105
Views
12
CrossRef citations to date
0
Altmetric
Review

Anti-inflammatory effects of perfluorocarbon compounds

Pages 273-289 | Published online: 09 Jan 2014

References

  • Main ML, Grayburn PA. Clinical applications of transpulmonary contrast echocardiography. Am. Heart J.137, 144–153 (1999).
  • Brown JJ. Gastrointestinal contrast agents for MR imaging. Magn. Reson. Imaging Clin. N. Am.4, 25–35 (1996).
  • Mattrey RF. The potential role of perfluorochemicals (PFCs) in diagnostic imaging. Artif. Cells Blood Substit. Immobil. Biotechnol.22, 295–313 (1994).
  • Spahn DR, van Brempt R, Theilmeier G et al. Perflubron emulsion delays blood transfusions in orthopedic surgery. Anesthesiology91, 1195–1208 (1999).
  • Spahn DR. Current status of artificial oxygen carriers. Adv. Drug Deliv. Rev.40, 143–151 (2000).
  • Cohn SM. Blood substitutes in surgery. Surgery127, 599–602 (2000).
  • Lane TA. Perfluorochemical-based artificial oxygen carrying red cell substitutes. Transfus. Sci.16, 19–31 (1995).
  • Habler O, Pape A, Meier J, Zwissler B. Artificial oxygen carriers as an alternative to red blood cell transfusion. Anaesthesist54, 741–754 (2005).
  • Wolfson MR, Shaffer TH. Liquid ventilation: an adjunct for respiratory management. Paediatr. Anaesth.14, 15–23 (2004).
  • Wolfson MR, Shaffer TH. Pulmonary applications of perfluorochemical liquids: ventilation and beyond. Paediatr. Respir. Rev.6, 117–127 (2005).
  • Numa AH. Acute lung injury: outcomes and new therapies. Paediatr. Respir. Rev.2, 22–32 (2001).
  • Kacmarek RM. Liquid ventilation. Respir. Care Clin. N. Am.8, 187–209 (2002).
  • Fuhrman BP, Herman LJ, Rotta AT. Partial liquid ventilation: a multifaceted approach to acute respiratory distress syndrome. New Horiz.7, 433–439 (1999).
  • Lehmler H-J, Bummer PM, Jay M. Liquid ventilation – a new way to deliver drugs to diseased lungs? Chemtech29, 7–12 (1999).
  • Matsumoto S, Kuroda Y. Perfluorocarbon for organ preservation before transplantation. Transplantation74, 1804–1809 (2002).
  • Matsumoto S. Clinical application of perfluorocarbons for organ preservation. Artif. Cells Blood Substit. Immobil. Biotechnol.33, 75–82 (2005).
  • Miyaguchi N, Nagahiro I, Kotani K et al. Transintestinal systemic oxygenation using perfluorocarbon. Surg. Today36, 262–266 (2006).
  • de Abreu MG, Wilmink B, Huebler M, Koch T. Vaporized perfluorohexane attenuates ventilator-induced lung injury in isolated, perfused rabbit lungs. Anesthesiology102, 597–605 (2005).
  • Meinhardt JP, Schmittner M, Herrmann P, Mailer M, Quintel M. Comparison of different inhalational perfluorocarbons in a rabbit model of acute lung injury. ASAIO J.51, 85–91 (2005).
  • de Abreu MG, Quelhas AD, Spieth P et al. Comparative effects of vaporized perfluorohexane and partial liquid ventilation in pleic acid-induced lung injury. Anesthesiology104, 278–289 (2006).
  • Huebler M, Heller AR, Bleyl JU et al. Perfluorohexane vapor has only minor effects on spatial pulmonary blood flow distribution in isolated rabbit lungs. Anesth. Analg.100, 1122–1128 (2005).
  • Bleyl JU, Ragaller M, Tscho U et al. Changes in pulmonary function and oxygenation during application of perfluorocarbon vapor in healthy and oleic acid-injured animals. Crit. Care Med.30, 1340–1347 (2002).
  • von der Hardt K, Kandler MA, Brenn G et al. Comparison of aerosol therapy with different perfluorocarbons in surfactant-depleted animals. Crit. Care Med.32, 1200–1206 (2004).
  • Kandler MA, von der Hardt K, Schoof E, Dotsch J, Rascher W. Persistent improvement of gas exchange and lung mechanics by aerosolized perfluorocarbon. Am. J. Respir. Crit. Care Med.164, 31–35 (2001).
  • Kandler MA, von der Hardt K, Gericke N et al. Dose response to aerosolized perflubron in a neonatal swine model of lung injury. Pediatr. Res.56, 191–197 (2004).
  • Schoof E, von der Hardt K, Kandler MA et al. Aerosolized perfluorocarbon reduces adhesion molecule gene expression and neutrophil sequestration in acute respiratory distress. Eur. J. Pharmacol.457, 195–200 (2002).
  • von der Hardt K, Schoof E, Kandler MA, Dotsch J, Rascher W. Aerosolized perfluorocarbon suppresses early pulmonary inflammatory response in a surfactant-depleted piglet model. Pediatr. Res.51, 177–182 (2002).
  • von der Hardt K, Kandler MA, Fink L et al. Laser-assisted microdissection and real-time PCR detect anti-inflammatory effect of perfluorocarbon. Am. J. Physiol.285, L55–L62 (2003).
  • Lehmler H-J. Perfluorocarbon compounds as vehicles for pulmonary drug delivery. Expert Opin. Drug Deliv.4, 247–262 (2007).
  • Costantino M-L, Shaffer T, Wauer RR, Rudiger M. The 5th European symposium on perfluorocarbon (PFC) application. ASAIO J.52, 483–484 (2006).
  • Arora M, Bummer PM, Lehmler H-J. Interaction of a partially fluorinated heptadecanoic acid with diacyl phosphatidylcholines of varying chain length. Langmuir19, 8843–8851 (2003).
  • Lehmler H-J, Bummer PM. Mixing of perfluorinated carboxylic acids with dipalmitoylphosphatidylcholine. Biochim. Biophys. Acta1664, 141–149 (2004).
  • Smart BE. Characteristics of C-F systems. In: Organofluorine Chemistry. Banks RE, Smart BE, Tatlow JC (Eds). Plenum Press, NY, USA; London, UK 57–88 (1994).
  • Dias AMA, Freire M, Coutinho JAP, Marrucho IM. Solubility of oxygen in liquid perfluorocarbons. Fluid Phase Equilib.222–223, 325–330 (2004).
  • Freire MG, Dias AMA, Coutinho JAP, Coelho MAZ, Marrucho IM. Enzymatic method for determining oxygen solubility in perfluorocarbon emulsions. Fluid Phase Equilib.231, 109–113 (2005).
  • Dias AMA, Carrier H, Daridon JL et al. Vapor–liquid equilibrium of carbon dioxide–perfluoroalkane mixtures: experimental data and SAFT modeling. Ind. Eng. Chem. Res.45, 2341–2350 (2006).
  • Gabriel JL, Miller TF, Wolfson MR, Shaffer TH. Quantitative structure-activity relationships of perfluorinated hetero-hydrocarbons as potential respiratory media. Application to oxygen solubility, partition coefficient, viscosity, vapor pressure, and density. ASAIO J.42, 968–973 (1996).
  • Freire MG, Gomes L, Santos LMNBF, Marrucho IM, Coutinho JAP. Water solubility in linear fluoroalkanes used in blood substitute formulations. J. Phys. Chem. B110, 22923–22929 (2006).
  • Kabalnov AS, Makarov KN, Shcherbakova OV, Nesmeyanov AN. Solubility of fluorocarbons in water as a key parameter determining fluorocarbon emulsion stability. J. Fluorine Chem.50, 271–284 (1990).
  • Patrick CR. Physicochemical properties of highly fluorinated organic compounds. Chem. Brit.7, 154–156 (1971).
  • Hirschl RB, Overbeck MC, Parent A et al. Liquid ventilation provides uniform distribution of perfluorocarbons in the setting of respiratory failure. Surgery116, 159–168 (1994).
  • Hirschl RB, Pranikoff T, Gauger P et al. Liquid ventilation in adults, children, and full-term neonates. Lancet346, 1201–1202 (1995).
  • Gauger PG, Pranikoff T, Schreiner RJ, Moler FW, Hirschl RB. Initial experience with partial liquid ventilation in pediatric patients with acute respiratory distress syndrome. Crit. Care Med.24, 16–22 (1996).
  • Leach CL, Greenspan JS, Rubenstein SD et al. Partial liquid ventilation with perflubron in premature infants with severe respiratory distress syndrome. N. Engl. J. Med.335, 761–767 (1996).
  • Kacmarek RM, Wiedemann HP, Lavin PT et al. Partial liquid ventilation in adult patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med.173, 882–889 (2006).
  • Robert R, Micheau P, Cyr S et al. A prototype of volume-controlled tidal liquid ventilator using independent piston pumps. ASAIO J.52, 638–645 (2006).
  • Degraeuwe PLJ, Zimmermann LJI. Why partial liquid ventilation did not fulfill its promise. Am. J. Respir. Crit. Care Med.174, 615 (2006).
  • de Abreu MG. Negative studies deserve more attention. Am. J. Respir. Crit. Care Med.173, 1414–1415 (2006).
  • Roemer WM, Gentzsch S, Andel H. Pressure increase due to hydrostatic pressure of perfluorocarbon. Am. J. Respir. Crit. Care Med.173, 1046 (2006).
  • Sindelar R, Rieger-Fackeldey E, Sedin G, Jonzon A. A pressure increase due to hydrostatic pressure of perfluorocarbon is not obvious as sensed by pulmonary stretch receptors. Am. J. Respir. Crit. Care Med.175, 290 (2007).
  • Obraztsov VV, Neslund GG, Kornbrust ES, Flaim SF, Woods CM. In vitro cellular effects of perfluorochemicals correlate with their lipid solubility. Am. J. Physiol. Lung Cell. Mol. Physiol.278, L1018–L1024 (2000).
  • Ellena JF, Obraztsov VV, Cumbea VL, Woods CM, Cafiso DS. Perfluorooctyl bromide has limited membrane solubility and is located at the bilayer center. Locating small molecules in lipid bilayers through paramagnetic enhancements of NMR relaxation. J. Med. Chem.45, 5534–5542 (2002).
  • Woods CM, Neslund G, Kornbrust E, Flaim SF. Perflubron attenuates neutrophil adhesion to activated endothelial cells in vitro. Am. J. Physiol. Lung Cell. Mol. Physiol.278, L1008–L1017 (2000).
  • Yokoyama K, Yamanouchi K, Murashima R. Excretion of perfluorochemicals after intravenous injection of their emulsion. Chem. Pharm. Bull.23, 1368–1373 (1975).
  • Yamanouchi K, Tanaka M, Tsuda Y et al. Quantitative structure in vivo half-life relationships of perfluorochemicals for use as oxygen transporters. Chem. Pharm. Bull.33, 1221–1231 (1985).
  • Moore RE, Clark LC. Synthesis and physical properties of perfluorocompounds useful as synthetic blood candidates. In:Oxygen-Carrying Colloidal Blood Substitutes:5th Int. Symp. Perfluorochemical Blood Substitutes. Frey R, Beisbarth H, Stosseck K (Eds). Zuckschwerdt Verlag, Munich, Germany 50–60 (1981).
  • Le TD, Arlauskas RA, Weers JG. Characterization of the lipophilicity of fluorocarbon derivatives containing halogens or hydrocarbon blocks. J. Fluorine Chem.78, 155–163 (1996).
  • Wissel H, Burkhardt W, Rupp J, Wauer Roland R, Rudiger M. Perfluorocarbons decrease Chlamydophila pneumoniae-mediated inflammatory responses of rat type II pneumocytes in vitro. Pediatr. Res.60, 264–269 (2006).
  • Ruediger M, Wissel H, Ochs M et al. Perfluorocarbons are taken up by isolated type II pneumocytes and influence its lipid synthesis and secretion. Crit. Care Med.31, 1190–1196 (2003).
  • Koch T, Ragaller M, Haufe C et al. Perfluorohexane attenuates proinflammatory and procoagulatory response of activated monocytes and alveolar macrophages. Anesthesiology94, 101–109 (2001).
  • Nakstad B, Wolfson MR, Shaffer TH et al. Perfluorochemical liquids modulate cell-mediated inflammatory responses. Crit. Care Med.29, 1731–1737 (2001).
  • Smith TM, Steinhorn DM, Thusu K, Fuhrman BP, Dandona P. A liquid perfluorochemical decreases the in vitro production of reactive oxygen species by alveolar macrophages. Crit. Care Med.23, 1533–1539 (1995).
  • Fernandez R, Sarma V, Younkin E et al. Exposure to perflubron is associated with decreased Syk phosphorylation in human neutrophils. J. Appl. Physiol.91, 1941–1947 (2001).
  • Rotta AT, Steinhorn DM. Partial liquid ventilation reduces pulmonary neutrophil accumulation in an experimental model of systemic endotoxemia and acute lung injury. Crit. Care Med.26, 1707–1715 (1998).
  • Colton DM, Till GO, Johnson KJ et al. Neutrophil accumulation is reduced during partial liquid ventilation. Crit. Care Med.26, 1716–1724 (1998).
  • Hirschl RB, Parent A, Tooley R et al. Liquid ventilation improves pulmonary function, gas exchange, and lung injury in a model of respiratory failure. Ann. Surg.221, 79–88 (1995).
  • Pakulla MA, Seidel D, Obal D, Loer SA. Hydrochloric acid-induced lung injury: effects of early partial liquid ventilation on survival rate, gas exchange, and pulmonary neutrophil accumulation. Intensive Care Med.30, 2110–2119 (2004).
  • Younger JG, Taqi AS, Till GO, Hirschl RB. Partial liquid ventilation protects lung during resuscitation from shock. J. Appl. Physiol.83, 1666–1670 (1997).
  • Itano H, Aoe M, Ichiba S et al. Partial liquid ventilation for acute allograft dysfunction after canine lung transplantation. Ann. Thorac. Surg.67, 332–339 (1999).
  • Lange NR, Kozlowski JK, Gust R, Shapiro SD, Schuster DP. Effect of partial liquid ventilation on pulmonary vascular permeability and edema after experimental acute lung injury. Am. J. Respir. Crit. Care Med.162, 271–277 (2000).
  • Merz U, Klosterhalfen B, Hausler M et al. Partial liquid ventilation reduces release of leukotriene B4 and interleukin-6 in bronchoalveolar lavage in surfactant-depleted newborn pigs. Pediatr. Res.51, 183–189 (2002).
  • Nishina K, Mikawa K, Takao Y, Obara H. The efficacy of fluorocarbon, surfactant, and their combination for improving acute lung injury induced by intratracheal acidified infant formula. Anesth. Analg.100, 964–971 (2005).
  • Jiang L, Wang Q, Liu Y et al. Effect of different ventilation modes with FC-77 on pulmonary inflammatory reaction in piglets after cardiopulmonary bypass. Pediatr. Pulmonol.42, 150–158 (2007).
  • Jiang L, Wang Q, Liu Y et al. Total liquid ventilation reduces lung injury in piglets after cardiopulmonary bypass. Ann. Thorac. Surg.82, 124–130 (2006).
  • Mikawa K, Nishina K, Takao Y, Obara H. Efficacy of partial liquid ventilation in improving acute lung injury induced by intratracheal acidified infant formula: determination of optimal dose and positive end-expiratory pressure level. Crit. Care Med.32, 209–216 (2004).
  • Croce MA, Fabian TC, Patton JH Jr et al. Partial liquid ventilation decreases the inflammatory response in the alveolar environment of trauma patients. J. Trauma45, 273–280 (1998).
  • Nader ND, Knight PR, Davidson BA, Safaee SS, Steinhorn DM. Systemic perfluorocarbons suppress the acute lung inflammation after gastric acid aspiration in rats. Anesth. Analg.90, 356–361 (2000).
  • Thomassen MJ, Buhrow LT, Wiedemann HP. Perflubron decreases inflammatory cytokine production by human alveolar macrophages. Crit. Care Med.25, 2045–2047 (1997).
  • Chang H, Kuo F-C, Lai Y-S, Chou T-C. Inhibition of inflammatory responses by FC-77, a perfluorochemical, in lipopolysaccharide-treated RAW 264.7 macrophages. Intensive Care Med.31, 977–984 (2005).
  • Baba A, Kim YK, Zhang H, Liu M, Slutsky AS. Perfluorocarbon blocks tumor necrosis factor-a-induced interleukin-8 release from alveolar epithelial cells in vitro. Crit. Care Med.28, 1113–1118 (2000).
  • Babu PBR, Chidekel A, Shaffer TH. Hyperoxia-induced changes in human airway epithelial cells: the protective effect of perflubron. Pediatr. Crit. Care Med.6, 188–194 (2005).
  • Nakata S, Yasui K, Nakamura T, Kubota N, Baba A. Perfluorocarbon suppresses lipopolysaccharide- and α-toxin-induced interleukin-8 release from alveolar epithelial cells. Neonatology91, 127–133 (2007).
  • Angelova M, Nakazawa K, Yokoyama K, Makita K. Effects of partial liquid ventilation on lipopolysaccharide-induced inflammatory responses in rats. Resuscitation62, 89–96 (2004).
  • Tütüncü AS, Houmes RJ, Bos JA, Wollmer P, Lachmann B. Evaluation of lung function after intratracheal perfluorocarbon administration in healthy animals. Crit. Care Med.24, 274–279 (1996).
  • Shashikant BN, Miller TL, Jeng M-J et al. Differential impact of perfluorochemical physical properties on the physiologic, histologic, and inflammatory profile in acute lung injury. Crit. Care Med.33, 1096–1103 (2005).
  • Zhu G, Shaffer TH, Wolfson MR. Continuous tracheal gas insufflation during partial liquid ventilation in juvenile rabbits with acute lung injury. J. Appl. Physiol.96, 1415–1424 (2004).
  • Yoshida S, Sekine Y, Shinozuka N et al. The efficacy of partial liquid ventilation in lung protection during hypotension and cardiac arrest: preliminary study of lung transplantation using non-heart-beating donors. J. Heart Lung Transplant.24, 723–729 (2005).
  • Verbrugge SJC, Uhlig S, Neggers SJCMM et al. Different ventilation strategies affect lung function but do not increase tumor necrosis factor-a and prostacyclin production in lavaged rat lungs in vivo. Anesthesiology91, 1834–1843 (1999).
  • Komori E, Shoga K, Aoe M et al. Partial liquid ventilation does not affect BALF TNF-α, MIP-2, CINC-1 concentrations, or CD1 1b cell surface expression, but does increase macrophage proportion among BALF cells in the acute phase of rat LPS-induced lung injury. Acta Med. Okayama57, 133–141 (2003).
  • Schortgen F, Bouadma L, Joly-Guillou M-L et al. Infectious and inflammatory dissemination are affected by ventilation strategy in rats with unilateral pneumonia. Intensive Care Med.30, 693–701 (2004).
  • Kawamae K, Pristine G, Chiumello D, Tremblay LN, Slutsky AS. Partial liquid ventilation decreases serum tumor necrosis factor-a concentrations in a rat acid aspiration lung injury model. Crit. Care Med.28, 479–483 (2000).
  • Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNFa in pulmonary pathophysiology. Respir. Res.7, 125 (2006).
  • Hirayama Y, Hirasawa H, Oda S et al. Partial liquid ventilation with FC-77 suppresses the release of lipid mediators in rat acute lung injury model. Crit. Care Med.32, 2085–2089 (2004).
  • Haeberle HA, Nesti F, Dieterich H-J, Gatalica Z, Garofalo RP. Perflubron reduces lung inflammation in respiratory syncytial virus infection by inhibiting chemokine expression and nuclear factor-κB activation. Am. J. Respir. Crit. Care Med.165, 1433–1438 (2002).
  • Varani J, Hirschl RB, Dame M, Johnson K. Perfluorocarbon protects lung epithelial cells from neutrophil-mediated injury in an in vitro model of liquid ventilation therapy. Shock6, 339–344 (1996).
  • Rossman JE, Caty MG, Rich GA, Karamanoukian HL, Azizkhan RG. Neutrophil activation and chemotaxis after in vitro treatment with perfluorocarbon. J. Pediatr. Surg.31, 1147–1151 (1996).
  • Rotta AT, Gunnarsson B, Fuhrman B et al. Perfluorooctyl bromide (perflubron) attenuates oxidative injury to biological and nonbiological systems. Pediatr. Crit. Care Med.4, 233–238 (2003).
  • Steinhorn DM, Papo MC, Rotta AT et al. Liquid ventilation attenuates pulmonary oxidative damage. J. Crit. Care14, 20–28 (1999).
  • Rotta AT, Gunnarsson B, Hernan LJ, Fuhrman BP, Steinhorn DM. Partial liquid ventilation with perflubron attenuates in vivo oxidative damage to proteins and lipids. Crit. Care Med.28, 202–208 (2000).
  • Dani C, Costantino ML, Martelli E et al. Perfluorocarbons attenuate oxidative lung damage. Pediatr. Pulmonol.36, 322–329 (2003).
  • Cheson BD, Christensen RL, Sperling R, Kohler BE, Babior BM. The origin of the chemiluminescence of phagocytosing granulocytes. J. Clin. Invest.58, 789–796 (1976).
  • Garcia CSNB, Prota LFM, Morales MM et al. Understanding the mechanisms of lung mechanical stress. Braz. J. Med. Biol. Res.39, 697–706 (2006).
  • Max M, Kuhlen R, Falter F et al. Effect of PEEP and inhaled nitric oxide on pulmonary gas exchange during gaseous and partial liquid ventilation with small volumes of perfluorocarbon. Acta Anaesthesiol. Scand.44, 383–390 (2000).
  • Leonard RC. Liquid ventilation. Anaesth. Intens. Care26, 11–21 (1998).
  • Cox CA, Wolfson MR, Shaffer TH. Liquid ventilation: a comprehensive overview. Neonatal Net.15, 31–43 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.