Goldin L. Perspectives on familial chronic lymphocytic leukemia: genes and the environment. Semin. Hematol.41(3), 201–206 (2004).
  • Sellick GS, Catovsky D, Houlston RS. Familial chronic lymphocytic leukemia. Semin. Oncol.33(2), 195–201 (2006).
  • Jonsson V, Houlston RS, Catovsky D et al. CLL family ‘Pedigree 14’ revisited: 1947–2004. Leukemia19(6), 1025–1028 (2005).
  • Mauro FR, Giammartini E, Gentile M et al. Clinical features and outcome of familial chronic lymphocytic leukemia. Haematologica91(8), 1117–1120 (2006).
  • Capalbo S, Trerotoli P, Ciancio A et al. Increased risk of lymphoproliferative disorders in relatives of patients with B-cell chronic lymphocytic leukemia: relevance of the degree of familial linkage. Eur. J. Haematol.65(2), 114–117 (2000).
  • Yuille MR, Houlston RS, Catovsky D. Anticipation in familial chronic lymphocytic leukaemia. Leukemia12, 1696–1698 (1998).
  • Pang JWY, Cook LS, Schwartz SM, Weiss NS. Incidence of leukemia in Asian migrants to the United States and their descendants. Cancer Causes Cont.13, 791–795 (2002).
  • Kerber RA, O’Brien E. A cohort study of cancer risk in relation to family histories of cancer in the Utah population database. Cancer103(9), 1906–1915 (2005).
  • Goldin LR, Pfeiffer RM, Li X, Hemminki K. Familial risk of lymphoproliferative tumors in families of patients with chronic lymphocytic leukemia: results from the Swedish Family-Cancer Database. Blood104(6), 1850–1854 (2004).
  • Dores G, Anderson W, Curtis R et al. Chronic lymphocytic leukemia and small lymphocytic lymphoma: overview of the descriptive epidemiology. Br. J. Haematol.139, 809–819 (2007).
  • Turesson I, Linet M, Bjorkholm M et al. Ascertainment and diagnostic accuracy for hematopoietic lymphoproliferative malignancies in Sweden 1964–2003. Int. J. Cancer121, 2260–2266 (2007).
  • Zent CS, Kyasa MJ, Evans R, Schichman SA. Chronic lymphocytic leukemia incidence is substantially higher than estimated from tumor registry data. Cancer92(5), 1325–1330 (2001).
  • Chang ET, Smedby KE, Hjalgrim H et al. Family history of hematopoietic malignancy and risk of lymphoma. J. Natl Cancer Inst.97(19), 1466–1474 (2005).
  • Pottern LM, Linet MS, Blair A et al. Familial cancers associated with subtypes of leukemia and non-Hodgkin’s lymphoma. Leukemia Res.15(5), 305–314 (1991).
  • Ishibe N, Sgambati MT, Fontaine L et al. Clinical characteristics of familial B CLL in the National Cancer Institute Familial Registry. Leuk. Lymphoma42(1–2), 99–108 (2001).
  • Landgren O, Pfeiffer RM, Stewart L et al. Risk of second malignant neoplasms among lymphoma patients with a family history of cancer. Intl J. Cancer120, 1099–1102 (2006).
  • Di Prospero NA, Fischbeck KH. Therapeutics development for triplet repeat expansion diseases. Nat. Rev. Genet.6(10), 756–765 (2005).
  • Goldin LR, Sgambati M, Marti GE et al. Anticipation in familial chronic lymphocytic leukemia. Am. J. Hum. Genet.65, 265–269 (1999).
  • Horwitz M, Goode EL, Jarvik GP. Anticipation in familial leukemia. Am. J. Hum. Genet.59(5), 990–998 (1996).
  • Daugherty SE, Pfeiffer RM, Mellemkjaer L, Hemminki K, Goldin LR. No evidence for anticipation in lymphoproliferative tumors in population-based samples. Cancer Epidemiol. Biomarkers Prev.14(5), 1245–1250 (2005).
  • Benzow KA, Koob MD, Condie A et al. Instability of CAG-trinucleotide repeats in chronic lymphocytic leukemia. Leuk. Lymphoma43(10), 1987–1990 (2002).
  • Crowther D, Wild R, Sellick G et al. Insight into the pathogenesis of chronic lymphocytic leukemia (CLL) through analysis of IgVH gene usage and mutation status in familial CLL. Blood111(12), 5691–5693 (2008).
  • Sellick GS, Allinson R, Matutes E, Catovsky D, Houlston RS. Increased sex concordance of sibling pairs with chronic lymphocytic leukemia. Leukemia18(6), 1162–1163 (2004).
  • Pritsch O, Troussard X, Magnac C et al. VH gene usage by family members affected with chronic lymphocytic leukaemia. Br. J. Haematol.107(3), 616–624 (1999).
  • Rassenti LZ, Toy TL, Huynh L et al. High similarity between familial and sporadic cases of chronic lymphocytic leukemia. Blood102, 670a (2003).
  • Sakai A, Marti GE, Caporaso N et al. Analysis of expressed immunoglobulin heavy chain genes in familial B-CLL. Blood95(4), 1413–1419 (2000).
  • Ishibe N, Prieto D, Hosack DA et al. Telomere length and heavy-chain mutation status in familial chronic lymphocytic leukemia. Leuk. Res.26(9), 791–794 (2002).
  • Ng D, Toure O, Wei MH et al. Identification of a novel chromosome region, 13q21.33-q22.2, for susceptibility genes in familial chronic lymphocytic leukemia. Blood109(3), 916–925 (2007).
  • Goldin LR, Caporaso NE. Family studies in chronic lymphocytic leukemia and other lymphoproliferative tumors. Br. J. Haematol.139, 774–779 (2007).
  • Molica S, Digiesi G, Mauro F et al. Increased serum BAFF (B-cell activating factor of the TNF family) level is a peculiar feature associated with familial chronic lymphocytic leukemia. Leuk. Res. DOI: 10.1016/j.leukres.2008.05.004 (2008) (Epub ahead of print).
  • Novak AJ, Grote DM, Ziesmer SC et al. Elevated serum B-lymphocyte stimulator levels in patients with familial lymphoproliferative disorders. J. Clin. Oncol.24(6), 983–987 (2006).
  • Ishibe N, Albitar M, Jilani IB et al. CXCR4 expression is associated with survival in familial chronic lymphocytic leukemia but CD38 expression is not. Blood100(1), 1100–1101 (2002).
  • Marti GE, Abbasi F, Raveche E et al. Overview of monoclonal B-cell lymphocytosis. Br. J. Haematol.139, 701–708 (2007).
  • Marti GE, Carter P, Abbasi F et al. B-cell monoclonal lymphocytosis and B-cell abnormalities in the setting of familial B-cell chronic lymphocytic leukemia. Cytometry B Clin. Cytom.52(1), 1–12 (2003).
  • Vogt RF, Shim YK, Middleton DC et al. Monoclonal B-cell lymphocytosis as a biomarker in environmental health studies. Br. J. Haematol.139(5), 690–700 (2007).
  • Shim YK, Vogt RF, Middleton D et al. Prevalence and natural history of monoclonal and polyclonal B-cell lymphocytosis in a residential adult population. Cytometry B Clin. Cytom.72(5), 344–353 (2007).
  • Ghia P, Prato G, Scielzo C et al. Monoclonal CD5+ and CD5- B-lymphocyte expansions are frequent in the peripheral blood of the elderly. Blood103(6), 2337–2342 (2004).
  • Rawstron AC, Green MJ, Kuzmicki A et al. Monoclonal B lymphocytes with the characteristics of “indolent” chronic lymphocytic leukemia are present in 3.5% of adults with normal blood counts. Blood100(2), 635–639 (2002).
  • Rawstron AC, Yuille MR, Fuller J et al. Inherited predisposition to CLL is detectable as subclinical monoclonal B-lymphocyte expansion. Blood100(7), 2289–2290 (2002).
  • de Tute R, Yuille M, Catovsky D et al. Monoclonal B-cell lymphocytosis (MBL) in CLL families: substantial increase in relative risk for young adults. Leukemia20(4), 728–729 (2006).
  • Rawstron AC, Bennett FL, O’Connor SJ et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N. Engl. J. Med.359(6), 575–583 (2008).
  • Rawstron AC, Bennett F, Hillmen P. The biological and clinical relationship between CD5+23+ monoclonal B cell lymphocytosis and chronic lymphocytic leukemia. Br. J. Haematol.139, 724–729 (2007).
  • Rawstron AC, Fenton JAL, Plummer M et al. Monoclonal B cell lymphocytosis (MBL) and CLL show intraclonal variation: cases classified as “unmutated” have the greatest clonal diversity. Blood108(11), 13a (2006).
  • Bennett FL, Fenton JAL, O’Connor SJM, Hillmen P, Rawstron AC. Disease progression in monoclonal B-cell lymphocytosis is independent of VH mutation status. Blood108(11), 13a (2006).
  • Faguet GB, Agee JF, Marti GE. Clone emergence and evolution in chronic lymphocytic leukemia: characterization of clinical, laboratory, and immunophenotypic profiles of 25 patients. Leuk. Lymphoma6, 345–356 (1992).
  • Cheson BD, Bennett JM, Grever M et al. National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood87(12), 4990–4997 (1996).
  • Hallek M, Cheson BD, Catovsky D et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia (IWCLL) updating the National Cancer Institute-Working Group (NCI-WG) 1996 guidelines. Blood111(12), 5446–5456 (2008).
  • Fung SS, Hillier KL, Leger CS et al. Clinical progression and outcome of patients with monoclonal B-cell lymphocytosis. Leuk. Lymphoma48(6), 1087–1091 (2007).
  • Marti GE, Rawstron AC, Ghia P et al. Diagnostic criteria for monoclonal B-cell lymphocytosis. Br. J. Haematol.130, 325–332 (2005).
  • Goldin LR, Ishibe N, Sgambati M et al. A genome scan of 18 families with chronic lymphocytic leukaemia. Br. J. Haematol.121(6), 866–873 (2003).
  • Ng D, Marti GE, Fontaine L et al. High-density mapping and follow-up studies on chromosomal regions 1, 3, 6, 12, 13 and 17 in 28 families with chronic lymphocytic leukaemia. Br. J. Haematol.133(1), 59–61 (2006).
  • Sellick GS, Webb EL, Allinson R et al. A high-density SNP genomewide linkage scan for chronic lymphocytic leukemia-susceptibility loci. Am. J. Hum. Genet.77(3), 420–429 (2005).
  • Sellick GS, Goldin LR, Wild RW et al. A high-density SNP genome-wide linkage search of 206 families identifies susceptibility loci for chronic lymphocytic leukemia. Blood110(9), 3326–3333 (2007).
  • Theodorou I, Abel L, Mauro F et al. High occurence of DRB1 11 in chronic lymphocytic leukaemia families. Br. J. Haematol.119(3), 713–715 (2002).
  • Machulla HKG, Mueller LP, Schaaf A et al. Association of chronic lymphocytic leukemia with specific alleles of the HLA-DR4:DR53:DQ8 haplotype in German patients. Int. J. Cancer92, 203–207 (2001).
  • Plass C, Byrd JC, Raval A, Tanner SM, de la Chapelle A. Molecular profiling of chronic lymphocytic leukemia: genetics meets epigenetics to identify predisposing genes. Br. J. Haematol.139, 744–752 (2007).
  • Raval A, Tanner SM, Byrd JC et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell129(5), 879–890 (2007).
  • Swift M, Reitnauer PJ, Morrell D, Chase CL. Breast and other cancers in families with ataxia-telangiectasia. N. Engl. J. Med.316(21), 1289–1294 (1987).
  • Dohner H, Stilgenbauer S, Benner A et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl. J. Med.343(26), 1910–1916 (2000).
  • Austen B, Skowronska A, Baker C et al. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J. Clin. Oncol.25(34), 5448–5457 (2007).
  • Bevan S, Catovsky D, Marossy A et al. Linkage analysis for ATM in familial B cell chronic lymphocytic leukaemia. Leukemia13(10), 1497–1500 (1999).
  • Ishibe N, Goldin LR, Caporaso NE et al. ATM mutations and protein expression are not associated with familial B-CLL cases. Leuk. Res.27(10), 973–975 (2003).
  • Yuille MR, Condie A, Hudson CD et al. ATM mutations are rare in familial chronic lymphocytic leukemia. Blood100(2), 603–609 (2002).
  • Bevan S, Catovsky D, Matutes E et al. Linkage analysis for major histocompatibility complex-related genetic susceptibility in familial chronic lymphocytic leukemia. Blood96(12), 3982–3984 (2000).
  • Moshynska O, Sankaran K, Pahwa P, Saxena A. Prognostic significance of a short sequence insertion in the MCL-1 promoter in chronic lymphocytic leukemia. J. Natl Cancer Inst.96(9), 673–682 (2004).
  • Dicker F, Rauhut S, Kohlmann A et al. Re: prognostic significance of a short sequence insertion in the MCL-1 promoter in chronic lymphocytic leukemia. J. Natl Cancer Inst.97(14), 1092–1093; author reply 1093–1095 (2005).
  • Freeman SN, Bepler G, Haura E, Sutphen R, Cress WD. Re: prognostic significance of a short sequence insertion in the MCL-1 promoter in chronic lymphocytic leukemia. J. Natl Cancer Inst.97(14), 1088–1089; author reply 1093–1095 (2005).
  • Vargas RL, Felgar RE, Rothberg PG. Re: prognostic significance of a short sequence insertion in the MCL-1 promoter in chronic lymphocytic leukemia. J. Natl Cancer Inst.97(14), 1089–1090; author reply 1093–1095 (2005).
  • Iglesias-Serret D, Coll-Mulet L, Santidrian AF et al. Re: prognostic significance of a short sequence insertion in the MCL-1 promoter in chronic lymphocytic leukemia. J. Natl Cancer Inst.97(14), 1090–1091; author reply 1093–1095 (2005).
  • Nenning UC, Eckert C, Wellmann S et al. Re: prognostic significance of a short sequence insertion in the MCL-1 promoter in chronic lymphocytic leukemia. J. Natl Cancer Inst.97(14), 1091–1092; author reply 1093–1095 (2005).
  • Wiley JS, Dao-Ung LP, Gu BJ et al. A loss-of-function polymorphic mutation in the cytolytic P2X7 receptor gene and chronic lymphocytic leukaemia: a molecular study. Lancet359(9312), 1114–1119 (2002).
  • Sellick GS, Rudd M, Eve P et al. The P2X7 receptor gene A1513C polymorphism does not contribute to risk of familial or sporadic chronic lymphocytic leukemia. Cancer Epidemiol. Biomarkers Prev.13(6), 1065–1067 (2004).
  • Rothman N, Skibola CF, Wang SS et al. Genetic variation in TNF and IL10 and risk of non-Hodgkin lymphoma: a report from the InterLymph Consortium. Lancet Oncol.7(1), 27–38 (2006).
  • Demeter J, Porzsolt F, Ramisch S et al. Polymorphism of the tumor necrosis factor-α and lymphotoxin-α genes in chronic lymphocytic leukemia. Br. J. Haematol.97, 107–112 (1997).
  • Bogunia-Kubik K, Mazur G, Urbanowicz I et al. Lack of association between the TNF-α promoter gene polymorphism and susceptibility to B-cell chronic lymphocytic leukemia. Int. J. Immunogenet.33, 21–24 (2006).
  • Yuille M, Condie A, Hudson C et al. Relationship between glutathione S-transferase M1, T1, and P1 polymorphisms and chronic lymphocytic leukemia. Blood99(11), 4216–4218 (2002).
  • Wolf S, Mertens D, Pscherer A et al. Ala228 variant of trail receptor 1 affecting the ligand binding site is associated with chronic lymphocytic leukemia, mantle cell lymphoma, prostate cancer, head and neck squamous cell carcinoma and bladder cancer. Int. J. Cancer118(7), 1831–1835 (2006).
  • Rudd MF, Sellick GS, Webb EL, Catovsky D, Houlston RS. Variants in the ATM–BRCA2–CHEK2 axis predispose to chronic lymphocytic leukemia. Blood108(2), 638–644 (2006).
  • Slager SL, Kay NE, Fredericksen ZS et al. Susceptibility genes and B-chronic lymphocytic leukaemia. Br. J. Haematol.139, 762–771 (2007).
  • Calin GA, Dumitru CD, Shimizu M et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA99(24), 15524–15529 (2002).
  • Cimmino A, Calin GA, Fabbri M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA102(39), 13944–13949 (2005).
  • Calin GA, Ferracin M, Cimmino A et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med.353(17), 1793–1801 (2005).
  • Dalla-Favera R, Siegel R, Lia M, Klein U. New insights into the pathogenesis of CLL by in vitro and in vivo models. Leuk. Lymph48(Suppl. 1), S7 (2007).
  • Migliazza A, Bosch F, Komatsu H et al. Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia. Blood97(7), 2098–2104 (2001).
  • Tyybakinoja A, Vilpo J, Knuutila S. High-resolution oligonucleotide array-CGH pinpoints genes involved in cryptic losses in chronic lymphocytic leukemia. Cytogenet. Genome Res.118(1), 8–12 (2007).
  • Calin GA, Trapasso F, Shimizu M et al. Familial cancer associated with a polymorphism in ARLTS1. N. Engl. J. Med.352(16), 1667–1676 (2005).
  • Sellick GS, Catovsky D, Houlston RS. Relationship between ARLTS1 polymorphisms and risk of chronic lymphocytic leukemia. Leuk. Res.30(12), 1573–1576 (2006).
  • Ng D, Toure O, Fontaine L et al. No association of ARLTS1 polymorphisms and risk for familial chronic lymphocytic leukemia. Br. J. Haematol.137, 170–175 (2007).
  • Summersgill B, Thornton P, Atkinson S et al. Chromosomal imbalances in familial chronic lymphocytic leukaemia: a comparative genomic hybridisation analysis. Leukemia16(7), 1229–1232 (2002).
  • Sellick GS, Coleman RJ, Talaban RV et al. Germline mutations in Dok1 do not predispose to chronic lymphocytic leukemia. Leuk. Res.29(1), 59–61 (2005).
  • Pfeifer D, Pantic M, Skatulla I et al. Genome-wide analysis of DNA copy number changes and LOH in CLL using high-density SNP arrays. Blood109(3), 1202–1210 (2007).
  • Scaglione BJ, Salerno E, Balan M et al. Murine models of chronic lymphocytic leukaemia: role of microRNA-16 in the New Zealand Black mouse model. Br. J. Haematol.139(5), 645–657 (2007).
  • Phillips JA, Mehta K, Fernandez C, Raveche ES. The NZB mouse as a model for chronic lymphocytic leukemia. Cancer Res.52(2), 437–443 (1992).
  • Raveche ES, Salerno E, Scaglione BJ et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood109(12), 5079–5086 (2007).
  • Wither JE, Loh C, Lajoie G et al. Colocalization of expansion of the splenic marginal zone population with abnormal B cell activation and autoantibody production in B6 mice with an introgressed New Zealand Black chromosome 13 interval. J. Immunol.175(7), 4309–4319 (2005).
  • Virgilio L, Narducci MG, Isobe M et al. Identification of the TCL1 gene involved in T-cell malignancies. Proc. Natl Acad. Sci. USA91(26), 12530–12534 (1994).
  • Laine J, Kunstle G, Obata T, Sha M, Noguchi M. The protooncogene TCL1 is an Akt kinase coactivator. Mol Cell6(2), 395–407 (2000).
  • Pekarsky Y, Koval A, Hallas C et al. Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc. Natl Acad. Sci. USA97(7), 3028–3033 (2000).
  • Herling M, Patel KA, Khalili J et al.TCL1 shows a regulated expression pattern in chronic lymphocytic leukemia that correlates with molecular subtypes and proliferative state. Leukemia20(2), 280–285 (2006).
  • Bichi R, Shinton SA, Martin ES et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc. Natl Acad. Sci. USA99(10), 6955–6960 (2002).
  • Johnson AJ, Lucas DM, Muthusamy N et al. Characterization of the TCL-1 transgenic mouse as a preclinical drug development tool for human chronic lymphocytic leukemia. Blood108(4), 1334–1338 (2006).
  • Katsumata M, Siegel RM, Louie DC et al. Differential effects of Bcl-2 on T and B cells in transgenic mice. Proc. Natl Acad. Sci. USA89(23), 11376–11380 (1992).
  • Lee SY, Reichlin A, Santana A et al. TRAF2 is essential for JNK but not NF-κB activation and regulates lymphocyte proliferation and survival. Immunity7(5), 703–713 (1997).
  • Zapata JM, Krajewska M, Morse HC 3rd, Choi Y, Reed JC. TNF receptor-associated factor (TRAF) domain and Bcl-2 cooperate to induce small B cell lymphoma/chronic lymphocytic leukemia in transgenic mice. Proc. Natl Acad. Sci. USA101(47), 16600–16605 (2004).
  • Planelles L, Carvalho-Pinto CE, Hardenberg G et al. APRIL promotes B-1 cell-associated neoplasm. Cancer Cell6(4), 399–408 (2004).
  • Rush LJ, Raval A, Funchain P et al. Epigenetic profiling in chronic lymphocytic leukemia reveals novel methylation targets. Cancer Res.64(7), 2424–2433 (2004).
  • Barrett JC, Cardon LR. Evaluating coverage of genome-wide association studies. Nat. Genet.38(6), 659–662 (2006).
  • Broderick P, Carvajal-Carmona L, Pittman AM et al. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat. Genet.39(11), 1315–1317 (2007).
  • Tenesa A, Farrington SM, Prendergast JG et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat. Genet.40(5), 631–637 (2008).
  • Tomlinson I, Webb E, Carvajal-Carmona L et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat. Genet.39(8), 984–988 (2007).
  • Tomlinson IP, Webb E, Carvajal-Carmona L et al. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat. Genet.40(5), 623–630 (2008).
  • Easton DF, Pooley KA, Dunning AM et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature447(7148), 1087–1093 (2007).
  • Gudmundsson J, Sulem P, Steinthorsdottir V et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat. Genet.39(8), 977–983 (2007).
  • Gudmundsson J, Sulem P, Manolescu A et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet.39(5), 631–637 (2007).
  • Gudmundsson J, Sulem P, Rafnar T et al. Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat. Genet.40(3), 281–283 (2008).
  • Yeager M, Orr N, Hayes RB et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet.39(5), 645–649 (2007).
  • Amos CI, Wu X, Broderick P et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat. Genet.40(5), 616–622 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.