578
Views
42
CrossRef citations to date
0
Altmetric
Reviews

The Bcl-2/Bax and Ras/Raf/MEK/ERK signaling pathways: implications in pediatric leukemia pathogenesis and new prospects for therapeutic approaches

, , , , &
Pages 587-597 | Published online: 10 Jan 2014

References

  • Legler JM, Ries LA, Smith MA et al. Cancer surveillance series (corrected): brain and other central nervous system cancers: recent trends in incidence and mortality. J. Natl Cancer Inst. 91(16), 1328–1390 (1991).
  • Kerr JFR, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and chemotherapy. Cancer 73(8), 2013–2026 (1994).
  • Kelly PN, Strasser A. The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ. 18(9), 1414–1424 (2011).
  • D'Angelo V, Crisci S, Casale F et al. High Erk-1 activation and Gadd45a expression as prognostic markers in high risk pediatric haemolymphoproliferative diseases. J. Exp. Clin. Cancer Res. 19, 28–39 (2009).
  • Kirkin V, Joos S, Zörnig M. The role of Bcl-2 family members in tumor genesis Biochim. Biophys. Acta 1644(2–3), 229–249 (2004).
  • Borner C. The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol. Immunol. 39, 615–647 (2003).
  • Métais JY, Winkler T, Geyer JT et al. BCL2A1a over-expression in murine hematopoietic stem and progenitor cells decreases apoptosis and results in hematopoietic transformation. PLoS ONE 7(10), e48267 (2012).
  • Krajewski S, Krajewska M, Shabaik A, Miyashita T, Wang HG, Reed JC. Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2, Am. J. Pathol. 145, 1323–1336 (1994).
  • Krajewski S, Krajewska M, Reed JC. Immunoistochemical analysis of in vivo patterns of Bax expression, a proapoptotic member of Bcl-2 protein family. Cancer Res. 56, 2849–2855 (1996).
  • Griffiths GJ, Dubrez L, Morgan CP et al. Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J. Cell Biol. 144(5), 903–914 (1999).
  • Grinberg M, Sarig R, Zaltsman Y et al. tBID Homooligomerizes in the mitochondrial membrane to induce apoptosis. J. Biol. Chem. 277(14), 12237–12245 (2002).
  • Wei CM, Lindsten T, Mootha VK et al. tBID, a membrane-targeted death ligand, ligomerizes BAK to release cytochrome c. Genes Dev. 14(16), 2060–2071 (2000).
  • Yamaguchi H, Wang HG. Bcl-XL protects BimEL-induced Bax conformational change and cytochrome c Release Independent of Interacting with Bax or BimEL. J. Biol. Chem. 277(44), 41604–41612 (2002).
  • Del Gaizo Moore V, Letai A. BH3 profiling--measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions. Cancer Lett. 332(2), 202–205 (2013).
  • Case M, Matheson E, Minto L et al. Mutation of genes affecting the RAS pathway is common in childhood acute lymphoblastic leukemia. Cancer Res. 68, 6803–6809 (2008).
  • Sebolt-Leopold JS, Pfizer Global Research and Development Ann Arbor Laboratories, Ann Arbor, Michigan, MI, USA. Development of anticancer drugs targeting the MAP kinase pathway, 48105, Oncogene 19, 6594–6599 (2000).
  • McCubrey JA, Steelman LS, Chappell WH et al. Roles of the RAF/MEK/ERK Pathway in cell growth, Malignant transformation and drug resistance. Biochim. Biophys. Acta 1773(8), 1263–1284 (2007).
  • Addeo R, Caraglia M, Baldi A et al. Prognostic role of bcl-xL and p53 in childhood acute lymphoblastic leukemia (ALL). Cancer Biol. Ther. 4(1),32–38 (2005).
  • Casale F, Addeo R, D'Angelo V et al. Determination of the in vivo effects of prednisone on Bcl-2 family protein expression in childhood acute lymphoblastic leukemia. Int. J. Oncol. 22(1), 123–128 (2003).
  • Addeo R, Crisci S, D'Angelo V et al. Bax mutation and overexpression inversely correlate with immature phenotype and prognosis of childhood germ cell tumors. Oncol. Rep. 17(5), 1155–1161 (2007).
  • Tolcher AW. Targeting Bcl-2 protein expression in solid tumors and hematologic malignancies with antisense oligonucleotides. Clin. Adv. Hematol.Oncol. 3(8), 635–642 (2005).
  • Rahmani M, Aust MM, Attkisson E, Williams DCJr, Ferreira-Gonzalez A, Grant S. Dual inhibition of Bcl-2 and Bcl-xL strikingly enhances PI3K inhibition-induced apoptosis in human myeloid leukemia cells through a GSK3- and Bim-dependent mechanism. Cancer Res. 73(4), 1340–1345 (2013).
  • Chang F, Steelman LS, Lee JT et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 17(7), 1263–1293 (2003).
  • McCubrey JA, Steelman RA, Franklin ASL et al. Targeting the RAF/MEK/ERK, PI3K/AKT and P53 pathways in hematopoietic drug resistance Adv. Enzyme Regul. 47, 64–103 (2007).
  • De Luca A, Maiello M, D’Alessio A, Pergameno M, Normanno N. The RAS/RAF/MEK/ERK and PI3K/akt signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin. Ther. Targets 16(Suppl. 2), S17–S27 (2012).
  • Oltersdorf T, Elmore SW, Shoemaker AR et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042), 677–681 (2007).
  • Lock R, Carol H, Houghton PJ et al. Initial testing (stage 1) of the BH3 mimetic ABT-263 by the pediatric preclinical testing program. Pediatr. Blood Cancer 50(6), 1181–1189 (2008).
  • Klasa RJ, Gillum AM, Klem RE, Frankel SR. Oblimersen Bcl-2 antisense: facilitating apoptosis in anticancer treatment. Antisense Nucleic Acid Drug Dev. 12(3), 193–213 (2002).
  • Vandenberg CJ, Cory S. ABT-199, a new Bcl-2-specific BH3 mimetic, has in vivo efficacy against aggressive Myc-driven mouse lymphomas without provoking thrombocytopenia. Blood 121(12), 2285–2288 (2013).
  • Jansen B, Wacheck V, Heere-Ress E et al. Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 356, 1728–1733 (2000).
  • Badros A, Ratterree B, Natt S et al. Phase I/II trial of Oblimersen sodium (G3139), dexamethasone (Dex) and thalidomide (Thal) in patients with relapsed multiple myeloma. Blood 102, 684a (2003).
  • Szegedi I, Katona K, Horváth A, Molnár A, Aradi J, Csongor K. Bcl-2 Antisense Oligonucleotide Inhibits the Proliferation of Childhood Leukemia/lymphoma Cells of the B-cell Lineage Pathol. Oncol. Res. 14(3), 275–279 (2008).
  • Bourguin JP. Have chemosensitizing strategies for multidrug-resistant childhood acute lymphoblastic leukemia come of age? Expert Rev. Hematol. 3(4), 369–372 (2010).
  • Kelly PN, Strasser A. The role of Bcl-2 and its pro-survival relatives in tumorigenesis and cancer therapy. Cell Death Differ. 18(9), 1414–1424 (2011).
  • Rahmani M, Aust MM, Attkisson E, Williams DCJr, Ferreira-Gonzalez A, Grant S. Inhibition of Bcl-2 antiapoptotic members by obatoclax potently enhances sorafenib-induced apoptosis in human myeloid leukemia cells through a Bim-dependent process. Blood 119(25), 6089–6098 (2012).
  • Patty Feist, MS Biochemistry ALL-kids Targeted Therapies for Childhood ALL December 2010-January 2011.
  • Clarke MF, Apel IJ, Benedict MA et al. A recombinant bcl-x s adenovirus selectively induces apoptosis in cancer cells but not in normal bone marrow cells. Proc. Natl Acad. Sci. USA 92(24), 11024–11028 (1995).
  • Case M, Matheson E, Minto L et al. Mutation of genes affecting the RAS pathway is common in childhood acute lymphoblastic leukemia. Cancer Res. 68, 6803–6809 (2008).
  • Baum K, Ren R. Effect of Ras inhibition in hematopoiesis and BCR/ABL leukemogenesis. J. Hematol. Oncol. 1,5 (2008).
  • Fenaux P, Raza A, Mufti GJ et al. A multicenter phase 2 study of the farnesyltransferase inhibitor tipifarnib in intermediate- to high-risk myelodysplastic syndrome. Blood 109, 4158–4163 (2007).
  • Lancet JE, Gojo I, Gotlib J et al. A phase 2 study of the farnesyltransferase inhibitor tipifarnib in poor-risk and elderly patients with previously untreated acute myelogenous leukemia. Blood 109, 1387–1394 (2007).
  • Bosco R, Rabusin M, Voltan R et al. Anti-leukemic activity of dasatinib in both p53(wild-type) and p53(mutated) B malignant cells. Invest. New Drugs 30(1), 417–422 (2012).
  • Akinleye A, Furqan M, Mukhi N, Ravella P, Liu D. MEK and the inhibitors: from bench to bedside. J. Hematol. Oncol. 6, 27 (2013).
  • Ricciardi M.R, Scerpa MC, Bergamo P et al. Therapeutic potential of MEK inhibition in acute myelogenous leukemia: rationale for “vertical” and “lateral” combination strategies. J. Mol. Med. 90(10), 1133–1144 (2012).
  • Jing J, Greshock J, Holbrook JD et al. Comprehensive predictive biomarker analysis for MEK inhibitor GSK1120212. Mol. Cancer Ther. 11(3), 720–729 (2012).
  • Yeh TC, Marsh V, Bernat BA et al. Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinasekinase 1/2 inhibitor. Clin. Cancer Res. 13(5), 1576–1583 (2007).
  • Zhang W, Konopleva M, Burks JK et al. Blockade of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase and murine double minute synergistically induces Apoptosis in acute myeloid leukemia via BH3-only proteins Puma and Bim. Cancer Res. 70(6), 2424–2434 (2010).
  • Hatzivassiliou G, Spoerke JM, Hoeflich KP et al. ERK inhibition overcomes acquired resistance to MEK inhibitors. Mol. Cancer Ther. 11(5), 1143–1154 (2012).
  • Wei J, Stebbins JL, Kitada S et al. BI-97C1, an optically pure Apogossypol derivative as pan-active inhibitor of antiapoptotic B-cell lymphoma/leukemia-2 (Bcl-2) family proteins. J. Med. Chem. 53(10), 4166–4176 (2010).
  • Laquerre S, Arnone M, Moss K et al. A selective Raf kinase inhibitor induces cell death and tumor regression of human cancer cell lines encoding B-RafV600E mutation. Mol. Cancer Ther. 8, Abstract B88 (2009).
  • Greger JG, Eastman SD, Zhang V et al. Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol. Cancer Ther. 11(4), 909–920 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.