656
Views
71
CrossRef citations to date
0
Altmetric
Reviews

Advances in understanding of bile acid diarrhea

References

  • Hofmann AF, Small DM. Detergent properties of bile salts: correlation with physiological function. Annu. Rev. Med. 18, 333–376 (1967).
  • Rao AS, Wong B, Camilleri M et al. Chenodeoxycholate in females with irritable bowel syndrome-constipation: a pharmacodynamic and pharmacogenetic analysis. Gastroenterology 139, 1549–1558 (2010).
  • Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).
  • Hofmann AF. The syndrome of ileal disease and the broken enterohepatic circulation: cholerhetic enteropathy. Gastroenterology 52, 752–757 (1967).
  • Martinez-Augustin O, Sanchez de Medina F. Intestinal bile acid physiology and pathophysiology. World J. Gastroenterol. 14, 5630–5640 (2008).
  • Halilbasic E, Claudel T, Trauner M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J. Hepatol. 58, 155–168 (2013).
  • Kullak-Ublick GA, Stieger B, Meier PJ. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126, 322–342 (2004).
  • Ballatori N, Li N, Fang F, Boyer JL, Christian WV, Hammond CL. OST alpha-OST beta: a key membrane transporter of bile acids and conjugated steroids. Front Biosci. (Landmark Ed). 14, 2829–2844 (2009).
  • Wedlake L, A’Hern R, Russell D et al. Systematic Review: the prevalence of idiopathic bile acid malabsorption as diagnosed by SeHCAT scanning in patients with diarrhoea-predominant irritable bowel syndrome. Aliment. Pharmacol. Ther. 30, 707–717 (2009).
  • Mekhjian HS, Phillips SF, Hofmann AF. Colonic secretion of water and electrolytes induced by bile acids: perfusion studies in man. J. Clin. Invest. 50, 1569–1577 (1971).
  • Bampton PA, Dinning PG, Kennedy ML et al. The proximal colonic motor response to rectal mechanical and chemical stimulation. Am. J. Physiol. 282, G443–G449 (2002).
  • Chadwick VS, Gaginella TS, Carlson GL et al. Effect of molecular structure on bile acid-induced alterations in absorptive function, permeability, and morphology in the perfused rabbit colon. J. Lab. Clin. Med. 94, 661–674 (1979).
  • Hammer HF, Santa Ana CA, Schiller LR, Fordtran JS. Studies of osmotic diarrhea induced in normal subjects by ingestion of polyethylene glycol and lactulose. J. Clin. Invest. 84, 1056–1062 (1989).
  • Conley DR, Coyne MJ, Bonorris GG, Chung A, Schoenfield LJ. Bile acid stimulation of colonic adenylate cyclase and secretion in the rabbit. Am. J. Dig. Dis. 21, 453–458 (1976).
  • Alrefai WA, Saksena S, Tyagi S, Gill RK, Ramaswamy K, Dudeja PK. Taurodeoxycholate modulates apical Cl-/OH- exchange activity in Caco2 cells. Dig. Dis. Sci. 52, 1270–1278 (2007).
  • Ao M, Sarathy J, Domingue J, Alrefai WA, Rao MC. Chenodeoxycholic acid stimulates Cl- secretion via cAMP signaling and increases cystic fibrosis transmembrane conductance regulator phosphorylation in T84 cells. Am. J. Physiol. 305, C447–C456 (2013).
  • Peregrin AT, Ahlman H, Jodal M, Lundgren O. Involvement of serotonin and calcium channels in the intestinal fluid secretion evoked by bile salt and cholera toxin. Br. J. Pharmacol. 127, 887–894 (1999).
  • Camilleri M, Murphy R. Chadwick VS. Pharmacological inhibition of chenodeoxycholic acid induced secretion of fluid and mucus in the rabbit colon. Dig. Dis. Sci. 27, 865 869 (1982).
  • Yamada T, Inui A, Hayashi N, Fujimura M, Fujimiya M. Serotonin stimulates endotoxin translocation via 5-HT3 receptors in the rat ileum. Am. J. Physiol. 284, G782–G788 (2003).
  • Kruis W, Haddad A, Phillips SF. Chenodeoxycholic and ursodeoxycholic acids alter motility and fluid transit in the canine ileum. Digestion 34, 185–195 (1986).
  • Kirwan WO, Smith AN, Mitchell WD, Falconer JD, Eastwood MA. Bile acids and colonic motility in the rabbit and the human. Gut 16, 894–902 (1975).
  • Hofmann AF, Poley JR. Cholestyramine treatment of diarrhea associated with ileal resection. N. Engl. J. Med. 281, 397–402 (1969).
  • Hofmann AF, Poley JR. Role of bile acid malabsorption in pathogenesis of diarrhea and steatorrhea in patients with ileal resection. I. Response to cholestyramine or replacement of dietary long chain triglyceride by medium chain triglyceride. Gastroenterology 62, 918–934 (1972).
  • Poley JR, Hofmann AF. Role of fat maldigestion in pathogenesis of steatorrhea in ileal resection. Fat digestion after two sequential test meals with and without cholestyramine. Gastroenterology 71, 38–44 (1976).
  • Williams AJ, Merrick MV, Eastwood MA. Idiopathic bile acid malabsorption--a review of clinical presentation, diagnosis, and response to treatment. Gut 32, 1004–1006 (1991).
  • Merrick MV, Eastwood MA, Ford MJ. Is bile acid malabsorption underdiagnosed? An evaluation of accuracy of diagnosis by measurement of SeHCAT retention. Br. Med. J. 290, 665–668 (1985).
  • Fernández-Bañares F, Esteve M, Salas A et al. Systematic evaluation of the causes of chronic watery diarrhea with functional characteristics. Am. J. Gastroenterol. 102, 2520–2528 (2007).
  • Wildt S, Nørby Rasmussen S, Lysgård Madsen J, Rumessen JJ. Bile acid malabsorption in patients with chronic diarrhoea: clinical value of SeHCAT test. Scand. J. Gastroenterol. 38, 826–830 (2003).
  • Gracie DJ, Kane JS, Mumtaz S, Scarsbrook AF, Chowdhury FU, Ford AC. Prevalence of, and predictors of, bile acid malabsorption in outpatients with chronic diarrhea. Neurogastroenterol. Motil. 24, 983 e538 (2012).
  • Limsui D, Pardi DS, Camilleri M et al. Symptomatic overlap between irritable bowel syndrome and microscopic colitis. Inflamm. Bowel Dis. 13, 175–181 (2007).
  • Walters JR, Pattni SS. Managing bile acid diarrhoea. Ther. Adv. Gastroenterol. 3, 349–357 (2010).
  • Bouchoucha M, Uzzan B, Cohen R. Metformin and digestive disorders. Diabetes Metab. 37, 90–96 (2011).
  • Caspary WF, Zavada I, Reimold W, Deuticke U, Emrich D, Willms B. Alteration of bile acid metabolism and vitamin-B12-absorption in diabetics on biguanides. Diabetologia 13, 187–193 (1977).
  • Scarpello JH, Hodgson E, Howlett HC. Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus. Diabet. Med. 15, 651–656 (1998).
  • Bjarnason I, Sharpstone DR, Francis N et al. Intestinal inflammation, ileal structure and function in HIV. AIDS 10, 1385–1391 (1996).
  • Lundasen T, Galman C, Angelin B, Rudling M. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J. Intern. Med. 260, 530–536 (2006).
  • Walters JR, Tasleem AM, Omer OS, Brydon WG, Dew T, Le Roux CW. A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis. Clin. Gastroenterol. Hepatol. 7, 1189–1194 (2009).
  • Montagnani M, Love MW, Rössel P, Dawson PA, Qvist P. Absence of dysfunctional ileal sodium-bile acid cotransporter gene mutations in patients with adult-onset idiopathic bile acid malabsorption. Scand. J. Gastroenterol. 36, 1077–1080 (2001).
  • Montagnani M, Abrahamsson A, Gälman C et al. Analysis of ileal sodium/bile acid cotransporter and related nuclear receptor genes in a family with multiple cases of idiopathic bile acid malabsorption. World J. Gastroenterol. 12, 7710–7714 (2006).
  • Sciarretta G, Fagioli G, Furno A et al. 75Se HCAT test in the detection of bile acid malabsorption in functional diarrhoea and its correlation with small bowel transit. Gut 28, 970–975 (1987).
  • Sadik R, Abrahamsson H, Ung KA, Stotzer PO. Accelerated regional bowel transit and overweight shown in idiopathic bile acid malabsorption. Am. J. Gastroenterol. 99, 711–718 (2004).
  • Valdés Olmos R, den Hartog Jager F, Hoefnagel C, Taal B. Effect of loperamide and delay of bowel motility on bile acid malabsorption caused by late radiation damage and ileal resection. Eur J Nucl. Med. 18, 346–350 (1991).
  • Yeoh EK, Horowitz M, Russo A, Muecke T, Robb T, Chatterton BE. Gastrointestinal function in chronic radiation enteritis--effects of loperamide-N-oxide. Gut 34, 476–482 (1993).
  • Bajor A, Kilander A, Fae A et al. Normal or increased bile acid uptake in isolated mucosa from patients with bile acid malabsorption. Eur. J. Gastroenterol. Hepatol. 8, 397–403 (2006).
  • Bajor A, Gillberg PG, Abrahamsson H. Bile acids: short and long term effects in the intestine. Scand. J. Gastroenterol. 45, 645–664 (2010).
  • Wong BS, Camilleri M, Carlson PJ et al. A klothoβ variant mediates protein stability and associates with colon transit in irritable bowel syndrome with diarrhea. Gastroenterology 140, 1934–1942 (2011).
  • Kawamata Y, Fujii R, Hosoya M et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003).
  • Ward JB, Mroz MS, Keely SJ. The bile acid receptor, TGR5, regulates basal and cholinergic-induced secretory responses in rat colon. Neurogastroenterol. Motil. 25, 708–711 (2013).
  • Poole DP, Godfrey C, Cattaruzza F et al. Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterol. Motil. 22, 814–25 (2010)
  • Hov JR, Keitel V, Laerdahl JK et al. Mutational characterization of the bile acid receptor TGR5 in primary sclerosing cholangitis. PLoS ONE 5, e12403 (2010).
  • Fiorucci S, Cipriani S, Mencarelli A, Renga B, Distrutti E, Baldelli F. Counter-regulatory role of bile acid activated receptors in immunity and inflammation. Curr. Mol. Med. 10, 579–595 (2010).
  • Camilleri M, Vazquez-Roque MI, Carlson P, Burton D, Wong BS, Zinsmeister AR. Association of bile acid receptor TGR5 variation and transit in health and lower functional gastrointestinal disorders. Neurogastroenterol. Motil. 23, 995–999, 458 (2011).
  • Camilleri M. Peripheral mechanisms in irritable bowel syndrome. N. Engl. J. Med. 367, 1626–1635 (2012).
  • Galatola G, Jazrawi RP, Bridges C, Joseph AE, Northfield TC. Direct measurement of first-pass ileal clearance of a bile acid in humans. Gastroenterology 100, 1100–1105 (1991).
  • van Tilburg AJ, de Rooij FW, van den Berg JW, Kooij PP, van Blankenstein M. The selenium-75-homocholic acid taurine test re-evaluated: combined measurement of fecal selenium-75 activity and 3 alpha-hydroxy bile acids in 211 patients. J. Nucl. Med. 32, 1219–1224 (1991).
  • Sciarretta G, Furno A, Mazzoni M, Malaguti P. Post-cholecystectomy diarrhea: evidence of bile acid malabsorption assessed by SeHCAT test. Am. J. Gastroenterol. 87, 1852–1854 (1992).
  • Suhr O, Danielsson A, Nyhlin H, Truedsson H. Bile acid malabsorption demonstrated by SeHCAT in chronic diarrhoea, with special reference to the impact of cholecystectomy. Scand. J. Gastroenterol. 23, 1187–1194 (1988).
  • Kurien M, Evans KE, Leeds JS, Hopper AD, Harris A, Sanders DS. Bile acid malabsorption: an under-investigated differential diagnosis in patients presenting with diarrhea predominant irritable bowel syndrome type symptoms. Scand. J. Gastroenterol. 46, 818–822 (2011).
  • Al-Hadrani A, Lavelle-Jones M, Kennedy N, Neill G, Sutton D, Cuschieri A. Bile acid malabsorption in patients with postvagotomy diarrhoea. Ann. Chir. Gynaecol. 81, 351–353 (1992).
  • Ladas SD, Isaacs PE, Quereshi Y, Sladen G. Role of the small intestine in postvagotomy diarrhea. Gastroenterology 85, 1088–1093 (1983).
  • Fort JM, Azpiroz F, Casellas F, Andreu J, Malagelada JR. Bowel habit after cholecystectomy: physiological changes and clinical implications. Gastroenterology 111, 617–622 (1996).
  • Phillips SF. Diarrhea after cholecystectomy: if so, why? Gastroenterology 111, 816–818 (1996).
  • Bisschop PH, Bandsma RH, Stellaard F et al. Low-fat, high-carbohydrate and high-fat, low-carbohydrate diets decrease primary bile acid synthesis in humans. Am. J. Clin. Nutr. 79, 570–576 (2004).
  • Li T, Matozel M, Boehme S et al. Overexpression of cholesterol 7α-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis. Hepatology 53, 996–1006 (2001).
  • Jonkers IJ, Smelt AH, Princen HM et al. Fish oil increases bile acid synthesis in male patients with hypertriglyceridemia. J. Nutr. 136, 987–991 (2006).
  • Devkota S, Wang Y, Musch MW et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature 487, 104–108 (2012).
  • Laue H, Denger K, Cook AM. Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU Appl. Environ. Microbiol. 63, 2016–2021 (1997).
  • Lindstedt S, Avigan J, Goodman DS, Sjövall J, Steinberg DJ. The effect of dietary fat on the turnover of cholic acid and on the composition of the biliary bile acids in man. Clin. Invest. 44, 1754–1765 (1965).
  • Scarpello JH, Hodgson E, Howlett HC. Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus. Diabet. Med. 15, 651–656 (1998).
  • Caspary WF, Zavada I, Reimold W, Deuticke U, Emrich D, Willms B. Alteration of bile acid metabolism and vitamin-B12-absorption in diabetics on biguanides. Diabetologia 13, 187–193 (1977).
  • Sayin SI, Wahlström A, Felin J et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013).
  • Zhao Y, Wu J, Li JV, Zhou NY, Tang H, Wang Y. Gut microbiota composition modifies fecal metabolic profiles in mice. J. Proteome Res. 12, 2987–2999 (2013).
  • Ridlon JM, Alves JM, Hylemon PB, Bajaj JS. Cirrhosis, bile acids, and gut microbiota: Unraveling a complex relationship. Gut Microbes 4(5) (2013).
  • Ou J, Carbonero F, Zoetendal EG et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am. J. Clin. Nutr. 98, 111–120 (2013).
  • Duboc H, Rajca S, Rainteau D et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62, 531–539 (2013).
  • Duboc H, Rainteau D, Rajca S et al. Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol. Motil. 24, 513–520 (2012).
  • Kakiyama G, Pandak WM, Gillevet PM et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J. Hepatol. 58, 949–955 (2013).
  • Aron-Wisnewsky J, Gaborit B, Dutour A, Clement K. Gut microbiota and non-alcoholic fatty liver disease: new insights. Clin. Microbiol. Infect. 19, 338–348 (2013).
  • Ridaura VK, Faith JJ, Rey FE et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).
  • Camilleri M. Do the symptom-based, Rome criteria of irritable bowel syndrome lead to better diagnosis and treatment outcomes? The con argument. Clin. Gastroenterol. Hepatol. 8, 129–132 (2010).
  • Surowiec D, Kuyumjian AG, Wynd MA et al. Past, present, and future therapies for Clostridium difficile-associated disease. Ann. Pharmacother. 40, 2155–2163 (2006).
  • Weiss K. Toxin-binding treatment for Clostridium difficile: a review including reports of studies with tolevamer. Int. J. Antimicrob. Agents 33, 4–7 (2009).
  • Vijayvargiya P, Camilleri M, Shin A, Saenger A. Methods for diagnosis of bile acid malabsorption in clinical practice. Clin. Gastroenterol. Hepatol. 11(10), 1232–1239 (2013).
  • Wong BS, Camilleri M, Carlson P et al. Increased bile acid biosynthesis is associated with irritable bowel syndrome with diarrhea. Clin. Gastroenterol. Hepatol. 10, 1009–1015 (2012).
  • Shin A, Camilleri M, Vijayvargiya P et al. Bowel functions, fecal unconjugated primary and secondary bile acids, and colonic transit in patients with irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 11(10), 1270–1275 e1 (2013).
  • Pattni SS, Brydon WG, Dew T, Walters JR. Fibroblast growth factor 19 and 7α-hydroxy-4-cholesten-3-one in the diagnosis of patients with possible bile acid diarrhea. Clin. Transl. Gastroenterol. 3, e18 (2012).
  • Pattni SS, Brydon WG, Dew T et al. Fibroblast growth factor 19 in patients with bile acid diarrhoea: a prospective comparison of FGF19 serum assay and SeHCAT retention. Aliment. Pharmacol. Ther. 38(8), 967–976 (2013).
  • Camilleri M, Acosta A. Invited commentary: fibroblast growth factor 19 in patients with bile acid diarrhea: a prospective comparison of FGF19 serum assay and SeHCAT retention by Pattni et al. Aliment. Pharmacol. Ther. ( In press).
  • Odunsi-Shiyanbade ST, Camilleri M, McKinzie S et al. Effects of chenodeoxycholate and a bile acid sequestrant, colesevelam, on intestinal transit and bowel function. Clin. Gastroenterol. Hepatol. 8, 159–165 (2010).
  • Wong BS, Camilleri M, Carlson PJ et al. Pharmacogenetics of the effects of colesevelam on colonic transit in irritable bowel syndrome with diarrhea. Dig. Dis. Sci. 57, 1222–1226 (2012).
  • Zhang JH, Nolan JD, Kennie SL et al. Potent stimulation of fibroblast growth factor 19 expression in the human ileum by bile acids. Am. J. Physiol. 304, G940–G948 (2013).
  • Johnston IM, Nolan JD, Dew T, Shapiro D, Walters JRF. A new therapy for chronic diarrhea? A proof of concept study of the FXR agonist obeticholic acid in patients with primary bile acid diarrhea. Gastroenterology 144( Suppl. 144), S60 (2013).
  • Keating N, Mroz MS, Scharl MM et al. Physiological concentrations of bile acids down-regulate agonist induced secretion in colonic epithelial cells. J. Cell Mol. Med. 13, 2293–2303 (2009).
  • Mroz MS, Keating N, Ward J, et al. Farnesoid X receptor agonists attenuate colonic epithelial secretory function and prevent experimental diarrhoea in vivo. Gut doi:10.1136/gutjnl-2013–305088 (2013) ( Epub ahead of print).
  • Nolan JD, Johnston IM, Walters JR. Altered enterohepatic circulation of bile acids in Crohn's disease and their clinical significance: a new perspective. Expert Rev. Gastroenterol. Hepatol. 7, 49–56 (2013).
  • Lovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin. Gastroenterol. Hepatol. 10, 712–721 (2012).
  • Lovell RM, Ford AC. Effect of gender on prevalence of irritable bowel syndrome in the community: systematic review and meta-analysis. Am. J. Gastroenterol. 107, 991–1000 (2012).
  • Omar MI, Alexander CE. Drug treatment for faecal incontinence in adults. Cochrane Database Syst. Rev. (6), CD002116 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.