707
Views
59
CrossRef citations to date
0
Altmetric
Review

A systematic review of known mechanisms of hydroxyurea-induced fetal hemoglobin for treatment of sickle cell disease

, , , &

References

  • Bartolucci P, Galacteros F. Clinical management of adult sickle-cell disease. Curr Opin Hematol 2012;19(3):149-55
  • Williams TN, Mwangi TW, Wambua S, et al. Sickle cell trait and the risk of Plasmodium falciparum malaria and other childhood diseases. J Infect Dis 2005;192(1):178-86
  • Piel FB, Patil AP, Howes RE, et al. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet 2013;381(9861):142-51
  • Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ 2008;86(6):480-7
  • Labie D, Pagnier J, Lapoumeroulie C, et al. Common haplotype dependency of high G gamma-globin gene expression and high Hb F levels in beta-thalassemia and sickle cell anemia patients. Proc Natl Acad Sci USA 1985;82(7):2111-14
  • Elion J, Berg PE, Lapoumeroulie C, et al. DNA sequence variation in a negative control region 5’ to the beta-globin gene correlates with the phenotypic expression of the beta s mutation. Blood 1992;79(3):787-92
  • Pagnier J, Mears JG, Dunda-Belkhodja O, et al. Evidence for the multicentric origin of the sickle cell hemoglobin gene in Africa. Proc Natl Acad Sci USA 1984;81(6):1771-3
  • Steinberg MH. Genetic etiologies for phenotypic diversity in sickle cell anemia. ScientificWorldJournal 2009;9:46-67
  • Alsultan A, Aleem A, Ghabbour H, et al. Sickle cell disease subphenotypes in patients from Southwestern Province of Saudi Arabia. J Pediatr Hematol Oncol 2012;34(2):79-84
  • Platt OS, Brambilla DJ, Rosse WF, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med 1994;330(23):1639-44
  • Bauer DE, Orkin SH. Update on fetal hemoglobin gene regulation in hemoglobinopathies. Curr Opin Pediatr 2011;23(1):1-8
  • Thein SL, Menzel S, Lathrop M, Garner C. Control of fetal hemoglobin: new insights emerging from genomics and clinical implications. Hum Mol Genet 2009;18(R2):R216-23
  • Creary LE, Ulug P, Menzel S, et al. Genetic variation on chromosome 6 influences F cell levels in healthy individuals of African descent and HbF levels in sickle cell patients. PLoS One 2009;4(1):e4218
  • Menzel S, Garner C, Gut I, et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet 2007;39(10):1197-9
  • Lettre G, Sankaran VG, Bezerra MA, et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci USA 2008;105(33):11869-74
  • Makani J, Menzel S, Nkya S, et al. Genetics of fetal hemoglobin in Tanzanian and British patients with sickle cell anemia. Blood 2011;117(4):1390-2
  • Wonkam A, Bitoungui VJN, Vorster AA, et al. Association of variants at BCL11A and HBS1L-MYB with hemoglobin F and hospitalization rates among sickle cell patients in Cameroon. PloS One 2014;9(3):e92506
  • Lebensburger JD, Pestina TI, Ware RE, et al. Hydroxyurea therapy requires HbF induction for clinical benefit in a sickle cell mouse model. Haematologica 2010;95(9):1599-603
  • Lebensburger J, Johnson SM, Askenazi DJ, et al. Protective role of hemoglobin and fetal hemoglobin in early kidney disease for children with sickle cell anemia. Am J Hematol 2011;86(5):430-2
  • Steinberg MH, Barton F, Castro O, et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA 2003;289(13):1645-51
  • Voskaridou E, Christoulas D, Bilalis A, et al. The effect of prolonged administration of hydroxyurea on morbidity and mortality in adult patients with sickle cell syndromes: results of a 17-year, single-center trial (LaSHS). Blood 2010;115(12):2354-63
  • Lobo CL, Pinto JF, Nascimento EM, et al. The effect of hydroxcarbamide therapy on survival of children with sickle cell disease. Br J Haematol 2013;161(6):852-60
  • Maier-Redelsperger M, de Montalembert M, Flahault A, et al. Fetal hemoglobin and F-cell responses to long-term hydroxyurea treatment in young sickle cell patients. The French Study Group on Sickle Cell Disease. Blood 1998;91(12):4472-9
  • Kinney TR, Helms RW, O’Branski EE, et al. Safety of hydroxyurea in children with sickle cell anemia: results of the HUG-KIDS study, a phase I/II trial. Pediatric Hydroxyurea Group. Blood 1999;94(5):1550-4
  • Zimmerman SA, Schultz WH, Davis JS, et al. Sustained long-term hematologic efficacy of hydroxyurea at maximum tolerated dose in children with sickle cell disease. Blood 2004;103(6):2039-45
  • Ware RE, Despotovic JM, Mortier NA, et al. Pharmacokinetics, pharmacodynamics, and pharmacogenetics of hydroxyurea treatment for children with sickle cell anemia. Blood 2011;118(18):4985-91
  • Sheehan VA, Luo Z, Flanagan JM, et al. Genetic modifiers of sickle cell anemia in the BABY HUG cohort: influence on laboratory and clinical phenotypes. Am J Hematol 2013;88(7):571-6
  • Charache S, Terrin ML, Moore RD, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. N Engl J Med 1995;332(20):1317-22
  • Ohene-Frempong K, Weiner SJ, Sleeper LA, et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood 1998;91(1):288-94
  • Steinberg MH, McCarthy WF, Castro O, et al. The risks and benefits of long-term use of hydroxyurea in sickle cell anemia: A 17.5 year follow-up. Am J Hematol 2010;85(6):403-8
  • Sankaran VG, Menne TF, Xu J, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 2008;322(5909):1839-42
  • Borg J, Papadopoulos P, Georgitsi M, et al. Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nat Genet 2010;42(9):801-5
  • Ngo D, Bae H, Steinberg MH, et al. Fetal hemoglobin in sickle cell anemia: genetic studies of the Arab-Indian haplotype. Blood Cells Mol Dis 2013;51(1):22-6
  • Gilman J. Chromosomes. Blood 1984;64(2):452-7
  • Garner C, Tatu T, Reittie JE, et al. Genetic influences on F cells and other hematologic variables: a twin heritability study. Blood 2000;95(1):342-6
  • Higgs DR, Wood WG. Genetic complexity in sickle cell disease. Proc Natl Acad Sci USA 2008;105(33):11595-6
  • Thein SL, Menzel S, Peng X, et al. Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci USA 2007;104(27):11346-51
  • Xu J, Sankaran VG, Ni M, et al. Transcriptional silencing of {gamma}-globin by BCL11A involves long-range interactions and cooperation with SOX6. Genes Dev 2010;24(8):783-98
  • Bauer DE, Kamran SC, Lessard S, et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 2013;342(6155):253-7
  • Lanzkron S, Haywood CJr, Hassell KL, Rand C. Provider barriers to hydroxyurea use in adults with sickle cell disease: a survey of the Sickle Cell Disease Adult Provider Network. J Natl Med Assoc 2008;100(8):968-73
  • Strouse JJ, Lanzkron S, Beach MC, et al. Hydroxyurea for sickle cell disease: a systematic review for efficacy and toxicity in children. Pediatrics 2008;122(6):1332-42
  • Brawley OW, Cornelius LJ, Edwards LR, et al. National Institutes of Health Consensus Development Conference statement: hydroxyurea treatment for sickle cell disease. Ann Intern Med 2008;148(12):932-8
  • Elford HL. Effect of hydroxyurea on ribonucleotide reductase. Biochem Biophys Res Commun 1968;33(1):129-35
  • Platt OS, Orkin SH, Dover G, et al. Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J Clin Invest 1984;74(2):652-6
  • Zimmerman SA, Schultz WH, Burgett S, et al. Hydroxyurea therapy lowers transcranial Doppler flow velocities in children with sickle cell anemia. Blood 2007;110(3):1043-7
  • Thornburg CD, Dixon N, Burgett S, et al. A pilot study of hydroxyurea to prevent chronic organ damage in young children with sickle cell anemia. Pediatr blood cancer 2009;52(5):609-15
  • Hankins JS, Ware RE, Rogers ZR, et al. Long-term hydroxyurea therapy for infants with sickle cell anemia: the HUSOFT extension study. Blood 2005;106(7):2269-75
  • Wang W, Thompson B. Hydroxyurea treatment of infants with sickle cell anemia: results of the BABY HUG study. Pediatric Blood Cancer 2010;54(2):250-5
  • DeBaun MR. Hydroxyurea therapy contributes to infertility in adult men with sickle cell disease: a review. Exp rew hematol 2014;7(6):767-73
  • Smith-Whitley K. Reproductive issues in sickle cell disease. Blood 2014;124(24):3538-43
  • Berthaut I, Guignedoux G, Kirsch-Noir F, et al. Influence of sickle cell disease and treatment with hydroxyurea on sperm parameters and fertility of human males. Haematologica 2008;93(7):988-93
  • Shemisa K, Jafferjee N, Thomas D, et al. Mycobacterium avium complex infection in a patient with sickle cell disease and severe iron overload. Case Rep Infect Dis 2014;2014:405323
  • Amoako N, Asante KP, Adjei G, et al. Associations between Red Cell Polymorphisms and Plasmodium falciparum Infection in the Middle Belt of Ghana. PloS One 2014;9(12):e112868
  • Hirst C. Owusu-Ofori S. Prophylactic antibiotics for preventing pneumococcal infection in children with sickle cell disease. The Cochrane Library 2012
  • Owusu ED, Visser BJ, Nagel IM, et al. The interaction between sickle cell disease and HIV infection: a systematic review. Clin Infect Dis 2015;60(4):612-26
  • Flanagan JM, Howard TA, Mortier N, et al. Assessment of genotoxicity associated with hydroxyurea therapy in children with sickle cell anemia. Mutat ResGenet Toxicol Environ Mutagen 2010;698(1):38-42
  • Chaine B, Neonato M, Girot R, Aractingi S. Cutaneous adverse reactions to hydroxyurea in patients with sickle cell disease. Arch Dermatol 2001;137(4):467-70
  • Grigg A. Effect of hydroxyurea on sperm count, motility and morphology in adult men with sickle cell or myeloproliferative disease. Intern Med J 2007;37(3):190-2
  • Oyeku SO, Driscoll MC, Cohen HW, et al. Parental and other factors associated with hydroxyurea use for pediatric sickle cell disease. Pediatr blood cancer 2013;60(4):653-8
  • Brandow AM, Jirovec DL, Panepinto JA. Hydroxyurea in children with sickle cell disease: practice patterns and barriers to utilization. Am J Hematol 2010;85(8):611-13
  • Zumberg MS, Reddy S, Boyette RL, et al. Hydroxyurea therapy for sickle cell disease in community-based practices: A survey of Florida and North Carolina hematologists/oncologists. Am J Hematol 2005;79(2):107-13
  • Thornburg CD, Calatroni A, Telen M, Kemper AR. Adherence to hydroxyurea therapy in children with sickle cell anemia. J Pediatr 2010;156(3):415-19
  • Strouse JJ, Heeney MM. Hydroxyurea for the treatment of sickle cell disease: efficacy, barriers, toxicity, and management in children. Pediatr blood cancer 2012;59(2):365-71
  • Haywood CJr, Beach MC, Lanzkron S, et al. A systematic review of barriers and interventions to improve appropriate use of therapies for sickle cell disease. J Natl Med Assoc 2009;101(10):1022-33
  • Lebensburger JD, Sidonio RF, DeBaun MR, et al. Exploring barriers and facilitators to clinical trial enrollment in the context of sickle cell anemia and hydroxyurea. Pediatr blood cancer 2013;60(8):1333-7
  • Hampton T. Strides made in red blood cell disorders, but substantial barriers to care remain. JAMA 2008;299(4):395-6
  • Steinberg MH, Barton F, Castro O, et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA 2003;289(13):1645-51
  • Segal JB, Strouse JJ, Beach MC, et al. Hydroxyurea for the treatment of sickle cell disease. Evid Rep Technol Assess 2008;165:1-95
  • Ballas SK, Kesen MR, Goldberg MF, et al. Beyond the definitions of the phenotypic complications of sickle cell disease: an update on management. The Scientific World Journal 2012;2012
  • Ware RE. Hydroxycarbamide: clinical aspects. C R Biol 2013;336(3):177-82
  • Bakanay SM, Dainer E, Clair B, et al. Mortality in sickle cell patients on hydroxyurea therapy. Blood 2005;105(2):545-7
  • Adekile AD. Limitations of Hb F as a phenotypic modifier in sickle cell disease: study of kuwaiti arab patients. Hemoglobin 2011;35(5-6):607-17
  • Friedrisch JR, Prá D, Maluf SW, et al. DNA damage in blood leukocytes of individuals with sickle cell disease treated with hydroxyurea. Mutat ResGenet Toxicol Environ Mutagen 2008;649(1):213-20
  • Pandey S, Pandey S, Mishra RM, Saxena R. Modulating Effect of the -158 gamma (C-->T) Xmn1 Polymorphism in Indian Sickle Cell Patients. Mediterr. J Hematol Infect Dis 2012;4(1):e2012001
  • Aditya R, Verma I, Saxena R, et al. Relation of Xmn-1 polymorphism & five common Indian mutations of thalassaemia with phenotypic presentation in β-thalassaemia. JK Science 2006;8:139-43
  • Nemati H, Rahimi Z, Bahrami G. The Xmn1 polymorphic site 5′ to the Gγ gene and its correlation to the Gγ: Aγ ratio, age at first blood transfusion and clinical features in β-Thalassemia patients from Western Iran. Mol Biol Rep 2010;37(1):159-64
  • Garner C, Tatu T, Game L, et al. A candidate gene study of F cell levels in sibling pairs using a joint linkage and association analysis. GeneScreen 2000;1(1):9-14
  • Panigrahi I, Agarwal S, Gupta T, et al. Hemoglobin E-beta thalassemia: factors affecting phenotype. Indian Pediatr 2005;42(4):357-62
  • Oberoi S, Das R, Panigrahi I, et al. Xmn1-Gγ polymorphism and clinical predictors of severity of disease in β-thalassemia intermedia. Pediatr blood cancer 2011;57(6):1025-8
  • Das S. A study to understand the relation beween fetal haemoglobin, the hematological parameters and Xmn i gene polymorphism. Ind J Med Health 2012;1(9):206-10
  • Thein S, Wainscoat J, Sampietro M, et al. Association of thalassaemia intermedia with a beta-globin gene haplotype. Br J Haematol 1987;65(3):367-73
  • Zhu J, Chin K, Aerbajinai W, et al. Hydroxyurea-inducible SAR1 gene acts through the Gialpha/JNK/Jun pathway to regulate gamma-globin expression. Blood 2014;124(7):1146-56
  • Kumkhaek C, Taylor JGVI, Zhu J, et al. Fetal haemoglobin response to hydroxycarbamide treatment and sar1a promoter polymorphisms in sickle cell anaemia. Br J Haematol 2008;141(2):254-9
  • Walker AL, Steward S, Howard TA, et al. Epigenetic and molecular profiles of erythroid cells after hydroxyurea treatment in sickle cell anemia. Blood 2011;118(20):5664-70
  • Ikuta T, Ausenda S, Cappellini MD. Mechanism for fetal globin gene expression: role of the soluble guanylate cyclase-cGMP-dependent protein kinase pathway. Proc Natl Acad Sci USA 2001;98(4):1847-52
  • Cokic VP, Smith RD, Beleslin-Cokic BB, et al. Hydroxyurea induces fetal hemoglobin by the nitric oxide-dependent activation of soluble guanylyl cyclase. J Clin Invest 2003;111(2):231-9
  • Conran N, Oresco-Santos C, Acosta HC, et al. Increased soluble guanylate cyclase activity in the red blood cells of sickle cell patients. Br J Haematol 2004;124(4):547-54
  • Almeida CB, Scheiermann C, Jang JE, et al. Hydroxyurea and a cGMP-amplifying agent have immediate benefits on acute vaso-occlusive events in sickle cell disease mice. Blood 2012;120(14):2879-88
  • Beavo JA, Hansen RS, Harrison SA, et al. Identification and properties of cyclic nucleotide phosphodiesterases. Mol Cell Endocrinol 1982;28(3):387-410
  • Kuroyanagi Y, Kaneko Y, Muta K, et al. cAMP differentially regulates gamma-globin gene expression in erythroleukemic cells and primary erythroblasts through c-Myb expression. Biochem Biophys Res Commun 2006;344(3):1038-47
  • Inoue A, Kuroyanagi Y, Terui K, et al. Negative regulation of γ-globin gene expression by cyclic AMP-dependent pathway in erythroid cells. Exp Hematol 2004;32(3):244-53
  • de Rooij J, Zwartkruis FJ, Verheijen MH, et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998;396(6710):474-7
  • Italia K, Jain D, Gattani S, et al. Hydroxyurea in sickle cell disease--a study of clinico-pharmacological efficacy in the Indian haplotype. Blood Cells Mol Dis 2009;42(1):25-31
  • Li X, Zarinetchi F, Schrier RW, Nemenoff RA. Inhibition of MAP kinase by prostaglandin E2 and forskolin in rat renal mesangial cells. Am J Physiol 1995;269(4 Pt 1):C986-91
  • Rao KM. MAP kinase activation in macrophages. J Leukoc Biol 2001;69(1):3-10
  • Rincon M. MAP-kinase signaling pathways in T cells. Curr Opin Immunol 2001;13(3):339-45
  • Park JI, Choi HS, Jeong JS, et al. Involvement of p38 kinase in hydroxyurea-induced differentiation of K562 cells. Cell Growth Differ 2001;12(9):481-6
  • Rivero JA, Adunyah SE. Sodium butyrate induces tyrosine phosphorylation and activation of MAP kinase (ERK-1) in human K562 cells. Biochem Biophys Res Commun 1996;224(3):796-801
  • Yang J, Kawai Y, Hanson RW, Arinze IJ. Sodium butyrate induces transcription from the G alpha(i2) gene promoter through multiple Sp1 sites in the promoter and by activating the MEK-ERK signal transduction pathway. J Biol Chem 2001;276(28):25742-52
  • Liu K, Xing H, Zhang S, et al. Cucurbitacin D induces fetal hemoglobin synthesis in K562 cells and human hematopoietic progenitors through activation of p38 pathway and stabilization of the gamma-globin mRNA. Blood Cells Mol Dis 2010;45(4):269-75
  • Tang DC, Zhu J, Liu W, et al. The hydroxyurea-induced small GTP-binding protein SAR modulates gamma-globin gene expression in human erythroid cells. Blood 2005;106(9):3256-63
  • Dabrowski A, Boguslowicz C, Dabrowska M, et al. Reactive oxygen species activate mitogen-activated protein kinases in pancreatic acinar cells. Pancreas 2000;21(4):376-84
  • Dong J, Ramachandiran S, Tikoo K, et al. EGFR-independent activation of p38 MAPK and EGFR-dependent activation of ERK1/2 are required for ROS-induced renal cell death. Am J Physiol Renal Physiol 2004;287(5):F1049-58
  • Hsiao CH, Li W, Lou TF, et al. Fetal hemoglobin induction by histone deacetylase inhibitors involves generation of reactive oxygen species. Exp Hematol 2006;34(3):264-73
  • Lander HM. An essential role for free radicals and derived species in signal transduction. FASEB J 1997;11(2):118-24
  • Cerimele F, Battle T, Lynch R, et al. Reactive oxygen signaling and MAPK activation distinguish Epstein-Barr Virus (EBV)-positive versus EBV-negative Burkitt’s lymphoma. Proc Natl Acad Sci USA 2005;102(1):175-9
  • Cokic VP, Beleslin-Cokic BB, Tomic M, et al. Hydroxyurea induces the eNOS-cGMP pathway in endothelial cells. Blood 2006;108(1):184-91
  • Glover RE, Ivy ED, Orringer EP, et al. Detection of nitrosyl hemoglobin in venous blood in the treatment of sickle cell anemia with hydroxyurea. Mol Pharmacol 1999;55(6):1006-10
  • Nahavandi M, Wyche MQ, Perlin E, et al. Nitric Oxide Metabolites in Sickle Cell Anemia Patients after Oral Administration of Hydroxyurea; Hemoglobinopathy. Hematology 2000;5(4):335-9
  • Jiang J, Jordan SJ, Barr DP, et al. In vivo production of nitric oxide in rats after administration of hydroxyurea. Mol Pharmacol 1997;52(6):1081-6
  • Huang J, Yakubu M, Kim-Shapiro DB, King SB. Rat liver-mediated metabolism of hydroxyurea to nitric oxide. Free Radic Biol Med 2006;40(9):1675-81
  • King SB. Nitric oxide production from hydroxyurea. Free Radic Biol Med 2004;37(6):737-44
  • King SB. The nitric oxide producing reactions of hydroxyurea. Curr Med Chem 2003;10(6):437-52
  • Raththagala M, Karunarathne W, Kryziniak M, et al. Hydroxyurea stimulates the release of ATP from rabbit erythrocytes through an increase in calcium and nitric oxide production. Eur J Pharmacol 2010;645(1-3):32-8
  • Burnstock G, Kennedy C. A dual function for adenosine 5’-triphosphate in the regulation of vascular tone. Excitatory cotransmitter with noradrenaline from perivascular nerves and locally released inhibitory intravascular agent. Circ Res 1986;58(3):319-30
  • Abbracchio MP, Burnstock G. Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 1994;64(3):445-75
  • Fredholm BB, Abbracchio MP, Burnstock G, et al. Nomenclature and classification of purinoceptors. Pharmacol Rev 1994;46(2):143-56
  • Motte S, Communi D, Pirotton S, Boeynaems JM. Involvement of multiple receptors in the actions of extracellular ATP: the example of vascular endothelial cells. Int J Biochem Cell Biol 1995;27(1):1-7
  • Bogle RG, Coade SB, Moncada S, et al. Bradykinin and ATP stimulate L-arginine uptake and nitric oxide release in vascular endothelial cells. Biochem Biophys Res Commun 1991;180(2):926-32
  • Busse R, Ogilvie A, Pohl U. Vasomotor activity of diadenosine triphosphate and diadenosine tetraphosphate in isolated arteries. Am J Physiol 1988;254(5 Pt 2):H828-32
  • De Mey JG, Claeys M, Vanhoutte PM. Endothelium-dependent inhibitory effects of acetylcholine, adenosine triphosphate, thrombin and arachidonic acid in the canine femoral artery. J Pharmacol Exp Ther 1982;222(1):166-73
  • Ikuta T, Thatte HS, Tang JX, et al. Nitric oxide reduces sickle hemoglobin polymerization: potential role of nitric oxide-induced charge alteration in depolymerization. Arch Biochem Biophys 2011;510(1):53-61
  • Lockwood SY, Erkal JL, Spence DM. Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea. Nitric Oxide 2014;38:1-7
  • Sankaran VG, Xu J, Byron R, et al. A functional element necessary for fetal hemoglobin silencing. N Engl J Med 2011;365(9):807-14
  • Song YX, Yue ZY, Wang ZN, et al. MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation. Mol. Cancer 2011;10:1
  • Chen SY, Wang Y, Telen MJ, Chi JT. The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS One 2008;3(6):e2360
  • Byon JC, Papayannopoulou T. MicroRNAs: Allies or foes in erythropoiesis? J Cell Physiol 2012;227(1):7-13
  • Hahn CK, Lowrey CH. Eukaryotic initiation factor 2alpha phosphorylation mediates fetal hemoglobin induction through a post-transcriptional mechanism. Blood 2013;122(4):477-85
  • Hahn CK, Lowrey CH. Induction of fetal hemoglobin through enhanced translation efficiency of gamma-globin mRNA. Blood 2014;124(17):2730-4
  • US National Institutes of Health. ClinicalTrials.gov. 2015
  • Bitoungui VJN, Pule GD, Hanchard N, et al. Beta-globin gene haplotypes among cameroonians and review of the global distribution: is there a case for a single sickle mutation origin in Africa? OMICS 2015;19(3):171-9
  • Ware RE, Schultz WH, Yovetich N, et al. Stroke With Transfusions Changing to Hydroxyurea (SWiTCH): a phase III randomized clinical trial for treatment of children with sickle cell anemia, stroke, and iron overload. Pediatr Blood Cancer 2011;57(6):1011-17
  • Hong W, Nakazawa M, Chen YY, et al. FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J 2005;24(13):2367-78
  • Braconi C, Huang N, Patel T. MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 2010;51(3):881-90
  • Kodeboyina S, Balamurugan P, Liu L, Pace BS. cJun modulates Ggamma-globin gene expression via an upstream cAMP response element. Blood Cells Mol Dis 2010;44(1):7-15
  • Ramakrishnan V, Pace BS. Regulation of gamma-globin gene expression involves signaling through the p38 MAPK/CREB1 pathway. Blood Cells Mol Dis 2011;47(1):12-22
  • Munugalavadla V, Dore LC, Tan BL, et al. Repression of c-kit and its downstream substrates by GATA-1 inhibits cell proliferation during erythroid maturation. Mol Cell Biol 2005;25(15):6747-59
  • Lawrie CH. microRNA expression in erythropoiesis and erythroid disorders. Br J Haematol 2010;150(2):144-51
  • Lawrie CH. microRNA expression in erythropoiesis and erythroid disorders. Br J Haematol 2010;150(2):144-51
  • Zhao G, Yu D, Weiss MJ. MicroRNAs in erythropoiesis. Curr Opin Hematol 2010;17(3):155-62
  • Sangokoya C, Telen MJ, Chi JT. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 2010;116(20):4338-48

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.