2
Views
3
CrossRef citations to date
0
Altmetric
Review

Paternal genetic and epigenetic influences on IVF outcome

Pages 359-367 | Published online: 10 Jan 2014

References

  • Van Voorhis BJ. Clinical practice. In vitro fertilization. N. Engl. J. Med.356, 379–386 (2007).
  • CDC. Assisted Reproductive Technology Success Rates: National Summary and Fertility Clinic Results. Centers for Disease Control and Prevention, GA, USA (2007).
  • Devroey P, Van Steirteghem A. A review of ten years experience of ICSI. Hum. Reprod. Update10, 19–28 (2004).
  • Palermo GD, Neri QV, Hariprashad JJ et al. ICSI and its outcome. Semin. Reprod. Med.18, 161–169 (2000).
  • Olson CK, Keppler-Noreuil KM, Romitti PA et al.In vitro fertilization is associated with an increase in major birth defects. Fertil. Steril.84, 1308–1315 (2005).
  • Shevell T, Malone FD, Vidaver J et al. Assisted reproductive technology and pregnancy outcome. Obstet. Gynecol.106, 1039–1045 (2005).
  • Schieve LA, Peterson HB, Meikle SF et al. Live-birth rates and multiple-birth risk using in vitro fertilization. JAMA282, 1832–1838 (1999).
  • Sanchez-Albisua I, Borell-Kost S, Mau-Holzmann UA, Licht P, Krageloh-Mann I. Increased frequency of severe major anomalies in children conceived by intracytoplasmic sperm injection. Dev. Med. Child. Neurol.49, 129–134 (2007).
  • Ludwig M, Katalinic A, Gross S et al. Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J. Med. Genet.42, 289–291 (2005).
  • Chang AS, Moley KH, Wangler M, Feinberg AP, Debaun MR. Association between Beckwith–Wiedemann syndrome and assisted reproductive technology: a case series of 19 patients. Fertil. Steril.83, 349–354 (2005).
  • Cox GF, Burger J, Lip V et al. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am. J. Hum. Genet.71, 162–164 (2002).
  • Faure AK, Aknin-Seifer, I, Frerot, G et al. Predictive factors for an increased risk of sperm aneuploidies in oligo-astheno-teratozoospermic males. Int. J. Androl.30, 153–162 (2007).
  • Aittomaki K, Wennerholm UB, Bergh C et al. Safety issues in assisted reproduction technology: should ICSI patients have genetic testing before treatment? A practical proposition to help patient information. Hum. Reprod.19, 472–476 (2004).
  • Elliston S. Intracytoplasmic sperm injection (ICSI): risks reconsidered. Hum. Fertil. (Camb.)3, 31–35 (2000).
  • Levron J, Aviram-Goldring A, Madgar I et al. Studies on sperm chromosomes in patients with severe male factor infertility undergoing assisted reproductive technology treatment. Mol. Cell. Endocrinol.183(Suppl. 1), S23–S28 (2001).
  • Carrell DT. Contributions of sperm to embryogenesis: the use of laboratory assays to evaluate the genetic and epigenetic fitness of sperm. Reprod. Biomed. Online (2008) (Epub ahead of print).
  • Topping D, Brown P, Hassold T. The immunocytogenetics of human male meiosis. In: The Genetics of Male Infertility. Carrell DT (Ed.).115–128. Humana Press, Inc., NJ, USA (2007).
  • Lamb NE, Sherma, SL, Hassold TJ. Effect of meiotic recombination on the production of aneuploid gametes in humans. Cytogenet. Genome Res.111, 250–255 (2005).
  • Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet.2, 280–291 (2001).
  • Martin RH. Mechanisms of nondisjunction in human spermatogenesis. Cytogenet. Genome Res.111, 245–249 (2005).
  • Martin RH. Meiotic chromosome abnormalities in human spermatogenesis. Reprod. Toxicol.22, 142–147 (2006).
  • Gonsalves J, Sun F, Schlegal P et al. Defective recombination in infertile men. Hum. Mol. Genet.13, 2875–2883 (2004).
  • Sun F, Greene C, Turek PJ et al. Immunofluorescent synaptonemal complex analysis in azoospermic men. Cytogenet. Genome Res.111, DOI:10.1159/000086913 (2005).
  • Topping D, Brown P, Judis L et al. Synaptic defects at meiosis I and non-obstructive azoospermia. Hum. Reprod.21, 3171–3177 (2006).
  • Codina-Pascual M, Campillo M, Kraus J et al. Crossover frequency and synaptonemal complex length: their variability and effects on human male meiosis. Mol. Hum. Reprod.12, 123–133 (2006).
  • Burrello N, Vicari E, Calogero AE Chromosome abnormalities in spermatozoa of patients with azoospermia and normal somatic karyotype. Cytogenet. Genome Res.111, 363–365 (2005).
  • Martin RH. The clinical relevance of sperm aneuploidy. In: The Genetics of Male Infertility. Carrell DT (Ed.). Humana Press, Inc., NJ, USA, 129–144 (2007).
  • Kruse R, Guttenbach M, Shartmann B et al. Genetic counselling in a patient with XXY/XXXY/XY mosaic Klinefelter’s syndrome: estimate of sex chromosome aberrations in sperm before intracytoplasmic sperm injection. Fertil. Steril.69, 432–485 (1998).
  • Lim A, Fong Y, Yu S. Estimates of sperm sex chromosome disomy and diploidy rates in a 47,XXY/46,XY mosaic Klinefelter patient. Hum. Genet.104, 405–409 (1999).
  • Rives N, Joly G, Machy A et al. Assessment of sex chromosome aneuploidy in sperm nuclei from 47,XXY and 46,XY/47,XXY males: comparison with fertile and infertile males with normal karyotype. Mol. Hum. Reprod.6, 107–112 (2000).
  • Ogur G, Van Assche E, Vegetti W et al. Chromosomal segregation in spermatozoa of 14 Robertsonian translocation carriers. Mol. Hum. Reprod.12, 209–215 (2006).
  • Fryndman N, Romana S, Le Lorc’h M et al. Assisting reproduction of infertile men carrying a Robertsonian translocation. Hum. Reprod.16, 2274–2277 (2001).
  • Martin R, Spriggs E. Sperm chromosome complements in a man heterozygous for a reciprocal translocation 46,XY,t(9;13)(q21.1;q21.2) and a review of the literature. Clin. Genet.47, 42–46 (1995).
  • Carrell DT, Wilcox AL, Lowy L et al. Elevated sperm chromosome aneuploidy and apoptosis in patients with unexplained recurrent pregnancy loss. Obstet. Gynecol.101, 1229–1235 (2003).
  • Benzacken B, Gavelle FM, Martin-Pont B et al. Familial sperm polyploidy induced by genetic spermatogenesis failure: case report. Hum. Reprod.16, 2646–2651 (2001).
  • Devillard F, Metzler-Guillemain C, Pelletier R et al. Polyploidy in large-headed sperm: FISH study of three cases. Hum. Reprod.17, 1292–1298 (2002).
  • Carrell DT. The clinical implementation of sperm aneuploidy testing: pitfalls and promises. J. Androl.29, 124–133 (2008).
  • Gianaroli L, Magli MC, Ferraretti AP Sperm and blastomere aneuploidy detection in reproductive genetics and medicine. J. Histochem. Cytochem.53, 261–267 (2005).
  • Nagvenkar P, Zaveri K, Hinduja I. Comparison of the sperm aneuploidy rate in severe oligozoospermic and oligozoospermic men and its relation to intracytoplasmic sperm injection outcome. Fertil. Steril.84, 925–931 (2005).
  • Blanco J, Gabau E, Gomez D et al. Chromosome 21 disomy in the spermatozoa of the fathers of children with trisomy 21, in a population with a high prevalence of Down syndrome: increased incidence in cases of paternal origin. Am. J. Hum. Genet.63, 1067–1072 (1998).
  • Carrell DT, Wilcox AL, Udoff LC, Thorp C, Campbell B. Chromosome 15 aneuploidy in the sperm and conceptus of a sibling with variable familial expression of round-headed sperm syndrome. Fertil. Steril.76, 1258–1260 (2001).
  • Petit FM, Frydman N, Benkhalifa M et al. Could sperm aneuploidy rate determination be used as a predictive test before intracytoplasmic sperm injection? J. Androl.26, 235–241 (2005).
  • Carrell DT, Emery BR. Use of automated imaging and analysis technology for the detection of aneuploidy in human sperm. Fertil. Steril.11 (2007) (Epub ahead of print).
  • Perry MJ, Chen X, Lu X. Automated scoring of multiprobe FISH in human spermatozoa. Cytometry A.71, 968–972 (2007).
  • Gianaroli L, Magli MC, Ferraretti AP et al. Possible interchromosomal effect in embryos generated by gametes from translocation carriers. Hum. Reprod.17, 3201–3207 (2002).
  • Munne S. Analysis of chromosome segregation during preimplantation genetic diagnosis in both male and female translocation heterozygotes. Cytogenet. Genome Res.111, 305–309 (2005).
  • Munne S. Preimplantation genetic diagnosis of structural abnormalities. Mol. Cell. Endocrinol.183(Suppl. 1), S55–S58 (2001).
  • Chen Y, Huang J, Liu P, Qiao J. Analysis of meiotic segregation patterns and interchromosomal effects in sperm from six males with Robertsonian translocations. J. Assist. Reprod. Genet. (2007).
  • Wiland E, Midro AT, Panasiuk B, Kurpisz M. The analysis of meiotic segregation patterns and aneuploidy in the spermatozoa of father and son with translocation t(4;5)(p15.1;p12) and the prediction of the individual probability rate for unbalanced progeny at birth. J. Androl.28, 262–272 (2007).
  • McCarroll SA, Altshuler DM. Copy-number variation and association studies of human disease. Nat. Genet.39, S37–S42 (2007).
  • Freeman JL, Perry GH, Feuk L et al. Copy number variation: new insights in genome diversity. Genome Res.16, 949–961 (2006).
  • Redon R, Ishikawa S, Fitch KR et al. Global variation in copy number in the human genome. Nature444, 444–454 (2006).
  • Lupski JR. Genomic rearrangements and sporadic disease. Nature39, S43–S47 (2007).
  • McLay DW, Clarke HJ. Remodelling the paternal chromatin at fertilization in mammals. Reproduction125, 625–633 (2003).
  • Erenpreiss J, Spano M, Erenpreisa J, Bungum M, Giwercman A. Sperm chromatin structure and male fertility: biological and clinical aspects. Asian J. Androl.8, 11–29 (2006).
  • Aoki VW, Moskovtsev SI, Willis J et al. DNA integrity is compromised in protamine-deficient human sperm. J. Androl.26, 741–748 (2005).
  • Muratori M, Marchiani S, Maggi M, Forti G, Baldi E. Origin and biological significance of DNA fragmentation in human spermatozoa. Front. Biosci.11, 1491–1499 (2006).
  • Agarwal A, Allamaneni SS. Sperm DNA damage assessment: a test whose time has come. Fertil. Steril.84, 850–853 (2005).
  • Marchesi DE, Feng HL. Sperm DNA integrity from sperm to egg. J. Androl.28, 481–489 (2007).
  • Tarozzi N, Bizzaro D, Flamigni C, Borini A. Clinical relevance of sperm DNA damage in assisted reproduction. Reprod. Biomed. Online14, 746–757 (2007).
  • Ozmen B, Koutlaki N, Youssry M, Diedrich K, Al-Hasani S. DNA damage of human spermatozoa in assisted reproduction: origins, diagnosis, impacts and safety. Reprod. Biomed. Online14, 384–395 (2007).
  • Cebesoy FB, Aydos K, Unlu C. Effect of sperm chromatin damage on fertilization ratio and embryo quality post-ICSI. Arch. Androl.52, 397–402 (2006).
  • Nasr-Esfahani MH, Salehi M, Razavi S et al. Effect of sperm DNA damage and sperm protamine deficiency on fertilization and embryo development post-ICSI. Reprod. Biomed. Online11, 198–205 (2005).
  • Zini A, Meriano J, Kader K et al. Potential adverse effect of sperm DNA damage on embryo quality after ICSI. Hum. Reprod.20, 3476–3480 (2005).
  • Lin MH, Kuo-Kuang Lee R, Li SH et al. Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytoplasmic sperm injection, but might be related to spontaneous abortion rates. Fertil. Steril. (2007) (Epub ahead of print).
  • Collins JA, Barnhart KT, Schlegel PN. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil. Steril. (2007) (Epub ahead of print).
  • Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum. Reprod.19, 611–615 (2004).
  • Gosden RG, Feinberg AP. Genetics and epigenetics – nature’s pen-and-pencil set. N. Engl. J. Med.356, 731–733 (2007).
  • Emery BR, Carrell DT. The effect of epigenetic sperm abnormalities on early embryogenesis. Asian J. Androl.8, 131–142 (2006).
  • Manandhar G, Schatten H, Sutovsky P. Centrosome reduction during gametogenesis and its significance. Biol. Reprod.72, 2–13 (2005).
  • Schatten G. The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev. Biol.165, 299–335 (1994).
  • Palermo G, Munne S, Cohen J. The human zygote inherits its mitotic potential from the male gamete. Hum. Reprod.9, 1220–1225 (1994).
  • Van Blerkom J, Davis P. Evolution of the sperm aster after microinjection of isolated human sperm centrosomes into meiotically mature human oocytes. Hum. Reprod.10, 2179–2182 (1995).
  • Sathananthan AH, Ratnam SS, Ng SC et al. The sperm centriole: its inheritance, replication and perpetuation in early human embryos. Hum. Reprod.11, 345–356 (1996).
  • Sathananthan AH. Mitosis in the human embryo: the vital role of the sperm centrosome (centriole). Histol. Histopathol.12, 827–856 (1997).
  • Sathananthan AH, Ratnasooriya WD, de Silva PK, Menezes J. Characterization of human gamete centrosomes for assisted reproduction. Ital. J. Anat. Embryol.106, 61–73 (2001).
  • Moomjy M, Colombero LT, Veeck LL, Rosenwaks Z, Palermo GD. Sperm integrity is critical for normal mitotic division and early embryonic development. Mol. Hum. Reprod.5, 836–844 (1999).
  • Rawe VY, Terada Y, Nakamura S et al. A pathology of the sperm centriole responsible for defective sperm aster formation, syngamy and cleavage. Hum. Reprod.17, 2344–2349 (2002).
  • Chatzimeletiou K, Rutherford AJ, Griffin DK, Handyside AH. Is the sperm centrosome to blame for the complex polyploid chromosome patterns observed in cleavage stage embryos from an OAT patient? Zygote15, 81–90 (2007).
  • Rybouchkin A, Dozortsev D, Pelinck MJ, De Sutter P, Dhont M. Analysis of the oocyte activating capacity and chromosomal complement of round-headed human spermatozoa by their injection into mouse oocytes. Hum. Reprod.11, 2170–2175 (1996).
  • Tesarik J, Mendoza C, Greco E. Paternal effects acting during the first cell cycle of human preimplantation development after ICSI. Hum. Reprod.17, 184–189 (2002).
  • Terada Y. Human sperm centrosomal function during fertilization, a novel assessment for male sterility. Hum. Cell.17, 181–186 (2004).
  • Terada, Y Functional analyses of the sperm centrosome in human reproduction: implications for assisted reproductive technique. Soc. Reprod. Fertil. Suppl.63, 507–513 (2007).
  • Terada Y, Nakamura S, Morita J et al. Use of Mammalian eggs for assessment of human sperm function: molecular and cellular analyses of fertilization by intracytoplasmic sperm injection. Am. J. Reprod. Immunol.51, 290–293 (2004).
  • Nakamura S, Terada Y, Horiuchi T et al. Analysis of the human sperm centrosomal function and the oocyte activation ability in a case of globozoospermia, by ICSI into bovine oocytes. Hum. Reprod.17, 2930–2934 (2002).
  • Hewitson L, Simerly C, Schatten G. Inheritance defects of the sperm centrosome in humans and its possible role in male infertility. Int. J. Androl.20(Suppl. 3), 35–43 (1997).
  • Terada Y, Nakamura S, Simerly C et al. Centrosomal function assessment in human sperm using heterologous ICSI with rabbit eggs: a new male factor infertility assay. Mol. Reprod. Dev.67, 360–365 (2004).
  • Nakamura S, Terada Y, Rawe VY et al. A trial to restore defective human sperm centrosomal function. Hum. Reprod.20, 1933–1937 (2005).
  • Biermann K, Steger K. Epigenetics in male germ cells. J. Androl.28, 466–480 (2007).
  • Oliva R. Protamines and male infertility. Hum. Reprod. Update12, 417–435 (2006).
  • Ward WS, Coffey DS. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol. Reprod.44, 569–574 (1991).
  • Carrell DT, Emery BR, Hammoud S. Altered protamine expression and diminished spermatogenesis: what is the link? Hum. Reprod. Update.13, 313–327 (2007).
  • Carrell D, Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J. Androl.22, 604–610 (2001).
  • Aoki VW, Moskovtsev S, Willis J et al. DNA integrity is compromised in protamine-deficient sperm. J. Androl.26, 741–748 (2005).
  • Aoki VW, Liu L, Jones KP et al. Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil. Steril.86, 1408–1415 (2006).
  • Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet.3, 662–673 (2002).
  • Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature447, 425–432 (2007).
  • Delaval K, Govin J, Cerqueira, F et al. Differential histone modifications mark mouse imprinting control regions during spermatogenesis. Embo. J.26, 720–729 (2007).
  • Zini A, Gabriel MS, Zhang X. The histone to protamine ratio in human spermatozoa: comparative study of whole and processed semen. Fertil. Steril.87, 217–219 (2007).
  • Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science293, 1089–1093 (2001).
  • Oakes CC, La Salle S, Smiraglia DJ, Robaire B, Trasler JM. A unique configuration of genome-wide DNA methylation patterns in the testis. Proc. Natl. Acad. Sci. USA104, 228–233 (2007).
  • Weber M, Hellmann I, Stadler MB et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet.39, 457–466 (2007).
  • Schaefer CB, Ooi SK, Bestor TH, Bourc’his D. Epigenetic decisions in mammalian germ cells. Science316, 398–399 (2007).
  • Allen C, Reardon W. Assisted reproduction technology and defects of genomic imprinting. BJOG112, 1589–1594 (2005).
  • Li T, Vu TH, Ulaner GA et al. IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch. Mol. Hum. Reprod.11, 631–640 (2005).
  • Deng T, Kuang Y, Zhang D et al. Disruption of imprinting and aberrant embryo development in completely inbred embryonic stem cell-derived mice. Dev. Growth Differ. (2007).
  • Mitalipov SM. Genomic imprinting in primate embryos and embryonic stem cells. Reprod. Fertil. Dev.18, 817–821 (2006).
  • Krawetz SA. Paternal contribution: new insights and future challenges. Nature Review Genetics6, 633–642 (2005).
  • Boerke A, Dieleman SJ, Gadella BM. A possible role for sperm RNA in early embryo development. Theriogenology (2007).
  • Martins RP, Krawetz SA. RNA in human sperm. Asian J. Androl.7, 115–120 (2005).
  • Ostermeier GC, Goodrich RJ, Diamond MP, Dix DJ, Krawetz SA. Toward using stable spermatozoal RNAs for prognostic assessment of male factor fertility. Fertil. Steril.83, 1687–1694 (2005).
  • Miller D, Ostermeier GC, Krawetz SA. The controversy, potential and roles of spermatozoal RNA. Trends Mol. Med.11, 156–163 (2005).
  • Miller D, Ostermeier GC. Towards a better understanding of RNA carriage by ejaculate spermatozoa. Hum. Reprod. Update.12, 757–767 (2006).
  • Miller D, Ostermeier GC. Spermatozoal RNA: Why is it there and what does it do? Gynecol. Obstet. Fertil.34, 840–846 (2006).
  • Platts AE, Dix DJ, Chemes HE et al. Success and failure in human spermatogenesis revealed by teratozoospermic RNAs. Hum. Mol. Genet.16, 763–773 (2007).
  • Aoki VW, Liu L, Carrell DT. A novel mechanism of protamine expression deregulation highlighted by abnormal protamine transcript retention in infertile human males with sperm protamine deficiency. Mol. Hum. Reprod.12, 41–50 (2006).
  • Ostermeier GC, Miller D, Huntriss JD, Diamond M, Krawetz SA. Delivering spermatozoon RNA to the oocyte. Nature429, 154 (2005).
  • Rassoulzadegan M, Grandjean V, Gounon P et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature441, 469–474 (2006).
  • Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature442, 199–202 (2006).
  • Kim VN. Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes. Dev.20, 1993–1997 (2006).
  • Grivna ST, Beyret E, Wang Z, Lin H. A novel class of small RNAs in mouse spermatogenic cells. Genes. Dev.20, 1709–1714 (2006).
  • Amanai M, Brahmajosyula M, Perry AC. A restricted role for sperm-borne microRNAs in mammalian fertilization. Biol. Reprod.75, 877–884 (2006).
  • Buckett WM, Chian RC, Holzer H et al. Obstetric outcomes and congenital abnormalities after in vitro maturation, in vitro fertilization, and intracytoplasmic sperm injection. Obstet. Gynecol.110, 885–891 (2007).
  • Georgiou I, Syrrou M, Pardalidis N et al. Genetic and epigenetic risks of intracytoplasmic sperm injection method. Asian J. Androl.8, 643–673 (2006).
  • Carrell DT. The clinical implementation of sperm chromosome aneuploidy testing: pitfalls and promises. J. Androl.29(2), 124–133(2007).
  • Shafik A, Shafik AA, Shafik I, El Sibai O. Sperm DNA fragmentation. Arch. Androl.52, 197–208 (2006).
  • Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod. Biomed. Online14, 727–733 (2007).
  • Menezo YJ. Paternal and maternal factors in preimplantation embryogenesis: interaction with the biochemical environment. Reprod. Biomed. Online12, 616–621 (2006).
  • Tremellen K, Miari G, Froiland D, Thompson J. A randomised control trial examining the effect of an antioxidant (Menevit) on pregnancy outcome during IVF-ICSI treatment. Aust. NZ J. Obstet. Gynaecol.47, 216–221 (2007).
  • Edwards TM, Myers JP. Environmental exposures and gene regulation in disease etiology. Environ. Health Perspect.115, 1264–1270 (2007).
  • Cummings AM, Kavlock RJ. Gene-environment interactions: a review of effects on reproduction and development. Crit. Rev. Toxicol.34, 461–485 (2004).
  • Jones HW Jr. IVF: past and future. Reprod. Biomed. Online6, 375–381 (2003).
  • Bentley DR. Whole-genome re-sequencing. Curr. Opin. Genet. Dev.16, 545–552 (2006).
  • Diggle MA, Clarke SC. Pyrosequencing: sequence typing at the speed of light. Mol. Biotechnol.28, 129–137 (2004).
  • Gupta P, Lee KH. Genomics and proteomics in process development: opportunities and challenges. Trends Biotechnol.25, 324–330 (2007).
  • Krausz E. High-content siRNA screening. Mol. Biosyst.3, 232–240 (2007).
  • Richiardi L, Pettersson A, Akre O. Genetic and environmental risk factors for testicular cancer. Int. J. Androl.30, 230–240 (2007).
  • Talmud PJ. Gene-environment interaction and its impact on coronary heart disease risk. Nutr. Metab. Cardiovasc. Dis.17, 148–152 (2007).
  • Berkovitz A, Eltes F, Lederman H et al. How to improve IVF-ICSI outcome by sperm selection. Reprod. Biomed. Online12, 634–638 (2006).
  • Huszar G, Ozkavukcu S, Jakab A et al. Hyaluronic acid binding ability of human sperm reflects cellular maturity and fertilizing potential: selection of sperm for intracytoplasmic sperm injection. Curr. Opin. Obstet. Gynecol.18, 260–267 (2006).
  • Aktan TM, Montag M, Duman S et al. Use of a laser to detect viable but immotile spermatozoa. Andrologia36, 366–369 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.