35
Views
2
CrossRef citations to date
0
Altmetric
Review

Biomarkers of carcinogenicity and their roles in drug discovery and development

, , , , &
Pages 759-771 | Published online: 10 Jan 2014

References

  • NTP. Annual Plan for Fiscal Year 2001, National Toxicology Program, Washington, DC (2001).
  • Foth H, Hayes A. Concept of REACH and impact on evaluation of chemical. Hum. Exp. Toxicol.27, 5–21 (2008).
  • Bolt HM, Foth H, Hengstler JG, Degen GH. Carcinogenicity categorization of chemicals – new aspects to be considered in a European perspective. Toxicol. Lett.151, 29–41 (2004).
  • Müller L, Kikuchi Y, Probst G et al. ICH-harmonized guidances on genotoxicity testing of pharmaceuticals: evolution, reasoning and impact. Mutat. Res.436, 195–225 (1999).
  • Spielmann H. Validation and regulatory acceptance of new carcinogenicity test. Toxicol. Pathol.31, 54–59 (2003).
  • Holsapple MP, Pitot HC, Cohen SM et al. Mode of action in relevance of rodent liver tumors to human cancer risk. Toxicol. Sci.89, 51–56 (2006)
  • Weisburger EK. History of the bioassay program of the national cancer institute. Prog. Exp. Tumor Res.26, 187–201 (1983).
  • Yamagawa K, Ichikawa K. On the experimental induction of papillomas (Ger.). Verh. Jpn. Pathol. Ges.5, 142–145 (1915).
  • Mukhtar H, Das M, Bickers DR. Skin tumor initiating activity of therapeutic crude coal tar as compared to other polycyclic aromatic hydrocarbons in SENCAR mice. Cancer Lett.31, 147–151 (1986).
  • Sasaki T, Yoshida T. Experimentelle erzeugung des Lebercarcinoms durch Futterung mit o-Amidoazotoluol. Virchows Arch. Abt. A Pathol. Anat.295, 175–200 (1935).
  • Boutwell R. Some biological aspects of skin carcinogenesis. Prog. Exp. Tumor Res.4, 207–250 (1964).
  • Hendrich S, Campbell H, Pitot HC. Quantitative stereological evaluation of four histochemical markers of altered hepatic foci in multistage hepatocarcinogenesis in the rat. Carcinogenesis8, 1245–1250 (1987).
  • Ito N, Tsuda H, Tatematsu M et al. Enhancing effect of various hepatocarcinogens on induction of preneoplastic glutathione transferase placental form positive foci in rats: an approach for a new medium term bioassay system. Carcinogenesis9, 387–394 (1988).
  • Moore M, Nakagawa K, Satoh K et al. Single GST-P positive liver cells – putative initiated hepatocytes. Carcinogenesis8, 483–486 (1987).
  • Cameron R. Identification of the putative first cellular step of chemical hepatocarcinogenesis. Cancer Lett.47, 163–167 (1989).
  • Satoh K, Kitahara A, Soma Y et al. Purification, induction, and distribution of placental glutathione transferase: a new marker enzyme for preneoplastic cells in rat chemical hepatocarcinogenesis. Proc. Natl Acad. Sci. USA82, 3964–3968 (1985).
  • Dragan Y, Hully J, Nakamura J et al. Biochemical events during initiation of rat hepatocarcinogenesis by diethylnitrosamine. Carcinogenesis5, 1451–1458 (1994).
  • Dragan Y, Campbell H, Baker K et al. Focal and non-focal hepatic expression of placental glutathione S transferase in carcinogen treated rats. Carcinogenesis15, 2587–2591 (1994).
  • Saeter G, Schwarze P, Nesland J, Seglen P. Diploid nature of hepatocellular tumors in carcinogen-treated rat liver. J. Natl Cancer Inst.80, 950–958 (1989).
  • Sargent L, Xu YH, Sattler GL et al. Ploidy and karyotype of hepatocytes isolated from enzyme altered foci in two different protocols of multistage hepatocarcinogenesis in the rat. Carcinogenesis8, 1245–1250 (1989).
  • Bannasch P, Enzmann H, Klimek F et al. Significance of sequential cellular changes inside and outside foci of altered hepatocytes during hepatocarcinogenesis. Toxicol. Pathol.17, 617–628 (1989).
  • Rao MS, Nemali MR, Usuda N et al. Lack of expression of glutathione-S-transferase P, γ-glutamyl transpeptidase, and α-fetoprotein messenger RNAs in liver tumors induced by peroxisome proliferators. Cancer Res.48, 4919–4925 (1988).
  • Bannasch P. Hormonal and hormone-like effects eliciting hepatocarcinogenesis. Folia Histochem. Cytobiol.39, 28–29 (2001).
  • Sukata T, Uwagawa S, Ozaki K et al. α(2)-macroglobulin: a novel cytochemical marker characterizing preneoplastic and neoplastic rat liver lesions negative for hitherto established cytochemical markers. Am. J. Pathol.165, 1479–1488 (2004).
  • Sakai M, Muramatsu M. Regulation of glutathione transferase P: a tumor marker of hepatocarcinogenesis. Biochem. Biophys. Res. Commun.357, 575–578 (2007).
  • Fan Y, Shimizu T, Yamada T et al. Development of glutathione S-transferase-P-negative foci accompanying nuclear factor-erythroid 2-related factor 2 expression during early stage of rat hepatocarcinogenesis. Cancer Sci.99, 497–501 (2008).
  • Kemp C. Kidney cancer, leukemia and liver cancer. Part 3. Am. J. Hosp. Palliat. Care16, 479–486 (1999).
  • Feo F, De Miglio MR, Simile MM et al. Hepatocellular carcinoma as a complex polygenic disease. Interpretive analysis of recent developments on genetic predisposition. Biochim. Biophys. Acta1765, 126–147 (2006).
  • Poon TC, Wong N, Lai PB et al. A tumor progression model for hepatocellular carcinoma: bioinformatic analysis of genomic data. Gastroenterology131, 1262–1270 (2006).
  • Teeguarden JG, Newton MA, Dragan YP et al. Genome-wide loss of heterozygosity analysis of chemically induced rat hepatocellular carcinomas reveals elevated frequency of allelic imbalances on chromosomes 1, 6, 8, 11, 15, 17, and 20. Mol. Carcinog.28, 51–61 (2000).
  • Su WH, Chao CC, Yeh SH et al. OncoDB.HCC: an integrated oncogenomic database of hepatocellular carcinoma revealed aberrant cancer target genes and loci. Nucleic Acids Res.35, D727–D731 (2007).
  • Tjia WM, Hu L, Zhang MY, Guan XY. Characterization of rearrangements involving 4q, 13q and 16q in hepatocellular carcinoma cell lines using region-specific multiplex-FISH probes. Cancer Lett.250, 92–99 (2007).
  • Kudo T, Asano J, Shimizu T et al. Different susceptibility to peroxisome proliferator-induced hepatocarcinogenesis in rats with polymorphic glutathione transferase genes. Cancer Sci.97, 703–709 (2006)
  • Llovet JM, Chen Y, Wurmbach E et al. A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis. Gastroenterology131, 1758–1767 (2006).
  • Anders RA, Yerian LM, Tretiakova M et al. cDNA microarray analysis of macroregenerative and dysplastic nodules in end-stage hepatitis C virus-induced cirrhosis. Am. J. Pathol.162, 991–1000 (2003).
  • Nam SW, Park JY, Ramasamy A et al. Molecular changes from dysplastic nodule to hepatocellular carcinoma through gene expression profiling. Hepatology42, 809–818 (2005).
  • Acevedo LG, Bieda M, Green R, Farnham PJ. Analysis of the mechanisms mediating tumor-specific changes in gene expression in human liver tumors. Cancer Res.68, 2641–2651 (2008).
  • Tellgren A, Wood TJ, Flores-Morales A et al. Differentially expressed transcripts in neoplastic hepatic nodules and neonatal rat liver studied by cDNA microarray analysis. Int. J. Cancer104, 131–138 (2003).
  • Suzuki S, Asamoto M, Tsujimura K, Shirai T. Specific differences in gene expression profile revealed by cDNA microarray analysis of glutathione S-transferase placental form (GST-P) immunohistochemically positive rat liver foci and surrounding tissue. Carcinogenesis25, 439–443 (2004).
  • Xu CS, Zhang SB, Chen XG, Rahman S. Correlation analysis of liver tumor-associated genes with liver regeneration. World J. Gastroenterol.13, 3323–3332 (2007).
  • Ogawa K, Asamoto M, Suzuki S et al. Downregulation of apoptosis revealed by laser microdissection and cDNA microarray analysis of related genes in rat liver preneoplastic lesions. Med. Mol. Morphol.38, 23–29 (2005).
  • Osada S, Naganawa A, Misonou M et al. Altered gene expression of transcriptional regulatory factors in tumor marker-positive cells during chemically induced hepatocarcinogenesis. Toxicol. Lett.167, 106–113 (2006).
  • Mazzantini RP, de Conti A, Moreno FS. Persistent and remodeling hepatic preneoplastic lesions present differences in cell proliferation and apoptosis, as well as in p53, Bcl-2 and NF-κB pathways. J. Cell. Biochem.103, 538–546 (2008).
  • Kirkland D, Aardema M, Henderson L, Müller L. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and noncarcinogens I. Sensitivity, specificity and relative predictivity. Mutat. Res.584, 1–256 (2005).
  • Kirkland D, Pfuhler S, Tweats D et al. How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: report of an ECVAM workshop. Mutat. Res.628, 31–55 (2007).
  • Gasch AP, Spellman PT, Kao CM et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell11, 4241–4257 (2000).
  • Jelinsky SA, Samson LD. Global response of Saccharomyces cerevisiae to an alkylating agent. Proc. Natl Acad. Sci. USA96, 1486–1491 (1999).
  • Ellinger-Ziegelbauer H, Stuart B, Wahle B et al. Characteristic expression profiles induced by genotoxic carcinogens in rat liver. Toxicol. Sci.77, 19–34 (2004).
  • Ellinger-Ziegelbauer H, Stuart B, Wahle B et al. Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver. Mutat. Res.575, 61–84 (2005).
  • Amundson SA, Do KT, Vinikoor L et al. Stress-specific signatures: expression profiling of p53 wild-type and -null human cells. Oncogene24, 4572–4579 (2005).
  • Dickinson DA, Warnes GR, Quievryn G et al. Differentiation of DNA reactive and non-reactive genotoxic mechanisms using gene expression profile analysis. Mutat. Res.549, 29–41 (2004).
  • Aubrecht J, Caba E. Gene expression profile analysis: an emerging approach to investigate mechanisms of genotoxicity. Pharmacogenomics6, 419–428 (2005).
  • Outinen PA, Sood SK, Pfeifer SI et al. Homocysteine-induced endoplasmic reticulum stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cells. Blood94, 959–967 (1999).
  • Hastwell PW, Chai LL, Roberts KJ et al. High-specificity and high-sensitivity genotoxicity assessment in a human cell line: validation of the GreenScreen HC GADD45α-GFP genotoxicity assay. Mutat. Res.607, 160–175 (2006).
  • Olaharski AJ, Kirchner S, Uppal H, Lin H, Kolaja K. Independent validation of the GreenScreen GADD45α-GFP indicator assay. Mutat. Res. (2008) (In Press).
  • Clingen PH, Wu JY, Miller J et al. Histone H2AX phosphorylation as a molecular pharmacological marker for DNA interstrand crosslink cancer chemotherapy. Biochem. Pharmacol.76, 19–27 (2008).
  • Rothkamm K, Löbrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc. Natl Acad. Sci. USA100, 5057–5062 (2003).
  • Olaharski AJ, Ji Z, Woo JY et al. The histone deacetylase inhibitor trichostatin A has genotoxic effects in human lymphoblasts in vitro. Toxicol. Sci.93, 341–347 (2006).
  • Cohen SM, Robinson D, MacDonald JS. Alternative models for carcinogenicity testing. Toxicol. Sci.64, 14–19 (2001).
  • Ito N, Tamano S, Shirai T. A medium-term rat liver bioassay for rapid in vivo detection of carcinogenic potential of chemicals. Cancer Sci.94, 3–8 (2003).
  • Yamasaki H, Ashby J, Bignami M et al. Nongenotoxic carcinogens: development of detection methods based on mechanisms: a European project. Mutat. Res.353, 47–63 (1996).
  • Mauthe RJ, Gibson DP, Bunch RT, Custer L. The syrian hamster embryo (SHE) cell transformation assay: review of the methods and results. Toxicol. Pathol.29(Suppl.), 138–146 (2001).
  • Lee Y, Buchanan BG, Mattison DM, Klopman G, Rosenkranz HS. Learning rules to predict rodent carcinogenicity of non-genotoxic chemicals. Mutat. Res.328, 127–149 (1995).
  • Contrera JF, Matthews EJ, Daniel Benz R. Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices. Regul. Toxicol. Pharmacol.38, 243–259 (2003).
  • Elcombe CR, Odum J, Foster JR et al. Prediction of rodent nongenotoxic carcinogenesis: evaluation of biochemical and tissue changes in rodents following exposure to nine nongenotoxic NTP carcinogens. Environ. Health Perspect.110, 363–375 (2002).
  • Allen DG, Pearse G, Haseman JK, Maronpot RR. Prediction of rodent carcinogenesis: an evaluation of prechronic liver lesions as forecasters of liver tumors in NTP carcinogenicity studies. Toxicol. Pathol.32, 393–401 (2004).
  • Tatematsu M, Tsuda H, Shirai T et al. Placental glutathione S-transferase (GST-P) as a new marker for hepatocarcinogenesis: in vivo short-term screening for hepatocarcinogens. Toxicol. Pathol.15, 60–68 (1987).
  • Kitchin KT, Brown JL, Kulkarni AP. Predicting rodent carcinogenicity of Ames test false positives by in vivo biochemical parameters. Mutat. Res.290, 155–164 (1993).
  • Kitchin KT, Brown JL, Kulkarni AP. Complementarity of genotoxic and nongenotoxic predictors of rodent carcinogenicity. Teratog. Carcinog. Mutagen.14, 83–100 (1994).
  • Cohen SM. Human carcinogenic risk evaluation: an alternative approach to the two-year rodent bioassay. Toxicol. Sci.80, 225–229 (2004).
  • Jacobs A. Prediction of 2-year carcinogenicity study results for pharmaceutical products: how are we doing. Toxicol. Sci.88, 18–23 (2005).
  • Pritchard JB, French JE, Davis BJ, Haseman JK. The role of transgenic mouse models in carcinogen identification. Environ. Health Perspect.111, 444–454 (2003)
  • Nuwaysir EF, Bittner M, Trent J et al. Microarrays and toxicology: the advent of toxicogenomics. Mol. Carcinog.24, 153–159 (1999).
  • van Delft JH, van Agen E, van Breda SG et al. Discrimination of genotoxic from non-genotoxic carcinogens by gene expression profiling. Carcinogenesis25, 1265–1276 (2004).
  • van Delft JH, van Agen E, van Breda SG et al. Comparison of supervised clustering methods to discriminate genotoxic from non-genotoxic carcinogens by gene expression profiling. Mutat. Res.575, 17–33 (2005).
  • Iida M, Anna CH, Hartis J et al. Changes in global gene and protein expression during early mouse liver carcinogenesis induced by non-genotoxic model carcinogens oxazepam and Wyeth-14,643. Carcinogenesis24, 757–770 (2003).
  • Iida M, Anna CH, Holliday WM et al. Unique patterns of gene expression changes in the liver after treatment of mice for 2 weeks with different known carcinogens and non-carcinogens. Carcinogenesis26, 689–699 (2005).
  • Kramer JA, Curtiss SW, Kolaja KL et al. Acute molecular markers of rodent hepatic carcinogenesis identified by transcription profiling. Chem. Res. Toxicol.17, 463–470 (2004).
  • Michel C, Roberts RA, Desdouets C et al. Characterization of an acute molecular marker of nongenotoxic rodent hepatocarcinogenesis by gene expression profiling in a long term clofibric acid study. Chem. Res. Toxicol.18, 611–618 (2005).
  • Fielden MR, Brennan R, Gollub J. A gene expression biomarker provides early prediction and mechanistic assessment of hepatic tumor induction by nongenotoxic chemicals. Toxicol. Sci.99, 90–100 (2007).
  • Nie AY, McMilliam M, Parker JB et al. Predictive toxicogenomics approaches reveal underlying molecular mechanisms of nongenotoxic carcinogenicity. Mol. Carcinog.45, 914–933 (2006).
  • Ellinger-Ziegelbauer H, Gmuender H, Bandenburg A, Ahr HJ. Prediction of a carcinogenic potential of rat hepatocarcinogens using toxicogenomics analysis of short-term in vivo studies. Mutat. Res.637, 23–39 (2008).
  • Fielden MR, Nie AY, McMillian M et al. Predictive Safety Testing Consortium Carcinogenicity Working Group. Inter-laboratory evaluation of genomic signatures for predicting carcinogenicity in the rat. Toxicol. Sci.103, 28–34 (2008).
  • Tsujimura K, Asamoto M, Suzuki S et al. Prediction of carcinogenic potential by a toxicogenomic approach using rat hepatoma cells. Cancer Sci.97, 1002–1010 (2006).
  • Thomas RS, O’Connell TM, Pluta L et al. Comparison of transcriptomic and metabonomic technologies for identifying biomarkers predictive of two-year rodent cancer bioassays. Toxicol. Sci.96, 40–46 (2007).
  • Thomas RS, Pluta L, Yang L, Halsey TA. Application of genomic biomarkers to predict increased lung tumor incidence in 2-year rodent cancer bioassays. Toxicol. Sci.97, 55–64 (2007).
  • Holsapple MP. Mode of action in relevance of rodent liver tumors to human cancer risk. Toxicol. Sci.89, 51–56 (2006).
  • McDonald JS. Human carcinogenic risk evaluation, part IV: assessment of human risk of cancer from chemical exposure using a global weight-of-evidence approach. Toxicol. Sci.82, 3–8 (2004).
  • Kawanishi S, Hiraku Y. Oxidative and nitrative DNA damage as biomarker for carcinogensis with special reference to inflammation. Antioxid. Redox Signal.8, 1047–1058 (2006).
  • Waters MD, Fostel JM. Toxicogenomics and systems toxicology: aims and prospects. Nat. Rev. Genet.5, 936–948 (2004).
  • Haworth R, McCormack N, Selway S et al. Calbindin D-28 and microtubule-associated protein-2: their use as sensitive immunohistochemical markers of cerebellar neurotoxicity in a regulatory toxicity study. Exp. Toxicol. Pathol.57, 419–426 (2006).
  • Goodsaid F. Are we ready for novel preclinical safety biomarkers? Preclinica2, 259–261 (2004)
  • Nioi P, Pardo IDR, Sherratt PJ, Snyder RD. Prediction of non-genotoxic carcinogenesis in rat using changes in gene expression following acute dosing. Chem. Biol. Interact.172, 206–215 (2008).
  • Valerio JG, Arvidson KB, Chanderbhan RF, Contrera JF. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Toxicol. Appl. Pharmacol.222, 1–16 (2007).
  • Mohan CG, Gandhi T, Garg D, Shinde R. Computer-assisted methods in chemical toxicity prediction. Mini Rev. Med. Chem.7, 499–507 (2007).
  • Patlewicz G, Rodford R, Walker JD. Quantitative structure–activity relationships for predicting mutagenicity and carcinogenicity. Environ. Toxicol. Chem.22, 1885–1893 (2003).
  • Benigni R, Conti L, Crebelli R et al. Simple and α,β-unsaturated aldehydes: correct prediction of genotoxic activity through structure–activity relationship models. Environ. Mol. Mutagen.46, 268–280 (2005).
  • Sistare F. An industry perspective on the added value of short-term carcinogenicity tests in pharmaceutical development. Society of Toxicology Presentation (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.