40
Views
9
CrossRef citations to date
0
Altmetric
Review

Should treatments for asthma be aimed at the airway smooth muscle?

Pages 209-217 | Published online: 09 Jan 2014

References

  • Benayoun L, Druilhe A, Dombret MC, Aubier M, Pretolani M. Airway structural alterations selectively associated with severe asthma. Am. J. Respir. Crit. Care Med.167, 1360–1368 (2003).
  • Ebina M, Takahashi, T, Chiba, T, Motomiya M. Cellular hypertrophy and hyperplasia of airway smooth muscle underlying bronchial asthma. Am. Rev. Resp. Dis.148, 720–726 (1993).
  • De Jongste JC, Mons H, Bonta IL, Kerrebijn KF. In vitro responses of airways from an asthmatic patient. Eur. J. Respir. Dis.71, 23–29 (1987).
  • Bai TR. Abnormalities in airway smooth muscle in fatal asthma. Am. Rev. Respir. Dis.141, 552–557 (1990).
  • Cerrina J, Ladurie ML, Lebat G, Neffstein B, Bayol A, Brink C. Comparison of human bronchial muscle response to histamine in vivo with histamine and isoproterenol agonists in vitro. Am. Rev. Respir. Dis.134, 57–61 (1986).
  • Matsumoto H, Moir LM, Oliver BG et al. Comparison of gel contraction mediated by asthmatic and non-asthmatic airway smooth muscle cells. Thorax (2007) (Epub ahead of print).
  • Ma X, Cheng Z, Kong H et al. Changes in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects. Am. J. Physiol. Lung Cell Mol. Physiol.283, L1181–L1189 (2002).
  • Kamm KE, Stull JT. The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Ann. Rev. Pharmacol. Toxicol.25, 593–620 (1985).
  • James AL, Pare PD, Hogg JC. The mechanics of airway narrowing in asthma. Am. Rev. Respir. Dis.139, 242–246 (1989).
  • Brown RH, Zerhouni EA, Mitzner W. Airway edema potentiates airway reactivity. J. Appl. Physiol.79, 1242–1248 (1995).
  • Skloot G, Togias A. Bronchodilation and bronchoprotection by deep inspiration and their relationship to bronchial hyperresponsiveness. Clin. Rev. Allergy Immunol.24, 55–72 (2003).
  • Slats AM, Sont JK, van Klink RH, Bel EH, Sterk PJ. Improvement in bronchodilation following deep inspiration after a course of high-dose oral prednisone in asthma. Chest130, 58–65 (2006).
  • An SS, Bai TR, Bates JH et al. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. Eur. Respir. J.29, 834–860 (2007).
  • Pepe C, Foley S, Shannon J et al. Differences in airway remodeling between subjects with severe and moderate asthma. J. Allergy Clin. Immunol.116, 544–549 (2005).
  • Woodruff PG, Dolganov GM, Ferrando RE et al. Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. Am. J. Respir. Crit. Care Med.169, 1001–1006 (2004).
  • Johnson PR, Roth M, Tamm M et al. Airway smooth muscle cell proliferation is increased in asthma. Am. J. Respir. Crit. Care Med.164, 474–477 (2001).
  • Roth M, Johnson PR, Borger P et al. Dysfunctional interaction of C/EBPα and the glucocorticoid receptor in asthmatic bronchial smooth-muscle cells. N. Engl. J. Med.351, 560–574 (2004).
  • Jarai G, Sukkar M, Garrett S et al. Effects of IL-1β, IL-13 and TGFβ on gene expression in human airway smooth muscle using gene microarrays. Eur. J. Pharmacol.497, 255–265 (2004).
  • Berkman N, Krishnan VL, Gilbey T et al. Expression of RANTES mRNA and protein in airways of patients with mild asthma. Am. J. Respir. Crit. Care Med.154, 1804–1811 (1996).
  • Ghaffar O, Hamid Q, Renzi PM et al. Constitutive and cytokine-stimulated expression of eotaxin by human airway smooth muscle cells. Am. J. Respir. Crit. Care Med.159, 1933–1942 (1999).
  • Xie S, Sukkar MB, Issa R, Khorasani NM, Chung KF. Mechanisms of induction of airway smooth muscle hyperplasia by transforming growth factor-β. Am. J. Physiol. Lung Cell Mol. Physiol.293, L245–L253 (2007).
  • Chung KF, Patel HJ, Fadlon EJ et al. Induction of eotaxin expression and release from human airway smooth muscle cells by IL-1β and TNFα: effects of IL-10 and corticosteroids. Br. J. Pharmacol.127, 1145–1150 (1999).
  • Hardaker EL, Bacon AM, Carlson K et al. Regulation of TNF-α- and IFN-γ-induced CXCL10 expression: participation of the airway smooth muscle in the pulmonary inflammatory response in chronic obstructive pulmonary disease. FASEB J.18, 191–193 (2004).
  • Kassel O, Schmidlin F, Duvernelle C, Gasser B, Massard G, Frossard N. Human bronchial smooth muscle cells in culture produce stem cell factor. Eur. Respir. J.13, 951–954 (1999).
  • Sukkar MB, Issa R, Xie S, Oltmanns U, Newton R, Chung KF. Fractalkine/CX3CL1 production by human airway smooth muscle cells: induction by IFN-γ and TNF-α and regulation by TGF-β and corticosteroids. Am. J. Physiol. Lung Cell Mol. Physiol.287, L1230–L1240 (2004).
  • Brightling CE, Ammit AJ, Kaur D et al. The CXCL10/CXCR3 axis mediates human lung mast cell migration to asthmatic airway smooth muscle. Am. J. Respir. Crit. Care Med.171, 1103–1108 (2005).
  • Chan V, Burgess JK, Ratoff JC et al. Extracellular matrix regulates enhanced eotaxin expression in asthmatic airway smooth muscle cells. Am. J. Respir. Crit. Care Med.174, 379–385 (2006).
  • Xie S, Sukkar MB, Issa R, Oltmanns U, Nicholson AG, Chung KF. Regulation of TGF-β1-induced connective tissue growth factor (CTGF) expression in airway smooth muscle cells. Am. J. Physiol. Lung Cell Mol. Physiol.288(1), L68–L76 (2004).
  • Burgess JK, Johnson PR, Ge Q et al. Expression of connective tissue growth factor in asthmatic airway smooth muscle cells. Am. J. Respir. Crit. Care Med.167, 71–77 (2003).
  • Alagappan VK, Willems-Widyastuti A, Seynhaeve AL et al. Vasoactive peptides upregulate mRNA expression and secretion of vascular endothelial growth factor in human airway smooth muscle cells. Cell Biochem. Biophys.47, 109–118 (2007).
  • Faffe DS, Flynt L, Bourgeois K, Panettieri RA Jr, Shore SA. Interleukin-13 and interleukin-4 induce vascular endothelial growth factor release from airway smooth muscle cells: role of vascular endothelial growth factor genotype. Am. J. Respir. Cell Mol. Biol.34, 213–218 (2006).
  • Alagappan VK, McKay S, Widyastuti A et al. Proinflammatory cytokines upregulate mRNA expression and secretion of vascular endothelial growth factor in cultured human airway smooth muscle cells. Cell Biochem. Biophys.43, 119–129 (2005).
  • Stocks J, Bradbury D, Corbett L, Pang L, Knox AJ. Cytokines upregulate vascular endothelial growth factor secretion by human airway smooth muscle cells: role of endogenous prostanoids. FEBS Lett.579, 2551–2556 (2005).
  • Hirst SJ, Walker TR, Chilvers ER. Phenotypic diversity and molecular mechanisms of airway smooth muscle proliferation in asthma. Eur. Respir. J.16, 159–177 (2000).
  • Kotlikoff MI, Kamm KE. Molecular mechanisms of β-adrenergic relaxation of airway smooth muscle. Annu. Rev. Physiol.58, 115–141 (1996).
  • Janssen LJ, Tazzeo T, Zuo J. Enhanced myosin phosphatase and Ca2+-uptake mediate adrenergic relaxation of airway smooth muscle. Am. J. Respir. Cell Mol. Biol.30, 548–554 (2004).
  • Liu C, Zuo J, Janssen LJ. Regulation of airway smooth muscle RhoA/ROCK activities by cholinergic and bronchodilator stimuli. Eur. Respir. J.28, 703–711 (2006).
  • Bai TR, Mak JCW, Barnes PJ. A comparison of β-adrenergic receptors and in vitro relaxant responses to isoproterenol in asthmatic airway smooth muscle. Am. J. Respir. Cell Mol. Biol.6, 647–651 (1992).
  • Koto H, Mak JC, Haddad EB et al. Mechanisms of impaired β-adrenoceptor-induced airway relaxation by interleukin-1β in vivo in the rat. J. Clin. Invest.98, 1780–1787 (1996).
  • Pang L, Knox AJ. Regulation of TNF-α-induced eotaxin release from cultured human airway smooth muscle cells by β2-agonists and corticosteroids. FASEB J.15, 261–269 (2001).
  • Ammit AJ, Hoffman RK, Amrani Y et al. Tumor necrosis factor-α-induced secretion of RANTES and interleukin-6 from human airway smooth-muscle cells. Modulation by cyclic adenosine monophosphate. Am. J. Respir. Cell Mol. Biol.23, 794–802 (2000).
  • Freyer AM, Billington CK, Penn RB, Hall IP. Extracellular matrix modulates β2-adrenergic receptor signaling in human airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol.31, 440–445 (2004).
  • Peachell P. Regulation of mast cells by β-agonists. Clin. Rev. Allergy Immunol.31, 131–142 (2006).
  • Hirst SJ, Lee TH. Airway smooth muscle as a target of glucocorticoid action in the treatment of asthma. Am. J. Respir. Crit. Care Med.158, S201–S206 (1998).
  • Roth M, Johnson PR, Rudiger JJ et al. Interaction between glucocorticoids and β2 agonists on bronchial airway smooth muscle cells through synchronised cellular signalling. Lancet360, 1293–1299 (2002).
  • Bonacci JV, Stewart AG. Regulation of human airway mesenchymal cell proliferation by glucocorticoids and β2-adrenoceptor agonists. Pulm. Pharmacol. Ther.19, 32–38 (2006).
  • Leung SY, Eynott P, Nath P, Chung KF. Effects of ciclesonide and fluticasone propionate on allergen-induced airway inflammation and remodeling features. J. Allergy Clin. Immunol.115, 989–996 (2005).
  • Leung SY, Niimi A, Noble A et al. Effect of transforming growth factor-β receptor I kinase inhibitor 2,4-disubstituted pteridine (SD-208) in chronic allergic airway inflammation and remodeling. J. Pharmacol. Exp. Ther.319, 586–594 (2006).
  • Goldsmith AM, Bentley JK, Zhou L et al. Transforming growth factor-β induces airway smooth muscle hypertrophy. Am. J. Respir. Cell Mol. Biol.34, 247–254 (2006).
  • Goldsmith AM, Hershenson MB, Wolbert MP, Bentley JK. Regulation of airway smooth muscle α-actin expression by glucocorticoids. Am. J. Physiol. Lung Cell Mol. Physiol.292, L99–L106 (2007).
  • Greening AP, Ind PW, Northfield M, Shaw G. Added salmeterol versus higher-dose corticosteroid in asthma patients with symptoms on existing inhaled corticosteroid. Allen & Hanburys Limited UK Study Group. Lancet344, 219–224 (1994).
  • Chung KF, Adcock IM. Combination therapy of long-acting β2-adrenoceptor agonists and corticosteroids for asthma. Treat. Respir. Med.3, 279–289 (2004).
  • Mak JC, Hisada T, Salmon M, Barnes PJ, Chung KF. Glucocorticoids reverse IL-1β-induced impairment of β-adrenoceptor-mediated relaxation and up-regulation of G-protein-coupled receptor kinases. Br. J. Pharmacol.135, 987–996 (2002).
  • Usmani OS, Ito K, Maneechotesuwan K et al. Glucocorticoid receptor nuclear translocation in airway cells after inhaled combination therapy. Am. J. Respir. Crit. Care Med.172, 704–712 (2005).
  • Pang L, Knox AJ. Synergistic inhibition by β2-agonists and corticosteroids on tumor necrosis factor-α-induced interleukin-8 release from cultured human airway smooth-muscle cells. Am. J. Respir. Cell Mol. Biol.23, 79–85 (2000).
  • Oltmanns U, Walters M, Sukkar M et al. Fluticasone, but not salmeterol, reduces cigarette smoke-induced production of interleukin-8 in human airway smooth muscle. Pulm. Pharmacol. Ther. (2007) (Epub ahead of print).
  • Goncharova EA, Billington CK, Irani C et al. Cyclic AMP-mobilizing agents and glucocorticoids modulate human smooth muscle cell migration. Am. J. Respir. Cell Mol. Biol.29, 19–27 (2003).
  • Nie M, Knox AJ, Pang L. β2-adrenoceptor agonists, like glucocorticoids, repress eotaxin gene transcription by selective inhibition of histone H4 acetylation. J. Immunol.175, 478–486 (2005).
  • Kidney J, Dominguez M, Taylor PM, Rose M, Chung KF, Barnes PJ. Immunomodulation by theophylline in asthma. Demonstration by withdrawal of therapy. Am. J. Respir. Crit. Care Med.151, 1907–1914 (1995).
  • Barnes PJ. Theophylline in chronic obstructive pulmonary disease: new horizons. Proc. Am. Thorac. Soc.2, 334–339 (2005).
  • Evans DJ, Taylor DA, Zetterstrom O, Chung KF, O’Connor BJ, Barnes PJ. A comparison of low-dose inhaled budesonide plus theophylline and high-dose inhaled budesonide for moderate asthma. N. Engl. J. Med.337, 1412–1418 (1997).
  • Chung KF. Phosphodiesterase inhibitors in airways disease. Eur. J. Pharmacol.533, 110–117 (2006).
  • Burgess JK, Oliver BG, Poniris MH et al. A phosphodiesterase 4 inhibitor inhibits matrix protein deposition in airways in vitro. J. Allergy Clin. Immunol.118, 649–657 (2006).
  • Hui KP, Barnes NC. Lung function improvement in asthma with a cysteinyl-leukotriene receptor antagonist. Lancet.337, 1062–1063 (1991).
  • Panettieri RA, Tan EM, Ciocca V, Luttmann MA, Leonard TB, Hay DW. Effects of LTD4 on human airway smooth muscle cell proliferation, matrix expression, and contraction in vitro: differential sensitivity to cysteinyl leukotriene receptor antagonists. Am. J. Respir. Cell Mol. Biol.19, 453–461 (1998).
  • Espinosa K, Bosse Y, Stankova J, Rola-Pleszczynski M. CysLT1 receptor upregulation by TGF-β and IL-13 is associated with bronchial smooth muscle cell proliferation in response to LTD4. J. Allergy Clin. Immunol.111, 1032–1040 (2003).
  • Parameswaran K, Cox G, Radford K, Janssen LJ, Sehmi R, O’Byrne PM. Cysteinyl leukotrienes promote human airway smooth muscle migration. Am. J. Respir. Crit. Care Med.166, 738–742 (2002).
  • Rovati GE, Baroffio M, Citro S et al. Cysteinyl-leukotrienes in the regulation of β2-adrenoceptor function: an in vitro model of asthma. Respir. Res.7, 103 (2006).
  • Wang CG, Du T, Xu LJ, Martin JG. Role of leukotriene D4 in allergen-induced increases in airway smooth muscle in the rat. Am. Rev. Respir. Dis.148, 413–417 (1993).
  • Salmon M, Walsh DA, Huang TJ et al. Involvement of cysteinyl leukotrienes in airway smooth muscle cell DNA synthesis after repeated allergen exposure in sensitized Brown Norway rats. Br. J. Pharmacol.127, 1151–1158 (1999).
  • Henderson WR Jr, Chiang GK, Tien YT, Chi EY. Reversal of allergen-induced airway remodeling by CysLT1 receptor blockade. Am. J. Respir. Crit. Care Med.173, 718–728 (2006).
  • Howarth PH, Babu KS, Arshad HS et al. Tumour necrosis factor (TNFα) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. Thorax60, 1012–1018 (2005).
  • Berry MA, Hargadon B, Shelley M et al. Evidence of a role of tumor necrosis factor α in refractory asthma. N. Engl. J. Med.354, 697–708 (2006).
  • Erin EM, Leaker BR, Nicholson GC et al. The effects of a monoclonal antibody directed against tumor necrosis factor-α in asthma. Am. J. Respir. Crit. Care Med.174, 753–762 (2006).
  • Bradding P, Roberts JA, Britten KM et al. Interleukin-4, -5 and -6 and tumor necrosis factor-α in normal and asthmatic airways: evidence for the human mast cell as a source of these cytokines. Am. J. Respir. Cell Mol. Biol.10, 471–480 (1994).
  • Deshpande DA, Walseth TF, Panettieri RA, Kannan MS. CD38/cyclic ADP-ribose-mediated Ca2+ signaling contributes to airway smooth muscle hyper-responsiveness. FASEB J.17, 452–454 (2003).
  • Pennings HJ, Kramer K, Bast A, Buurman WA, Wouters EF. Tumour necrosis factor-α induces hyperreactivity in tracheal smooth muscle of the guinea-pig in vitro. Eur. Respir. J.12, 45–49 (1998).
  • Sukkar MB, Hughes JM, Armour CL, Johnson PR. Tumour necrosis factor-α potentiates contraction of human bronchus in vitro. Respirology6, 199–203 (2001).
  • Thomas PS, Yates DH, Barnes PJ. Tumor necrosis factor-α increases airway responsiveness and sputum neutrophilia in normal human subjects. Am. J. Respir. Crit. Care Med.152, 76–80 (1995).
  • Thomas PS, Heywood G. Effects of inhaled tumour necrosis factor α in subjects with mild asthma. Thorax57, 774–778 (2002).
  • Issa R, Xie S, Lee KY et al. GRO-α regulation in airway smooth muscle by IL-1β and TNF-α: role of NF-κB and MAP kinases. Am. J. Physiol. Lung Cell Mol. Physiol.291, L66–L74 (2006).
  • John M, Au BT, Jose PJ et al. Expression and release of interleukin-8 by human airway smooth muscle cells: inhibition by Th-2 cytokines and corticosteroids. Am. J. Respir. Cell Mol. Biol.18, 84–90 (1998).
  • Djukanovic R, Wilson SJ, Kraft M et al. Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation in allergic asthma. Am. J. Respir. Crit. Care Med.170, 583–593 (2004).
  • Soler M, Matz J, Townley R et al. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur. Respir. J.18, 254–261 (2001).
  • Busse W, Corren J, Lanier BQ et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J. Allergy Clin. Immunol.108, 184–190 (2001).
  • Gounni AS. The high-affinity IgE receptor (FcεRI): a critical regulator of airway smooth muscle cells? Am. J. Physiol. Lung Cell Mol. Physiol.291, L312–L321 (2006).
  • Gounni AS, Wellemans V, Yang J et al. Human airway smooth muscle cells express the high affinity receptor for IgE (Fc ε RI): a critical role of Fc ε RI in human airway smooth muscle cell function. J. Immunol.175, 2613–2621 (2005).
  • Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID. Mast-cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med.346, 1699–1705 (2002).
  • Leckie MJ, ten Brinke A, Khan J et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet356, 2144–2148 (2000).
  • Kips JC, O’Connor BJ, Langley SJ et al. Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: a pilot study. Am. J. Respir. Crit. Care Med.167, 1655–1659 (2003).
  • Flood-Page P, Menzies-Gow A, Phipps S et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J. Clin. Invest.112, 1029–1036 (2003).
  • Hakonarson H, Maskeri N, Carter C, Chuang S, Grunstein MM. Autocrine interaction between IL-5 and IL-1β mediates altered responsiveness of atopic asthmatic sensitized airway smooth muscle. J. Clin. Invest.104, 657–667 (1999).
  • Miller JD, Cox G, Vincic L, Lombard CM, Loomas BE, Danek CJ. A prospective feasibility study of bronchial thermoplasty in the human airway. Chest127, 1999–2006 (2005).
  • Cox G, Miller JD, McWilliams A, Fitzgerald JM, Lam S. Bronchial thermoplasty for asthma. Am. J. Respir. Crit. Care Med.173, 965–969 (2006).
  • Cox G, Thomson NC, Rubin AS et al. Asthma control during the year after bronchial thermoplasty. N. Engl. J. Med.356, 1327–1337 (2007).
  • Bonacci JV, Schuliga M, Harris T, Stewart AG. Collagen impairs glucocorticoid actions in airway smooth muscle through integrin signalling. Br. J. Pharmacol.149, 365–373 (2006).
  • Tliba O, Cidlowski JA, Amrani Y. CD38 expression is insensitive to steroid action in cells treated with tumor necrosis factor-α and interferon-γ by a mechanism involving the up-regulation of the glucocorticoid receptor β isoform. Mol. Pharmacol.69, 588–596 (2006).
  • Hew M, Bhavsar P, Torrego A et al. Relative corticosteroid insensitivity of peripheral blood mononuclear cells in severe asthma. Am. J. Respir. Crit. Care Med.174, 134–141 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.