179
Views
4
CrossRef citations to date
0
Altmetric
Review

Proteomics of lung cell biology and pulmonary disease

Pages 255-269 | Published online: 09 Jan 2014

References

  • Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001).
  • Mueller M, Martens L, Apweiler R. Annotating the human proteome: beyond establishing a parts list. Biochim. Biophys. Acta1774, 175–191 (2007).
  • Venter JC, Adams MD, Myers EW et al. The sequence of the human genome. Science291, 1304–1351 (2001).
  • Hubbard TJ, Aken BL, Beal K et al. Ensembl (2007). Nucleic Acids Res.35, D610–D617 (2007).
  • Humphery-Smith I. A human proteome project with a beginning and an end. Proteomics4, 2519–2521 (2004).
  • Duncan MW, Hunsucker SW. Proteomics as a tool for clinically relevant biomarker discovery and validation. Exp. Biol. Med. (Maywood)230, 808–817 (2005).
  • Guo Y, Fu Z, Van Eyk JE. A proteomic primer for the clinician. Proc. Am. Thorac. Soc.4, 9–17 (2007).
  • Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol.24, 971–983 (2006).
  • Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol.19, 242–247 (2001).
  • Anon. Proteomics’ new order. Nature437, 169–170 (2005).
  • Freire SL, Wheeler AR. Proteome-on-a-chip: mirage, or on the horizon? Lab. Chip6, 1415–1423 (2006).
  • Anderson L. Candidate-based proteomics in the search for biomarkers of cardiovascular disease. J. Physiol.563, 23–60 (2005).
  • States DJ, Omenn GS, Blackwell TW et al. Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nat. Biotechnol.24, 333–338 (2006).
  • Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics1, 845–867 (2002).
  • Rennard SI, Robbins RA. Biology of airway epithelial cells. In: The Lung: Scientific Foundations. Crystal RG, West JB, Weibel ER, Barnes PJ (Eds). Lippincott-Raven, PA, USA 448 (1997).
  • Bowler RP, Ellison MC, Reisdorph N. Proteomics in pulmonary medicine. Chest130, 567–574 (2006).
  • Magi B, Bargagli E, Bini L, Rottoli P. Proteome analysis of bronchoalveolar lavage in lung diseases. Proteomics6, 6354–6369 (2006).
  • Hirsch J, Hansen KC, Burlingame AL, Matthay MA. Proteomics: current techniques and potential applications to lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol.287, L1–L23 (2004).
  • Wattiez R, Falmagne P. Proteomics of bronchoalveolar lavage fluid. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.815, 169–178 (2005).
  • Granville CA, Dennis PA. An overview of lung cancer genomics and proteomics. Am. J. Respir. Cell. Mol. Biol.32, 169–176 (2005).
  • Ollero M, Brouillard F, Edelman A. Cystic fibrosis enters the proteomics scene: new answers to old questions. Proteomics6, 4084–4099 (2006).
  • Penque D. Proteomic biomarker discovery for the monogenic disease cystic fibrosis. Expert Rev. Proteomics4, 199–209 (2007).
  • Guo Y, Singleton PA, Rowshan A et al. Quantitative proteomic analysis of human endothelial cell membrane rafts: evidence of MARCKS and MRP regulation in the sphingosine 1-phosphate-induced barrier enhancement. Mol. Cell. Proteomics6, 689–696 (2007).
  • Kanamoto T, Hellman U, Heldin CH, Souchelnytskyi S. Functional proteomics of transforming growth factor-β1-stimulated Mv1Lu epithelial cells: Rad51 as a target of TGFβ1-dependent regulation of DNA repair. EMBO J.21, 1219–1230 (2002).
  • Jin M, Opalek JM, Marsh CB, Wu HM. Proteome comparison of alveolar macrophages with monocytes reveals distinct protein characteristics. Am. J. Respir. Cell. Mol. Biol.31, 322–329 (2004).
  • Wu HM, Jin M, Marsh CB. Toward functional proteomics of alveolar macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol.288, L585–L595 (2005).
  • Candiano G, Bruschi M, Pedemonte N et al. Proteomic analysis of the airway surface liquid: modulation by proinflammatory cytokines. Am. J. Physiol. Lung Cell. Mol. Physiol.292, L185–L198 (2007).
  • Malmstrom J, Larsen K, Malmstrom L et al. Proteome annotations and identifications of the human pulmonary fibroblast. J. Proteome Res.3, 525–537 (2004).
  • Nicholas B, Skipp P, Mould R et al. Shotgun proteomic analysis of human-induced sputum. Proteomics6, 4390–4401 (2006).
  • Gianazza E, Allegra L, Bucchioni E et al. Increased keratin content detected by proteomic analysis of exhaled breath condensate from healthy persons who smoke. Am. J. Med.117, 51–54 (2004).
  • Hu S, Loo JA, Wong DT. Human body fluid proteome analysis. Proteomics6, 6326–6353 (2006).
  • Bell DY, Hook GE. Pulmonary alveolar proteinosis: analysis of airway and alveolar proteins. Am. Rev. Respir. Dis.119, 979–990 (1979).
  • Noel-Georis I, Bernard A, Falmagne P, Wattiez R. Database of bronchoalveolar lavage fluid proteins. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.771, 221–236 (2002).
  • Guo Y, Ma SF, Grigoryev D, Van Eyk J, Garcia JG. 1-DE MS and 2-D LC-MS analysis of the mouse bronchoalveolar lavage proteome. Proteomics5, 4608–4624 (2005).
  • Wu J, Kobayashi M, Sousa EA et al. Differential proteomic analysis of bronchoalveolar lavage fluid in asthmatics following segmental antigen challenge. Mol. Cell. Proteomics4, 1251–1264 (2005).
  • Greenlee KJ, Corry DB, Engler DA et al. Proteomic identification of in vivo substrates for matrix metalloproteinases 2 and 9 reveals a mechanism for resolution of inflammation. J. Immunol.177, 7312–7321 (2006).
  • Ghosh S, Janocha AJ, Aronica MA et al. Nitrotyrosine proteome survey in asthma identifies oxidative mechanism of catalase inactivation. J. Immunol.176, 5587–5597 (2006).
  • Wattiez R, Noel-Georis I, Cruyt C, Broeckaert F, Bernard A, Falmagne P. Susceptibility to oxidative stress: proteomic analysis of bronchoalveolar lavage from ozone-sensitive and ozone-resistant strains of mice. Proteomics3, 658–665 (2003).
  • Jeong H, Rhim T, Ahn MH et al. Proteomic analysis of differently expressed proteins in a mouse model for allergic asthma. J. Korean Med. Sci.20, 579–585 (2005).
  • Zhao J, Zhu H, Wong CH, Leung KY, Wong WS. Increased lungkine and chitinase levels in allergic airway inflammation: a proteomics approach. Proteomics5, 2799–2807 (2005).
  • Welch JS, Escoubet-Lozach L, Sykes DB, Liddiard K, Greaves DR, Glass CK. Th2 cytokines and allergic challenge induce Ym1 expression in macrophages by a STAT6-dependent mechanism. J. Biol. Chem.277, 42821–42829 (2002).
  • Zhu Z, Zheng T, Homer RJ et al. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science304, 1678–1682 (2004).
  • Zhao J, Yeong LH, Wong WS. Dexamethasone alters bronchoalveolar lavage fluid proteome in a mouse asthma model. Int. Arch. Allergy Immunol.142, 219–229 (2007).
  • Houtman R, Krijgsveld J, Kool M et al. Lung proteome alterations in a mouse model for nonallergic asthma. Proteomics3, 2008–2018 (2003).
  • Roh GS, Shin Y, Seo SW et al. Proteome analysis of differential protein expression in allergen-induced asthmatic mice lung after dexamethasone treatment. Proteomics4, 3318–3327 (2004).
  • Nocker RE, van der Zee JS, Weller FR, van Overveld FJ, Jansen HM, Out TA. Segmental allergen challenge induces plasma protein leakage into the airways of asthmatic subjects at 4 hours but not at 5 minutes after challenge. J. Lab. Clin. Med.134, 74–82 (1999).
  • Pinto-Plata V, Toso J, Lee K et al. Profiling serum biomarkers in patients with COPD: associations with clinical parameters. Thorax62, 595–601 (2007).
  • Merkel D, Rist W, Seither P, Weith A, Lenter MC. Proteomic study of human bronchoalveolar lavage fluids from smokers with chronic obstructive pulmonary disease by combining surface-enhanced laser desorption/ionization-mass spectrometry profiling with mass spectrometric protein identification. Proteomics5, 2972–2980 (2005).
  • Pollard HB, Eidelman O, Jozwik C et al. De novo biosynthetic profiling of high abundance proteins in cystic fibrosis lung epithelial cells. Mol. Cell. Proteomics5, 1628–1637 (2006).
  • Pollard HB, Ji XD, Jozwik C, Jacobowitz DM. High abundance protein profiling of cystic fibrosis lung epithelial cells. Proteomics5, 2210–2226 (2005).
  • Roxo-Rosa M, da Costa G, Luider TM et al. Proteomic analysis of nasal cells from cystic fibrosis patients and non-cystic fibrosis control individuals: search for novel biomarkers of cystic fibrosis lung disease. Proteomics6, 2314–2325 (2006).
  • Brouillard F, Bensalem N, Hinzpeter A et al. Blue native/SDS-PAGE analysis reveals reduced expression of the mClCA3 protein in cystic fibrosis knock-out mice. Mol. Cell. Proteomics4, 1762–1775 (2005).
  • Schagger H, von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem.199, 223–231 (1991).
  • Bensalem N, Ventura AP, Vallee B et al. Down-regulation of the anti-inflammatory protein annexin A1 in cystic fibrosis knock-out mice and patients. Mol. Cell. Proteomics4, 1591–1601 (2005).
  • Sloane AJ, Lindner RA, Prasad SS et al. Proteomic analysis of sputum from adults and children with cystic fibrosis and from control subjects. Am. J. Respir. Crit. Care Med.172, 1416–1426 (2005).
  • Schulz BL, Sloane AJ, Robinson LJ et al. Glycosylation of sputum mucins is altered in cystic fibrosis patients. Glycobiology17, 698–712 (2007).
  • Bai Y, Galetskiy D, Damoc E et al. High resolution mass spectrometric alveolar proteomics: identification of surfactant protein SP-A and SP-D modifications in proteinosis and cystic fibrosis patients. Proteomics4, 2300–2309 (2004).
  • Starosta V, Rietschel E, Paul K, Baumann U, Griese M. Oxidative changes of bronchoalveolar proteins in cystic fibrosis. Chest129, 431–437 (2006).
  • Pedersen SK, Sloane AJ, Prasad SS et al. An immunoproteomic approach for identification of clinical biomarkers for monitoring disease: application to cystic fibrosis. Mol. Cell. Proteomics4, 1052–1060 (2005).
  • Oh P, Li Y, Yu J et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature429, 629–635 (2004).
  • Chen G, Gharib TG, Wang H et al. Protein profiles associated with survival in lung adenocarcinoma. Proc. Natl Acad. Sci. USA100, 13537–13542 (2003).
  • Shin BK, Wang H, Yim AM et al. Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J. Biol. Chem.278, 7607–7616 (2003).
  • Huang LJ, Chen SX, Luo WJ, Jiang HH, Zhang PF, Yi H. Proteomic analysis of secreted proteins of non-small cell lung cancer. Ai Zheng25, 1361–1367 (2006).
  • Campa MJ, Wang MZ, Howard B, Fitzgerald MC, Patz EF Jr. Protein expression profiling identifies macrophage migration inhibitory factor and cyclophilin a as potential molecular targets in non-small cell lung cancer. Cancer Res.63, 1652–1656 (2003).
  • Rahman SM, Shyr Y, Yildiz PB et al. Proteomic patterns of preinvasive bronchial lesions. Am. J. Respir. Crit. Care Med.172, 1556–1562 (2005).
  • Cho NH, Koh ES, Lee DW et al. Comparative proteomics of pulmonary tumors with neuroendocrine differentiation. J. Proteome Res.5, 643–650 (2006).
  • Jin LJ, Shin BK, Jung WY et al. Proteomic analysis of pulmonary sclerosing hemangioma. Proteomics6, 4877–4883 (2006).
  • Fujii K, Nakano T, Kanazawa M et al. Clinical-scale high-throughput human plasma proteome analysis: lung adenocarcinoma. Proteomics5, 1150–1159 (2005).
  • Okano T, Kondo T, Kakisaka T et al. Plasma proteomics of lung cancer by a linkage of multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis. Proteomics6, 3938–3948 (2006).
  • Xiao T, Ying W, Li L et al. An approach to studying lung cancer-related proteins in human blood. Mol. Cell. Proteomics4, 1480–1486 (2005).
  • Yang SY, Xiao XY, Zhang WG et al. Application of serum SELDI proteomic patterns in diagnosis of lung cancer. BMC Cancer5, 83 (2005).
  • Gao WM, Kuick R, Orchekowski RP et al. Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis. BMC Cancer5, 110 (2005).
  • Brichory F, Beer D, Le Naour F, Giordano T, Hanash S. Proteomics-based identification of protein gene product 9.5 as a tumor antigen that induces a humoral immune response in lung cancer. Cancer Res.61, 7908–7912 (2001).
  • Nakanishi T, Takeuchi T, Ueda K, Murao H, Shimizu A. Detection of eight antibodies in cancer patients’ sera against proteins derived from the adenocarcinoma A549 cell line using proteomics-based analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.838, 15–20 (2006).
  • Zhong L, Hidalgo GE, Stromberg AJ, Khattar NH, Jett JR, Hirschowitz EA. Using protein microarray as a diagnostic assay for non-small-cell lung cancer. Am. J. Respir. Crit. Care Med.172, 1308–1314 (2005).
  • Tyan YC, Wu HY, Su WC, Chen PW, Liao PC. Proteomic analysis of human pleural effusion. Proteomics5, 1062–1074 (2005).
  • Tyan YC, Wu HY, Lai WW, Su WC, Liao PC. Proteomic profiling of human pleural effusion using two-dimensional nano liquid chromatography tandem mass spectrometry. J. Proteome Res.4, 1274–1286 (2005).
  • Hsieh WY, Chen MW, Ho HT, You TM, Lu YT. Identification of differentially expressed proteins in human malignant pleural effusions. Eur. Respir. J.28, 1178–1185 (2006).
  • Bard MP, Hegmans JP, Hemmes A et al. Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am. J. Respir. Cell. Mol. Biol.31, 114–121 (2004).
  • Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol.2, 569–579 (2002).
  • Hegmans JP, Bard MP, Hemmes A et al. Proteomic analysis of exosomes secreted by human mesothelioma cells. Am. J. Pathol.164, 1807–1815 (2004).
  • Tantipaiboonwong P, Sinchaikul S, Sriyam S, Phutrakul S, Chen ST. Different techniques for urinary protein analysis of normal and lung cancer patients. Proteomics5, 1140–1149 (2005).
  • Bowler RP, Duda B, Chan ED et al. Proteomic analysis of pulmonary edema fluid and plasma in patients with acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol.286, L1095–L1104 (2004).
  • de Torre C, Ying SX, Munson PJ, Meduri GU, Suffredini AF. Proteomic analysis of inflammatory biomarkers in bronchoalveolar lavage. Proteomics6, 3949–3957 (2006).
  • Schnapp LM, Donohoe S, Chen J et al. Mining the acute respiratory distress syndrome proteome: identification of the insulin-like growth factor (IGF)/IGF-binding protein-3 pathway in acute lung injury. Am. J. Pathol.169, 86–95 (2006).
  • Hirsch J, Hansen KC, Sapru A et al. Impact of low and high tidal volumes on the rat alveolar epithelial type II cell proteome. Am. J. Respir. Crit. Care Med.175, 1006–1013 (2007).
  • Song Z, Marzilli L, Greenlee BM et al. Mycobacterial catalase-peroxidase is a tissue antigen and target of the adaptive immune response in systemic sarcoidosis. J. Exp. Med.201, 755–767 (2005).
  • Kriegova E, Melle C, Kolek V et al. Protein profiles of bronchoalveolar lavage fluid from patients with pulmonary sarcoidosis. Am. J. Respir. Crit. Care Med.173, 1145–1154 (2006).
  • Bons JA, Drent M, Bouwman FG, Mariman EC, van Dieijen-Visser MP, Wodzig WK. Potential biomarkers for diagnosis of sarcoidosis using proteomics in serum. Respir. Med.101, 1687–1695 (2007).
  • Wattiez R, Hermans C, Cruyt C, Bernard A, Falmagne P. Human bronchoalveolar lavage fluid protein two-dimensional database: study of interstitial lung diseases. Electrophoresis21, 2703–2712 (2000).
  • Sabounchi-Schutt F, Astrom J, Hellman U, Eklund A, Grunewald J. Changes in bronchoalveolar lavage fluid proteins in sarcoidosis: a proteomics approach. Eur. Respir. J.21, 414–420 (2003).
  • Govender P, Baugh JA, Pennington SR, Dunn MJ, Donnelly SC. Role of proteomics in the investigation of pulmonary fibrosis. Expert Rev. Proteomics4, 379–388 (2007).
  • Rottoli P, Magi B, Perari MG et al. Cytokine profile and proteome analysis in bronchoalveolar lavage of patients with sarcoidosis, pulmonary fibrosis associated with systemic sclerosis and idiopathic pulmonary fibrosis. Proteomics5, 1423–1430 (2005).
  • Magi B, Bini L, Perari MG et al. Bronchoalveolar lavage fluid protein composition in patients with sarcoidosis and idiopathic pulmonary fibrosis: a two-dimensional electrophoretic study. Electrophoresis23, 3434–3444 (2002).
  • Fietta A, Bardoni A, Salvini R et al. Analysis of bronchoalveolar lavage fluid proteome from systemic sclerosis patients with or without functional, clinical and radiological signs of lung fibrosis. Arthritis Res. Ther.8, R160 (2006).
  • Larsen K, Malmstrom J, Wildt M et al. Functional and phenotypical comparison of myofibroblasts derived from biopsies and bronchoalveolar lavage in mild asthma and scleroderma. Respir. Res.7, 11 (2006).
  • Chaurasia G, Iqbal Y, Hanig C, Herzel H, Wanker EE, Futschik ME. UniHI: an entry gate to the human protein interactome. Nucleic Acids Res.35, D590–D594 (2007).
  • Ewing RM, Chu P, Elisma F et al. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol. Syst. Biol.3, 89 (2007).
  • Wang X, Venable J, LaPointe P et al. Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell127, 803–815 (2006).
  • Bertone P, Snyder M. Advances in functional protein microarray technology. FEBS J.272, 5400–5411 (2005).
  • Zhu H, Bilgin M, Bangham R et al. Global analysis of protein activities using proteome chips. Science293, 2101–2105 (2001).
  • Shen J, Zhang J, Luo X et al. Predicting protein–protein interactions based only on sequences information. Proc. Natl Acad. Sci. USA104, 4337–4341 (2007).
  • Zhu H, Hu S, Jona G et al. Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray. Proc. Natl Acad. Sci. USA103, 4011–4016 (2006).
  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science298, 1912–1934 (2002).
  • Johnson SA, Hunter T. Phosphoproteomics finds its timing. Nat. Biotechnol.22, 1093–1094 (2004).
  • Hjerrild M, Gammeltoft S. Phosphoproteomics toolbox: computational biology, protein chemistry and mass spectrometry. FEBS Lett.580, 4764–4770 (2006).
  • Morandell S, Stasyk T, Grosstessner-Hain K et al. Phosphoproteomics strategies for the functional analysis of signal transduction. Proteomics6, 4047–4056 (2006).
  • Reinders J, Sickmann A. State-of-the-art in phosphoproteomics. Proteomics5, 4052–4061 (2005).
  • Stern DF. Phosphoproteomics for oncology discovery and treatment. Expert Opin. Ther. Targets9, 851–860 (2005).
  • Bosques CJ, Raguram S, Sasisekharan R. The sweet side of biomarker discovery. Nat. Biotechnol.24, 1100–1101 (2006).
  • Dube DH, Bertozzi CR. Glycans in cancer and inflammation – potential for therapeutics and diagnostics. Nat. Rev. Drug Discov.4, 477–488 (2005).
  • Hood L, Heath JR, Phelps ME, Lin B. Systems biology and new technologies enable predictive and preventative medicine. Science306, 640–643 (2004).
  • Hood L, Perlmutter RM. The impact of systems approaches on biological problems in drug discovery. Nat. Biotechnol.22, 1215–1217 (2004).
  • Kell DB. Systems biology, metabolic modelling and metabolomics in drug discovery and development. Drug Discov. Today11, 1085–1092 (2006).
  • Hollywood K, Brison DR, Goodacre R. Metabolomics: current technologies and future trends. Proteomics6, 4716–4723 (2006).
  • Hartwell L, Mankoff D, Paulovich A, Ramsey S, Swisher E. Cancer biomarkers: a systems approach. Nat. Biotechnol.24, 905–908 (2006).
  • Gauthier GL, Grimm R. Miniaturization: chip-based liquid chromatography and proteomics. Drug Discov. Today Technologies3, 59–66 (2006).
  • DeVoe DL, Lee CS. Microfluidic technologies for MALDI-MS in proteomics. Electrophoresis27, 3559–3568 (2006).
  • Liu Y, Lu H, Zhong W et al. Multilayer-assembled microchip for enzyme immobilization as reactor toward low-level protein identification. Anal. Chem.78, 801–808 (2006).
  • Vasilescu J, Zweitzig DR, Denis NJ et al. The proteomic reactor facilitates the analysis of affinity-purified proteins by mass spectrometry: application for identifying ubiquitinated proteins in human cells. J. Proteome Res.6, 298–305 (2007).
  • Hou W, Ethier M, Smith JC, Sheng Y, Figeys D. Multiplexed proteomic reactor for the processing of proteomic samples. Anal. Chem.79, 39–44 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.