142
Views
21
CrossRef citations to date
0
Altmetric
Reviews

The role of caveolae in the pathophysiology of lung diseases

, &

References

  • Collard HR, Ward AJ, Lanes S, Cortney Hayflinger D, Rosenberg DM, Hunsche E. Burden of illness in idiopathic pulmonary fibrosis. J. Med. Econ. 15(5), 829–835 (2012).
  • Hurd S. The impact of COPD on lung health worldwide: epidemiology and incidence. Chest 117(2 Suppl.), 1S–4S (2000).
  • Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am. J. Respir. Crit. Care Med. 163(5), 1256–1276 (2001).
  • Hanania NA, King MJ, Braman SS et al. Asthma in the elderly: Current understanding and future research needs – a report of a National Institute on Aging (NIA) workshop. J. Allergy. Clin. Immunol. 128(3 Suppl.), S4–24 (2011).
  • Maniatis NA, Chernaya O, Shinin V, Minshall RD. Caveolins and lung function. Adv. Exp. Med. Biol. 729, 157–179 (2012).
  • Gosens R, Mutawe M, Martin S et al. Caveolae and caveolins in the respiratory system. Curr. Mol. Med. 8(8), 741–753 (2008).
  • Prakash YS, Thompson MA, Vaa B et al. Caveolins and intracellular calcium regulation in human airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 293(5), L1118–1126 (2007).
  • Gratton J-P, Bernatchez P, Sessa WC. Caveolae and Caveolins in the Cardiovascular System. Circ. Res. 94(11), 1408–1417 (2004).
  • Williams TM. The Caveolin genes: from cell biology to medicine. Ann. Med. 36(8), 584–595 (2004).
  • Williams TM, Lisanti MP. The caveolin proteins. Genome Biol. 5(3), 214 (2004).
  • Palade G. Fine structure of blood capillaries. J. Appl. Physiol. 24, 1424–1429 (1953).
  • Yamada E. The fine structure of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol. 1(5), 445–458 (1955).
  • Sathish V, Abcejo AJ, Thompson MA, Sieck GC, Prakash YS, Pabelick CM. Caveolin-1 regulation of store-operated Ca(2+) influx in human airway smooth muscle. Eur. Respir. J. 40(2), 470–478 (2012).
  • Sathish V, Abcejo AJ, Vanoosten SK, Thompson MA, Prakash YS, Pabelick CM. Caveolin-1 in Cytokine-Induced Enhancement of Intracellular Ca2+ in Human Airway Smooth Muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 301(4), L607–614 (2011).
  • Schlegel A, Arvan P, Lisanti MP. Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J. Biol. Chem. 276(6), 4398–4408 (2001).
  • Schlegel A, Schwab RB, Scherer PE, Lisanti MP. A role for the caveolin scaffolding domain in mediating the membrane attachment of caveolin-1. The caveolin scaffolding domain is both necessary and sufficient for membrane binding in vitro. J. Biol. Chem. 274(32), 22660–22667 (1999).
  • Cohen AW, Hnasko R, Schubert W, Lisanti MP. Role of caveolae and caveolins in health and disease. Physiol. Rev. 84(4), 1341–1379 (2004).
  • Brott D, Gould S, Jones H et al. Biomarkers of drug-induced vascular injury. Toxicol. Appl. Pharmacol. 207(2 Suppl.), 441–445 (2005).
  • Thomas CM, Smart EJ. Caveolae structure and function. J. Cell Mol. Med. 12(3), 796–809 (2008).
  • Head BP, Patel HH, Tsutsumi YM et al. Caveolin-1 expression is essential for N-methyl-D-aspartate receptor-mediated Src and extracellular signal-regulated kinase 1/2 activation and protection of primary neurons from ischemic cell death. FASEB J. 22(3), 828–840 (2008).
  • Gosens R, Stelmack GL, Dueck G et al. Caveolae facilitate muscarinic receptor-mediated intracellular Ca2+ mobilization and contraction in airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 293(6), L1406–1418 (2007).
  • Sommer B, Montano LM, Carbajal V et al. Extraction of membrane cholesterol disrupts caveolae and impairs serotonergic (5-HT2A) and histaminergic (H1) responses in bovine airway smooth muscle: role of Rho-kinase. Can. J. Physiol. Pharmacol. 87(3), 180–195 (2009).
  • Hnasko R, Lisanti MP. The biology of caveolae: lessons from caveolin knockout mice and implications for human disease. Mol. Interv. 3(8), 445–464 (2003).
  • Frank PG, Woodman SE, Park DS, Lisanti MP. Caveolin, caveolae, and endothelial cell function. Arterioscler. Thromb. Vasc. Biol. 23(7), 1161–1168 (2003).
  • Razani B, Lisanti MP. Caveolin-deficient mice: insights into caveolar function human disease. J. Clin. Invest. 108(11), 1553–1561 (2001).
  • Schlegel A, Lisanti MP. The caveolin triad: caveolae biogenesis, cholesterol trafficking, and signal transduction. Cytokine Growth Factor Rev. 12(1), 41–51 (2001).
  • Scherer PE, Lewis RY, Volonté D et al. Cell-type and Tissue-specific Expression of Caveolin-2: Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J. Biol. Chem. 272(46), 29337–29346 (1997).
  • Song KS, Scherer PE, Tang Z et al. Expression of Caveolin-3 in Skeletal, Cardiac, and Smooth Muscle Cells: Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J. Biol. Chem. 271(25), 15160–15165 (1996).
  • Maniatis NA, Shinin V, Schraufnagel DE et al. Increased pulmonary vascular resistance and defective pulmonary artery filling in caveolin-1-/- mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 294(5), L865–873 (2008).
  • Sowa G. Caveolae, caveolins, cavins, and endothelial cell function: new insights. Front. Physiol. 2, 120 (2012).
  • Sun Y, Minshall RD, Hu G. Role of caveolin-1 in the regulation of pulmonary endothelial permeability. Methods Mol. Biol. 763, 303–317 (2011).
  • Huang J, Wolk JH, Gewitz MH, Mathew R. Caveolin-1 expression during the progression of pulmonary hypertension. Exp. Biol. Med. (Maywood), 237(8), 956–965 (2012).
  • Sathish V, Yang B, Meuchel LW et al. Caveolin-1 and force regulation in porcine airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 300(6), L920–929 (2011).
  • Gosens R, Stelmack GL, Bos ST et al. Caveolin-1 is required for contractile phenotype expression by airway smooth muscle cells. J. Cell. Mol. Med. 15(11), 2430–2442 (2010).
  • de Almeida CJ, Jasmin JF, Del Galdo F, Lisanti MP. Genetic ablation of caveolin-2 sensitizes mice to bleomycin-induced injury. Cell Cycle 12(14) (2013).
  • Xie L, Vo-Ransdell C, Abel B, Willoughby C, Jang S, Sowa G. Caveolin-2 is a negative regulator of anti-proliferative function and signaling of transforming growth factor-beta in endothelial cells. Am. J. Physiol. Cell. Physiol. 301(5), C1161–1174 (2011).
  • Doyle DD, Upshaw-Earley J, Bell E, Clive Palfrey H. Expression of caveolin-3 in rat aortic vascular smooth muscle cells is determined by developmental state. Biochem. Biophys. Res. Commun. 304(1), 22–25 (2003).
  • Segal SS, Brett SE, Sessa WC. Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters. Am. J. Physiol. 277(3 Pt 2), H1167–H1177 (1999).
  • Chidlow JH, Jr., Sessa WC. Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation. Cardiovasc. Res. 86(2), 219–225 (2010).
  • Hansen CG, Nichols BJ. Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol. 20(4), 177–186 (2010).
  • Nabi IR. Cavin fever: regulating caveolae. Nat. Cell Biol. 11(7), 789–791 (2009).
  • Hill MM, Bastiani M, Luetterforst R et al. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132(1), 113–124 (2008).
  • Liu L, Pilch PF. A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J. Biol. Chem. 283(7), 4314–4322 (2008).
  • Jansa P, Mason SW, Hoffmann-Rohrer U, Grummt I. Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO J. 17(10), 2855–2864 (1998).
  • Jansa P. Mechanism of transcription termination:PTRF interacts with the largest subunit of RNA polymerase I and dissociates paused transcription complexes from yeast and mouse. Mol. Gen. Genet. 262(3), 508–5014 (1999).
  • Hardin CD, Vallejo J. Caveolins in vascular smooth muscle: Form organizing function. Cardiovasc. Res. 69(4), 808–815 (2006).
  • Byrne S, Cheent A, Dimond J, Fisher G, Ockleford CD. Immunocytochemical localization of a caveolin-1 isoform in human term extra-embryonic membranes using confocal laser scanning microscopy: implications for the complexity of the materno-fetal junction. Placenta 22(6), 499–510 (2001).
  • Silva WI, Maldonado HM, Lisanti MP et al. Identification of caveolae and caveolin in C6 glioma cells. Int. J. Dev. Neurosci. 17(7), 705–714 (1999).
  • Jin Y, Lee SJ, Minshall RD, Choi AM. Caveolin-1: a critical regulator of lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 300(2), L151–160 (2011).
  • Shivshankar P, Brampton C, Miyasato S, Kasper M, Thannickal VJ, Le Saux CJ. Caveolin-1 deficiency protects from pulmonary fibrosis by modulating epithelial cell senescence in mice. Am. J. Respir. Cell Mol. Biol. 47(1), 28–36 (2012).
  • Sharma P, Ghavami S, Stelmack GL et al. beta-Dystroglycan binds caveolin-1 in smooth muscle: a functional role in caveolae distribution and Ca2+ release. J. Cell Sci. 123(Pt 18), 3061–3070 (2010).
  • Aravamudan B, Vanoosten SK, Meuchel LW et al. Caveolin-1 knockout mice exhibit airway hyperreactivity. Am. J. Physiol. Lung Cell. Mol. Physiol. 303(8), L669–681 (2012).
  • Engelman JA, Zhang XL, Razani B, Pestell RG, Lisanti MP. p42/44 MAP kinase-dependent and -independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and protein kinase a signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. J. Biol. Chem. 274(45), 32333–32341 (1999).
  • Liu J, Razani B, Tang S, Terman BI, Ware JA, Lisanti MP. Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J. Biol. Chem. 274(22), 15781–15785 (1999).
  • Park WY, Cho KA, Park JS, Kim DI, Park SC. Attenuation of EGF signaling in senescent cells by caveolin. Ann. NY Acad. Sci. 928, 79–84 (2001).
  • Razani B, Wang XB, Engelman JA et al. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol. Cell Biol. 22(7), 2329–2344 (2002).
  • Smart EJ, Graf GA, McNiven MA et al. Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell Biol. 19(11), 7289–7304 (1999).
  • Bist A, Fielding PE, Fielding CJ. Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol. Proc. Natl Acad. Sci. USA 94(20), 10693–10698 (1997).
  • Fielding CJ, Bist A, Fielding PE. Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc. Natl Acad. Sci. USA 94(8), 3753–3758 (1997).
  • Frank PG, Galbiati F, Volonte D et al. Influence of caveolin-1 on cellular cholesterol efflux mediated by high-density lipoproteins. Am. J. Physiol. Cell Physiol. 280(5), C1204–1214 (2001).
  • Volonte D, Galbiati F. Caveolin-1, cellular senescence and pulmonary emphysema. Aging 1(9), 831–835 (2009).
  • Zou H, Stoppani E, Volonte D, Galbiati F. Caveolin-1, cellular senescence and age-related diseases. Mech. Ageing Dev. 132(11–12), 533–542 (2011).
  • Hamoudane M, Maffioli S, Cordera R, Maggi D, Salani B. Caveolin-1 and polymerase I and transcript release factor: new players in insulin-like growth factor-I receptor signaling. J. Endocrinol. Invest. 36(3), 204–208 (2013).
  • Govender P, Romero F, Shah D et al. Cavin1; a regulator of lung function and macrophage phenotype. PLoS ONE 8(4), e62045 (2013).
  • Wang Y, Roche O, Xu C et al. Hypoxia promotes ligand-independent EGF receptor signaling via hypoxia-inducible factor-mediated upregulation of caveolin-1. Proc. Natl Acad. Sci. USA 109(13), 4892–4897 (2012).
  • Orlichenko L, Weller SG, Cao H et al. Caveolae mediate growth factor-induced disassembly of adherens junctions to support tumor cell dissociation. Mol. Biol. Cell 20(19), 4140–4152 (2009).
  • Matveev SV, Smart EJ. Heterologous desensitization of EGF receptors and PDGF receptors by sequestration in caveolae. Am. J. Physiol. Cell Physiol. 282(4), C935–946 (2002).
  • Gosens R, Stelmack GL, Dueck G et al. Role of caveolin-1 in p42/p44 MAP kinase activation and proliferation of human airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 291(3), L523–534 (2006).
  • Fujita Y, Maruyama S, Kogo H, Matsuo S, Fujimoto T. Caveolin-1 in mesangial cells suppresses MAP kinase activation and cell proliferation induced by bFGF and PDGF. Kidney Int. 66(5), 1794–1804 (2004).
  • Huang CS, Zhou J, Feng AK et al. Nerve growth factor signaling in caveolae-like domains at the plasma membrane. J. Biol. Chem. 274(51), 36707–36714 (1999).
  • Bilderback TR, Gazula VR, Lisanti MP, Dobrowsky RT. Caveolin interacts with Trk A and p75(NTR) and regulates neurotrophin signaling pathways. J. Biol. Chem. 274(1), 257–263 (1999).
  • Yang T, Massa SM, Longo FM. LAR protein tyrosine phosphatase receptor associates with TrkB and modulates neurotrophic signaling pathways. J. Neurobiol. 66(13), 1420–1436 (2006).
  • Daniel EE, Eteraf T, Sommer B, Cho WJ, Elyazbi A. The role of caveolae and caveolin 1 in calcium handling in pacing and contraction of mouse intestine. J. Cell Mol. Med. 13(2), 352–364 (2009).
  • Pojoga LH, Adamová Z, Kumar A et al. Sensitivity of NOS-dependent vascular relaxation pathway to mineralocorticoid receptor blockade in caveolin-1-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 298(6), H1776–H1788 (2010).
  • Poljakovic M, Porter DW, Millecchia L et al. Cell- and isoform-specific increases in arginase expression in acute silica-induced pulmonary inflammation. J. Toxicol. Environ. Health A 70(2), 118–127 (2007).
  • Hunter I, Nixon GF. Spatial compartmentalization of tumor necrosis factor (TNF) receptor 1-dependent signaling pathways in human airway smooth muscle cells. Lipid rafts are essential for TNF-alpha-mediated activation of RhoA but dispensable for the activation of the NF-kappaB and MAPK pathways. J. Biol. Chem. 281(45), 34705–34715 (2006).
  • Sakai H, Kurihara Y, Hashimoto Y, Chiba Y, Misawa M. Involvement of multiple PKC isoforms in phorbol 12,13-dibutyrate-induced contraction during high K(+) depolarization in bronchial smooth muscle of mice. J. Smooth Muscle Res. 46(5), 225–233 (2010).
  • Bai Y, Edelmann M, Sanderson MJ. The contribution of inositol 1,4,5-trisphosphate and ryanodine receptors to agonist-induced Ca(2+) signaling of airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 297(2), L347–361 (2009).
  • Ali NK, Jafri A, Sopi RB, Prakash YS, Martin RJ, Zaidi SI. Role of arginase in impairing relaxation of lung parenchyma of hyperoxia-exposed neonatal rats. Neonatology 101(2), 106–115 (2011).
  • Zhao YY, Malik AB. A novel insight into the mechanism of pulmonary hypertension involving caveolin-1 deficiency and endothelial nitric oxide synthase activation. Trends Cardiovasc. Med. 19(7), 238–242 (2009).
  • Ryter SW, Choi AM. Caveolin-1: a critical regulator of pulmonary vascular architecture and nitric oxide bioavailability in pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 294(5), L862–864 (2008).
  • Grayson TH, Chadha PS, Bertrand PP et al. Increased caveolae density and caveolin-1 expression accompany impaired NO-mediated vasorelaxation in diet-induced obesity. Histochem. Cell Biol. 139(2), 309–321 (2013).
  • Garcia-Cardena G, Oh P, Liu J, Schnitzer JE, Sessa WC. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc. Natl Acad. Sci. USA 93(13), 6448–6453 (1996).
  • Ju H, Zou R, Venema VJ, Venema RC. Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J. Biol. Chem. 272(30), 18522–18525 (1997).
  • de Weerd WFC, Leeb-Lundberg LMF. Bradykinin Sequesters B2 Bradykinin Receptors and the Receptor-coupled Gα Subunits Gαq and Gαiin Caveolae in DDT1 MF-2 Smooth Muscle Cells. J. Biol. Chem. 272(28), 17858–17866 (1997).
  • Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM. Asthma. Am. J. Respir. Crit. Care Med. 161(5), 1720–1745 (2000).
  • Garrean S, Gao XP, Brovkovych V et al. Caveolin-1 regulates NF-kappaB activation and lung inflammatory response to sepsis induced by lipopolysaccharide. J. Immunol. 177(7), 4853–4860 (2006).
  • Volonte D, Kahkonen B, Shapiro S, Di Y, Galbiati F. Caveolin-1 expression is required for the development of pulmonary emphysema through activation of the ATM-p53-p21 pathway. J. Biol. Chem. 284(9), 5462–5466 (2009).
  • Murphy DM, O'Byrne PM. Recent advances in the pathophysiology of asthma. Chest J. 137(6), 1417–1426 (2010).
  • Hotta K, Emala CW, Hirshman CA. TNF-α upregulates Giα and Gqα protein expression and function in human airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 276(3), L405–L411 (1999).
  • Oenema T, Kolahian S, Nanninga J et al. Pro-inflammatory mechanisms of muscarinic receptor stimulation in airway smooth muscle. Respir. Res. 11(1), 130 (2010).
  • White TA, Xue A, Chini EN, Thompson M, Sieck GC, Wylam ME. Role of Transient Receptor Potential C3 in TNF-α–Enhanced Calcium Influx in Human Airway Myocytes. Am. J. Respir. Cell. Mol. Biol. 35(2), 243–251 (2006).
  • Le Saux O, Teeters K, Miyasato S et al. The role of caveolin-1 in pulmonary matrix remodeling and mechanical properties. Am. J. Physiol. Lung Cell. Mol. Physiol. 295(6), L1007–1017 (2008).
  • Shifren A, Witt C, Christie C, Castro M. Mechanisms of remodeling in asthmatic airways. J. Allergy (Cairo), 2012, 316049 (2012).
  • James AL, Wenzel S. Clinical relevance of airway remodelling in airway diseases. Eur. Respir. J. 30(1), 134–155 (2007).
  • Hackett T-L, de Bruin HG, Shaheen F et al. Caveolin-1 controls airway epithelial barrier function: implications for asthma. Am. J. Respir. Cell. Mol. Biol. 49(4), 662–671 (2013).
  • Haines P, Samuel GH, Cohen H, Trojanowska M, Bujor AM. Caveolin-1 is a negative regulator of MMP-1 gene expression in human dermal fibroblasts via inhibition of Erk1/2/Ets1 signaling pathway. J. Dermatol. Sci. 64(3), 210–216 (2011).
  • Peterson TE, Guicciardi ME, Gulati R et al. Caveolin-1 can regulate vascular smooth muscle cell fate by switching platelet-derived growth factor signaling from a proliferative to an apoptotic pathway. Arterioscler. Thromb. Vasc. Biol. 23(9), 1521–1527 (2003).
  • Faux SP, Tai T, Thorne D, Xu Y, Breheny D, Gaca M. The role of oxidative stress in the biological responses of lung epithelial cells to cigarette smoke. Biomarkers 14(Suppl. 1), 90–96 (2009).
  • Zeng G, McCue HM, Mastrangelo L, Millis AJ. Endogenous TGF-beta activity is modified during cellular aging: effects on metalloproteinase and TIMP-1 expression. Exp. Cell Res. 228(2), 271–276 (1996).
  • Maniatis NA, Kardara M, Hecimovich D et al. Role of caveolin-1 expression in the pathogenesis of pulmonary edema in ventilator-induced lung injury. Pulm. Circ. 2(4), 452–460 (2012).
  • Sundivakkam PC, Kwiatek AM, Sharma TT, Minshall RD, Malik AB, Tiruppathi C. Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells. Am. J. Physiol. Cell Physiol. 296(3), C403–413 (2009).
  • Sun Y, Hu G, Zhang X, Minshall RD. Phosphorylation of caveolin-1 regulates oxidant-induced pulmonary vascular permeability via paracellular and transcellular pathways. Circ. Res. 105(7), 676–685 (2009).
  • Ingbar DH. Mechanisms of repair and remodeling following acute lung injury. Clin. Chest Med. 21(3), 589–616 (2000).
  • Hu G, Vogel SM, Schwartz DE, Malik AB, Minshall RD. Intercellular adhesion molecule-1-dependent neutrophil adhesion to endothelial cells induces caveolae-mediated pulmonary vascular hyperpermeability. Circ. Res. 102(12), e120–131 (2008).
  • Hu G, Ye RD, Dinauer MC, Malik AB, Minshall RD. Neutrophil caveolin-1 expression contributes to mechanism of lung inflammation and injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 294(2), L178–186 (2008).
  • Franek WR, Horowitz S, Stansberry L et al. Hyperoxia inhibits oxidant-induced apoptosis in lung epithelial cells. J. Biol. Chem. 276(1), 569–575 (2001).
  • Lee PJ, Alam J, Sylvester SL, Inamdar N, Otterbein L, Choi AM. Regulation of heme oxygenase-1 expression in vivo and in vitro in hyperoxic lung injury. Am. J. Respir. Cell. Mol. Biol. 14(6), 556–568 (1996).
  • Jin Y, Kim HP, Chi M, Ifedigbo E, Ryter SW, Choi AM. Deletion of caveolin-1 protects against oxidative lung injury via up-regulation of heme oxygenase-1. Am. J. Respir. Cell. Mol. Biol. 39(2), 171–179 (2008).
  • Zhang M, Lin L, Lee SJ et al. Deletion of caveolin-1 protects hyperoxia-induced apoptosis via survivin-mediated pathways. Am. J. Physiol. Lung Cell. Mol. Physiol. 297(5), L945–953 (2009).
  • Tourkina E, Hoffman S. Caveolin-1 signaling in lung fibrosis. Open Rheumatol. J. 6, 116–122 (2012).
  • Del Galdo F, Lisanti MP, Jimenez SA. Caveolin-1, transforming growth factor-beta receptor internalization, and the pathogenesis of systemic sclerosis. Curr. Opin. Rheumatol. 20(6), 713–719 (2008).
  • Razani B, Engelman JA, Wang XB et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. Chem. 276(41), 38121–38138 (2001).
  • Le Saux CJ, Teeters K, Miyasato SK et al. Down-regulation of caveolin-1, an inhibitor of transforming growth factor-beta signaling, in acute allergen-induced airway remodeling. J. Biol. Chem. 283(9), 5760–5768 (2008).
  • Wang XM, Zhang Y, Kim HP et al. Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. J. Exp. Med. 203(13), 2895–2906 (2006).
  • Tourkina E, Gooz P, Pannu J et al. Opposing effects of protein kinase Calpha and protein kinase Cepsilon on collagen expression by human lung fibroblasts are mediated via MEK/ERK and caveolin-1 signaling. J. Biol. Chem. 280(14), 13879–13887 (2005).
  • Mathew R. Cell-specific dual role of caveolin-1 in pulmonary hypertension. Pulm. Med. 2011, 573432 (2011).
  • Mathew R, Huang J, Shah M, Patel K, Gewitz M, Sehgal PB. Disruption of endothelial-cell caveolin-1alpha/raft scaffolding during development of monocrotaline-induced pulmonary hypertension. Circulation 110(11), 1499–1506 (2004).
  • Mukhopadhyay S, Xu F, Sehgal PB. Aberrant cytoplasmic sequestration of eNOS in endothelial cells after monocrotaline, hypoxia, and senescence: live-cell caveolar and cytoplasmic NO imaging. Am. J. Physiol. Heart Circ. Physiol. 292(3), H1373–1389 (2007).
  • Zhao YY, Liu Y, Stan RV et al. Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc. Natl Acad. Sci. USA 99(17), 11375–11380 (2002).
  • Zhao YY, Zhao YD, Mirza MK et al. Persistent eNOS activation secondary to caveolin-1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration. J. Clin. Invest. 119(7), 2009–2018 (2009).
  • Wunderlich C, Schmeisser A, Heerwagen C et al. Chronic NOS inhibition prevents adverse lung remodeling and pulmonary arterial hypertension in caveolin-1 knockout mice. Pulm. Pharmacol. Ther. 21(3), 507–515 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.