175
Views
9
CrossRef citations to date
0
Altmetric
Review

Pros and cons of methods used for the prediction of oral drug absorption

Pages 195-208 | Published online: 10 Jan 2014

References

  • Shargel L, Wu-Pong S, Yu A. Applied Biopharmaceutics and Pharmacokinetics (5th Edition). Mc-Graw Hill, NY, USA (2005).
  • Van de Waterbeemd H, Gifford E. ADMET in silico modeling: towards prediction paradise? Nat. Rev. Drug Discov.2(3), 192–204 (2003).
  • Kennedy T. Managing the drug discovery/development interface. Drug Disc. Today2, 436–444 (1997).
  • Lipka E, Amidon GL. Setting bioequivalence requirements for drug development based on preclinical data: optimizing oral drug delivery systems. J. Control Release62, 41–49 (1999).
  • Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res.12, 413–420 (1995).
  • Artursson P, Borchardt RT. Intestinal drug absorption and metabolism in cell cultures: caco-2 and beyond. Pharm. Res.14(12), 1655–1658 (1997).
  • Nicolaides E, Symillides M, Dressman JB, Reppas C. Biorelevant dissolution testing to predict the plasma profile of lipophilic drugs after oral administration. Pharm. Res.18(3), 380–388 (2001).
  • Bergstrom CAS. Computational models to predict aqueous drug solubility, permeability and intestinal absorption. Expert Opin. Drug Metab. Toxicol.1(4), 613–627 (2005).
  • Yoshida F, Topliss JG. QSAR model for drug human oral bioavailability. J. Med. Chem.43(13), 2575–2585 (2000).
  • Lipinski CA, Lombardo F, Dominy BW et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev.23(1–3), 3–25 (1997).
  • Lesko LJ, Rowland M, Peck CC, Blaschke TF. Optimizing the science of drug development: opportunities for better candidate selection and accelerated evaluation in humans. Pharm. Res.17(11), 1335–1344 (2000).
  • Willmann S, Lippert J, Schmitt W. From physicochemistry to absorption and distribution: predictive mechanistic modeling and computational tools. Expert Opin. Drug Metab. Toxicol.1(1), 159–168 (2005).
  • Wang J, Urban L. The impact of early ADME profiling on drug discovery and development strategy. Drug Discov.4, 73–86 (2004).
  • Lombardo F, Gifford E, Shalaeva M Y. In silico ADME prediction: data, models, facts, myths. Minirev. Med. Chem.3 (8), 861–875 (2003).
  • Bergström CAS. In silico predictions of drug solubility and permeability: two rate-limiting barriers to oral drug absorption. Basic Clin. Pharmacol. Toxicol.96, 156–161 (2005).
  • Yalkowsky SH, Johnson JL, Sanghvi T, Machatha SG. A ‘rule of unity’ for human intestinal absorption. Pharm. Res.23(10), 2475–2481 (2006).
  • Andrews CW, Bennett L, Yu LX. Predicting human oral bioavailability of a compound: development of a novel quantitative structure–bioavailability relationship. Pharm. Res.17(6), 639–644 (2000).
  • Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem.45, 2615–2623 (2002).
  • Perez MAC, Sanz MB, Torres LR, Avalos RG, Gonzalez MP. Diaz HG. A topological sub-structural approach for predicting human intestinal absorption of drugs. Eur. J. Med. Chem.39(11), 905–916 (2004).
  • Deconinck E, Xu QS, Put R, Coomans D, Massart DL, Vander Heyden Y. Prediction of gastro-intestinal absorption using multivariate adaptive regression splines. J. Pharm. Biomed Anal.39(5), 1021–1030 (2005).
  • Hou T, Wang J, Li Y. ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine. J. Chem. Inf. Model.47(6), 2408–2415 (2007).
  • Hou T, Wang J, Zhang W, Xu X. ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. J. Chem. Inf. Model.47(1), 208–218 (2007).
  • Hou T, Wang J, Zhang W, Xu X. ADME evaluation in drug discovery. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules? J. Chem. Inf. Model.47(2), 460–463 (2007).
  • Johnson K, Swindell A. Guidance in the setting of drug particle size specifications to minimize variability in absorption. Pharm. Res.13(12), 1795–1798 (1996).
  • Sun D, Yu LX, Hussain MA, Wall DA, Smith RL, Amidon GL. In vitro testing of drug absorption for drug ‘developability’ assessment: forming an interface between in vitro preclinical data and clinical outcome. Curr. Opin. Drug Discov. Dev.7, 75–85 (2004).
  • Parrott N, Lave T. Applications of physiologically based absorption models in drug discovery and development. Mol. Pharm.5(5), 760–775 (2008).
  • US FDA. Guidance for industry: waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. US Food and Drug Administration, Center for Drug Evaluation and Research, MD, USA (2000).
  • EMEA. Note for guidance on the investigation of bioavailability and bioequivalence. European Agency for Evaluation of Medicinal Products, Committee for Proprietary Medicinal Products, London, UK (2001).
  • Oh DM, Curl RL, Amidon GL. Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humans – a mathematical-model. Pharm. Res.10(2), 264–270 (1993).
  • Lobenberg R, Amidon GL. Modern bioavailability, bioequivalence and biopharmaceutics classification system: new scientific approaches to international regulatory standards. Eur. J. Pharm. Biopharm.50, 3–12 (2000).
  • Lennernäs H, Abrahamsson B. The use of biopharmaceutic classification of drugs in drug discovery and development: current status and future extension. In drug bioavailability, estimation of solubility, permeability, absorption and bioavailability. J. Pharm. Pharmacol.57, 273–285 (2005).
  • Polli JE, Yu LX, Cook JA et al. Summary workshop report: Biopharmaceutics Classification System – implementation challenges and extension opportunities. J. Pharm. Sci.93, 1375–1381 (2004).
  • Yu LX, Amidon GL, Polli JE. et al. Biopharmaceutics Classification System: the scientific basis for biowaiver extensions. Pharm. Res.19, 921–925 (2002).
  • Barends DM. Application and experience in the EU of BCS in the review of new generics. J. Pharm. Pharmacol.57(Suppl.), 117 (2005).
  • Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res.22(1), 11–23 (2005).
  • Rinaki E, Valsami G, Macheras P. Quantitative biopharmaceutics classification system: the central role of dose/solubility ratio. Pharm. Res.20, 1917–1925 (2003).
  • Fagerholm U. Evaluation and suggested improvements of the Biopharmaceutics Classification System (BCS). J. Pharm. Pharmacol.59, 751–757 (2007).
  • Ku MS. Use of the Biopharmaceutical Classification System in early drug development. AAPS J.10(1), 208–212 (2008).
  • Fagerholm U, Björnsson MA. Clinical pharmacokinetics of the cyclooxygenase inhibiting nitric oxide donator (CINOD). AZD3582. J. Pharm. Pharmacol.57(12), 1539–1554 (2005).
  • Yazdanian M, Briggs K, Jankovsky C, Hawi A. The “high solubility” definition of the current FDA Guidance on Biopharmaceutical Classification System may be too strict for acidic drugs. Pharm. Res.21, 293–299 (2004).
  • Canavan N. FDA and drug companies alike want ADME-tox testing performed earlier and earlier in a drug’s life cycle. Drug Discov. Dev.10, 34–36 (2007).
  • Hou TJ, Wang JM. Structure – ADME relationship: still a long way to go? Expert Opin. Drug Metab. Toxicol.4, 759–771 (2008).
  • Hou T, Wang J, Zhang W, Wang W, Xu X. Recent advances in computational prediction of drug absorption and permeability in drug discovery. Curr. Med. Chem.13(22), 2653–2667 (2006).
  • Ren S, Das A, Lien EJ. QSAR analysis of membrane permeability to organic compounds. J. Drug Target.4, 104–107 (1996).
  • Nook T, Doelker E, Buri P. Intestinal absorption kinetics of various model drugs in relation to partition coefficients. Int. J. Pharm.43, 119–129 (1988).
  • Palm K, Luthman K, Ungell Al, Strandlund G, Artursson P. Correlation of drug absorption with molecular surface properties. J. Pharm. Sci.85, 32–39 (1996).
  • Van De Waterbeemd H, Camenisch G, Folkers G, Raevsky OA. Estimation of Caco-2 cell permeability using calculated molecular descriptors. Quant. Struct-Act. Relat.15, 480–490 (1996).
  • Ungell AL, Nylander S, Bergstrand S, Sjöberg Å, Lennernäs H. Membrane transport of drugs in different regions of the intestinal tract of the rat. J. Pharm. Sci.87, 360–366 (1998).
  • Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Del. Rev.46, 27–43 (2001).
  • Palm K, Stenberg P, Luthman K, Artursson P. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm. Res.14, 568–571 (1997).
  • Willmann S, Schmitt W, Keldenich J, Lippert J, Dressman JB. A physiological model for the estimation of the fraction dose absorbed in humans. J. Med. Chem.47, 4022–4031 (2004).
  • Klopman G, Stefan LR, Saiakhov RD. ADME evaluation. A computer model for the prediction of intestinal absorption in humans. Eur. J. Pharm. Sci.17, 253–263 (2002).
  • Matsson P, Bergström CAS, Nagahara N, Tavelin S, Norinder U, Artursson P. Exploring the role of different drug transport routes in permeability screening. J. Med. Chem.48, 604–613 (2005).
  • Clark DE, Grootenhuis PDJ. Predicting passive transport in silicoin silico – history, hype, hope. Curr. Top. Med. Chem.3, 1193–1203 (2003).
  • Clark DE. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. Prediction of intestinal absorption. J. Pharm. Sci.88, 807–814 (1999).
  • Polli J. In vitro studies are sometimes better than conventional human pharmacokinetic in vivo studies in assessing bioequivalence of immediate-release solid oral dosage forms. AAPS J.10(2), 289–299 (2008).
  • Lennernäs H. Human intestinal permeability. J. Pharm. Sci.87(4), 403–410 (1998).
  • Hidalgo IJ. Assessing the absorption of new pharmaceuticals. Curr. Top. Med. Chem.1(5), 385–401 (2001).
  • He X. Sugawara M. Kobayashi M. Takekuma Y. Miyazaki K. An in vitro system for prediction of oral absorption of relatively water-soluble drugs and ester prodrugs. Int. J. Pharm.263, 35–44 (2003).
  • Sugawara M, Iseki K, Miyazaki K. H+ coupled transport of orally active cephalosporins lacking and α-amino group across brush-border membrane vesicles from rat small intestine. J. Pharm. Pharmacol.43, 433–435 (1991).
  • Tavelin S, Taipalensuu J, Söderberg L, Morrison R, Chong S, Artursson P. Prediction of the oral absorption of low-permeability drugs using small intestine-like 2/4/A1 cell monolayers. Pharm. Res.20, 397–405 (2003).
  • Hidalgo IJ, Borchardt RT. Transport of bile acids in a human intestinal epithelial cell line, Caco-2. Biochim. Biophys. Acta1035, 97–103 (1990).
  • Ong S, Liu H, Pidgeon C. Immobilized-artificial-membrane chromatography: measurements of membrane partition coefficient and predicting drug membrane permeability. J. Chromatogr. A728(1–2), 113–128 (1996).
  • Balimane PV, Chong S. Cell culture-based models for intestinal permeability: a critique. Drug Discov. Today10, 335–343 (2005).
  • Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: parallel artificial membrane permeability assay in the description of passive absorption processes. J. Med. Chem.41, 1007–1010 (1998).
  • Corti G, Maestrelli F, Cirri M, Zerrouk N, Mura P. Development and evaluation of an in vitro method for prediction of human drug absorption. II. Demonstration of the method suitability. Eur. J. Pharm. Sci.27, 354–362 (2006).
  • Kasim NA, Whitehouse M, Ramachandran C et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol. Pharm.1(1), 85–96 (2004).
  • Cao X, Gibbs ST, Fang L et al. Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model? Pharm. Res.23, 1675–1686 (2006).
  • LeCluyse EL, Sutton SC. In vitro models for selection of development candidates. Permeability studies to define mechanisms of absorption enhancement. Adv. Drug Deliv.23, 163–183 (1997).
  • Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos.16, 351–380 (1995).
  • Seithel A, Karlsson J, Hilgendorf C, Björquist A, Ungell AL. Variability in mRNA expression of ABC- and SCL-transporters in human intestinal cells: comparison between human segments and Caco-2 cells. Eur. J. Pharm. Sci.28, 291–299 (2006).
  • Neuhoff S, Ungell AL, Zamora I, Artursson P. pH dependent passive and active transport of acidic drugs across Caco-2 monolayers. Eur. J. Pharm. Res.25, 211–220 (2005).
  • Neuhoff S, Ungell AL, Zamora I, Artursson P. pH dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: implications for drug–drug interactions. Pharm. Res.20, 1141–1148 (2003).
  • Englund G, Rorsman F, Rönnblom A et al. Regional levels of drug transporters along the human intestinal tract: co-expression of ABC and SLC transporters and comparison with Caco-2. Eur. J. Pharm. Sci.29, 269–277 (2006).
  • Ingels F, Beck B, Oth M et al. Effect of simulated intestinal fluid on drug permeability estimation across Caco-2 monolayers. Int. J. Pharm.274(1–2), 221–232 (2004).
  • Lennernäs H, Palm K, Fagerholm U, Artursson P. Comparison between active and passive drug transport in human intestinal epithelial (Caco-2). cells in vitro and human jejunum in vivo. Int. J. Pharm.127, 103–107 (1996).
  • Yazdanian M, Glynn SL, Wright JL, Hawi A. Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm. Res.15, 1490–1494 (1998).
  • Grass GM, Sinko PJ. Physiologically-based pharmacokinetic simulation modeling. Adv. Drug Del. Rev.54, 433–451 (2002).
  • Parrott N, Lavé T. Prediction of intestinal absorption: comparative assessment of GastroPlus™ and IDEA™. Eur. J. Pharm. Sci.17, 51–61 (2002).
  • Alsenz J, Haenel E. Development of a 7-day, 96-well Caco-2 permeability assaywith high-throughput direct UV compound analysis. Pharm. Res.20(12), 1961–1969 (2003).
  • Grasset E, Pinto M, Dussaulx E, Zwebaum A, Desjeux JF. Epithelial properties of human colonic carcinoma cell line Caco-2: electrical parameters. Am. J. Physiol.247, C260–C267 (1984).
  • Ranaldi G, Islam K, Sambuy Y. D-cycloserine uses an active transport mechanism in the human intestinal cell line Caco-2. Antimicrob. Agents Chemother.38, 1239–1245 (1994).
  • Zheng L, Chen J, Zhu Y, Yang H, Elmquist W, Hu M. Comparison of the transport characteristics of D- and L-methionine in a human intestinal epithelial model (Caco-2). and in a perfused rat intestinal model. Pharm. Res.11, 1771–1776 (1994).
  • Balimane PV, Han Y, Chong S. Current industrial practices of assessing permeability and p-glycoprotein interaction. AAPS J.8(1), E1–E13 (2006).
  • Tavelin S, Taipalensuu J, Hallböök F, Vellonen KS, Moore V, Artursson P. An improved cell culture model based on 2/4/A1 cell monolayers for studies of intestinal drug transport: characterization of transport routes. Pharm. Res.20, 373–381 (2003).
  • Fagerholm U. Prediction of human pharmacokinetics – gastrointestinal absorption. J. Pharm. Pharmacol.59, 905–916 (2007).
  • Fagerholm U, Lindahl A, Lennernäs H. Regional intestinal permeability in rats of compounds with different physicochemical properties and transport mechanisms. J. Pharm. Pharmacol.49, 687–690 (1997).
  • USP 24. The United States Pharmacopeia, United States Pharmacopeial Convention, Inc. Rockville, MD, USA (2000).
  • Blanquet S, Zeijdner E, Beyssac E et al. A dynamic artificial gastrointestinal system for studying the behavior of orally administered drug dosage forms under various physiological conditions. Pharm. Res.21(4), 585–591 (2004).
  • Garbacz G, Wedemeyer RS, Nagel S et al. Irregular absorption profiles observed from diclofenac extended release tablets can be predicted using a dissolution test apparatus that mimics in vivo physical stresses. Eur. J. Pharm. Biopharm.70(2), 421–428 (2008).
  • Takano R, Sugano K, Higashida A et al. Oral absorption of poorly water-soluble drugs: computer simulation of fraction absorbed in humans from a miniscale dissolution test. Pharm. Res.23(6), 1144–1156 (2006).
  • Galia E, Nicolaides E, Hoerter D, Loebenberg R, Reppas C, Dressman JB. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm. Res.15, 698–705 (1998).
  • Nicolaides E, Galia E, Efthymiopoulos C, Dressman JB, Reppas C. Forecasting the in vivo performance of for low solubility drugs from their in vitro dissolution data. Pharm. Res.16(12), 1876–1882 (1999).
  • Löbenberg R, Krämer J, Shah VP, Amidon GL, Dressman JB. Dissolution testing as a prognostic tool for oral drug absorption: dissolution behavior of glibenclamide. Pharm. Res.17(4), 439–444 (2000).
  • Kossena GA, Boyd BJ, Porter CJ, Charman WN. Separation and characterization of the colloidal phases produced on digestion of common formulation lipids and assessment of their impact on the apparent solubility of selected poorly water-soluble drugs. J. Pharm. Sci.92(3), 634–648 (2003).
  • Kalantzi L, Goumas K, Kalioras V, Abrahamsson B, Dressman JB, Reppas C. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm. Res,23(1), 165–176 (2006).
  • Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm. Res.25(7), 1663–1676 (2008).
  • Dressman JB, Reppas C. In vitro–in vivo correlations for lipophilic, poorly water-soluble drugs. Eur. J. Pharm. Sci.11, S73–S80 (2000).
  • Dressman J, Amidon G, Reppas C, Shah V. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm. Res.15, 11–22 (1998).
  • Vertzoni M, Dressman J, Butler J, Hempenstall J, Reppas C. Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds. Eur. J. Pharm. Biopharm.60(3), 413–417 (2005).
  • Kostewicz ES, Brauns U, Becker R, Dressman JB. Forecasting the oral absorption behavior of poorly soluble weak bases using solubility and dissolution studies in biorelevant media. Pharm. Res.19(3), 345–349 (2002).
  • Sunesen VH, Pedersen BL, Kristensen HG, Mullertz A. In vivoin vitro correlations for a poorly soluble drug, danazol, using the flow-through dissolution method with biorelevant dissolution media. Eur. J. Pharm. Sci.24(4), 305–313 (2005).
  • Fotaki N, Symillides M, Reppas C. Canine versus in vitro data for predicting input profiles of L-sulpiride after oral administration. Eur. J. Pharm. Sci.26, 324–333 (2005).
  • Fotaki N, Symillides M, Reppas C. In vitro versus canine data for predicting input profiles of isosorbide-5-mononitrate from oral extended release products on a confidence interval basis. Eur. J. Pharm. Sci.24(1), 115–122 (2005).
  • Wei H, Löbenberg R. Biorelevant dissolution media as a predictive tool for glyburide a class II drug. Eur. J. Pharm. Sci.29, 45–52 (2006).
  • De Zwart LL, Rompelberg CJM, Sips AJAM, Welink J, Van Engelen JGM. RIVM report, anatomical and physiological differences between various species used in studies on the pharmacokinetics and toxicology of xenobiotics, a review of literature. Report no. 623860010. National Institute for Public Health and the Environment, Bilthoven, The Netherlands (1999).
  • Sutton SC. Companion animal physiology and dosage form performance. Adv. Drug Deliv. Rev.56, 1383–1398 (2004).
  • Chiou WL, Buehler PW. Comparison of oral absorption and bioavailablity of drugs between monkey and human. Pharm. Res.19(6), 868–874 (2002).
  • Chiou WL, Barve A. Linear correlation of the fraction of oral dose absorbed of 64 drugs between humans and rats. Pharm. Res.15(11), 1792–1795 (1998).
  • Davies B, Morris T. Commentary: physiological parameters in laboratory animals and humans. Pharm. Res.10(7), 1093–1095 (1993).
  • Fagerholm U, Johansson M, Lennernäs H. Comparison between permeability coefficients in rat and human jejunum. Pharm. Res.13, 1336–1342 (1996).
  • Zhao YH, Abraham MH, Le J et al. Evaluation of rat intestinal absorption data and correlation with human intestinal absorption. Eur. J. Med. Chem.38, 233–243 (2003).
  • Lin JH. Applications and limitations of interspecies scaling and in vitro extrapolation in pharmacokinetics. Drug Metab. Dispos.26, 1202–1212 (1998).
  • Ikegami K, Tagawa K, Narisawa S, Osawa T. Suitability of the cynomolgus monkey as an animal model for drug absorption studies of oral dosage forms from the viewpoint of gastrointestinal physiology. Biol. Pharm. Bull.26(10), 1442–1447 (2003).
  • Willmann S, Edginton AN, Dressman JB. Development and validation of a physiology-based model for the prediction of oral absorption in monkeys. Pharm. Res.24(7), 1275–1282 (2007).
  • Nishimura T, Amano N, Kubo Y et al. Asymmetric intestinal first-pass metabolism causes minimal oral bioavailability of midazolam in cynomolgus monkey. Drug Metab. Dispos.35(8), 1275–1284 (2007).
  • Kondo H, Shinoda T, Nakashima H, Watanabe T, Yokohama S. Characteristics of the gastric pH profiles of unfed and fed cynomolgus monkeys as pharmaceutical product development subjects. Biopharm. Drug Dispos.24, 45–51 (2003).
  • Dressman JB, Yamada K. Animal models for oral drug absorption. In: Pharmaceutical Bioequivalence. Welling P, Tse FL (Eds). Dekker, NY, USA 235–266 (1991).
  • Lane JS, Whang EE, Rigberg DA et al. Paracellular glucose transport plays a minor role in the unanesthetized dog. Am. J. Physiol.276(3), G789–G794 (1999).
  • He YL, Murby S, Warhurst G et al. Species differences in size discrimination in the paracellular pathway reflected by oral bioavailability of poly(ethylene glycol) and D-peptides. J. Pharm. Sci.87(5), 626–633 (1998).
  • Chiou WL, Jeong HY, Chung SM, Wu TC. Evaluation of using dog as an animal model to study the fraction of oral dose absorbed of 43 drugs in humans. Pharm. Res.17(2), 135–140 (2000).
  • Dressman JB. Comparison of canine and human gastrointestinal physiology. Pharm. Res.3(3), 123–131 (1986).
  • Kalantzi L, Persson E, Polentarutti B et al. Canine intestinal contents vs. simulated media for the assessment of solubility of two weak bases in the human small intestinal contents. Pharm. Res.23(6), 1373–1381 (2006).
  • Paulson SK, Vaughn MB, Jessen SM et al. Pharmacokinetics of celecoxib after oral administration in dogs and humans: effect of food and site of absorption. J. Pharmacol. Exp. Ther.297(2), 638–645 (2001).
  • Khoo SM, Edwards GA, Porter CJH, Charman WN. A conscious dog model for assessing the absorption, enterocyte-based metabolism, and intestinal lymphatic transport of halofantrine. J. Pharm. Sci.90(10), 1599–1607 (2001).
  • Sutton SC, Evans LA, Fortner JH, McCarthy JM, Sweeney K. Dog colonoscopy model for predicting human colon absorption. Pharm. Res.23, 1554–1563 (2006).
  • Gardner N, Haresign W, Spiller R et al. Development and validation of a pig model for colon-specific drug delivery. J. Pharm. Pharmacol.48(7), 689–693 (1996).
  • Persson EM, Gustafsson AS, Carlsson AS et al. The effects of food on the dissolution of poorly soluble drugs in human and in model small intestinal fluids. Pharm. Res.22(12), 2141–2151 (2005).
  • Yu LX, Amidon GL. A compartmental absorption and transit model for estimating oral drug absorption. Int. J. Pharm.186(2), 119–125 (1999).
  • Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv. Drug Deliv. Rev.50(Suppl. 1), S41–S67 (2001).
  • Willmann S, Schmitt W, Keldenich J, Dressman JB. A physiologic model for simulating gastrointestinal flow and drug absorption in rats. Pharm. Res.20(11), 1766–1771 (2003).
  • Wang JZ, Flanagan DR. General solution for diffusion controlled dissolution of spherical particles. 1. Theory. J. Pharm. Sci.88(7), 731–738 (1999).
  • Minekus M, Marteau P, Havenaar R, Huis in’t Veld JHJ. A multi compartmental dynamic computer-controlled model simulating the stomach and small intestine. ATLA23, 197–209 (1995).
  • Kuentz M. Drug absorption modeling as a tool to define the strategy in clinical formulation development. AAPS J.10(3), 473–479 (2008).
  • Jones HM, Parrott N, Ohlenbusch G, Lave T. Predicting pharmacokinetic food effects using biorelevant solubility media and physiologically based modeling. Clin. Pharmacokinet.45(12), 1213–1226 (2006).
  • Tubic M, Wagner D, Spahn-Langguth H, Bolger M, Langguth P. In silico modeling of non-linear drug absorption for the P-gp substrate talinolol and of consequences for the resulting pharmacodynamic effect. Pharm. Res.23(8), 1712–1720 (2006).
  • Peters SA, Hultin L. Early identification of drug-induced impairment of gastric emptying through physiologically based pharmacokinetic (PBPK) simulation of plasma concentration–time profiles in rat. J. Pharmacokinet. Pharmacodyn.35(1), 1–30 (2008).
  • Peters SA. Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration–time profiles. Clin. Pharmacokinet.47(4), 245–259 (2008).
  • Chaikin P, Rhodes GR, Bruno R, Rohatagi S, Natarajan C. Pharmacokinetics/pharmacodynamics in drug development: an industrial perspective. J. Clin. Pharmacol.40, 1428–1438 (2000).
  • Gieschke R, Steimer JL. Pharmacometrics modeling and simulation tools to improve decision making in clinical drug development. Eur. J. Drug Metab. Pharmacokinet.25(1), 49–58 (2000).
  • Colburn WA, Lee JW. Biomarkers, validation and pharmacokinetic– pharmacodynamic modeling. Clin. Pharmacokinet.42, 997–1022 (2003).
  • Edginton AN, Theil F, Schmitt W, Willmann S. Whole body physiologically-based pharmacokinetic models: their use in clinical drug development. Expert Opin. Drug Metab. Toxicol.4(9), 1143–1152 (2008).
  • Nestorov I. Whole-body physiologically based pharmacokinetic models. Expert Opin. Drug Metab. Toxicol.3(2), 235–249 (2007).
  • Ekins S, Wrighton S. Application of in silico approaches to predicting drug–drug interactions. J. Pharmacol. Toxicol. Methods45, 65–69 (2001).
  • Germani M, Crivori P, Rocchetti M et al. Evaluation of a physiologically-based pharmacokinetic approach for simulating the first-time-in-animal study. Basic Clin. Pharmacol. Toxicol.96(3), 254–256 (2005).
  • Bjorkman S, Wada DR, Berling BM, et al. Prediction of the disposition of midazolam in surgical patients by a physiologically based pharmacokinetic model. J. Pharm. Sci.90(9), 1226–1241 (2001).
  • Kremers P. In vitro tests for predicting drug–drug interactions: the need for validated procedure. Pharmacol. Toxicol.91, 209–217 (2002).
  • Rowland M, Balant L, Peck C. Physiologically based pharmacokinetics in drug development and regulatory science: a workshop report. AAPS J.6(1), 56–67 (2004).
  • Kerns EH, Di L. Multivariate pharmaceutical profiling for drug discovery. Curr. Top. Med. Chem.2, 87–98 (2002).
  • Yamashita F, Hashida M. In silico approaches for predicting ADME properties of drugs. Drug Metab. Pharmacokinet.19(5), 327–338 (2004).
  • Wishart DS. Improving early drug discovery through ADME modeling: an overview. Drugs R D8(6), 349–362 (2007).
  • Kassel DB. Applications of high-throughput ADME in drug discovery. Curr. Opin. Chem. Biol.8(3), 339–345 (2004).
  • Lüpfert C, Reichel A. Development and application of physiologically based pharmacokinetic-modeling tools to support drug discovery. Chem. Biodivers.2(11), 1462–1486 (2005).
  • Dickins M, Van de Waterbeemd H. Simulation models for drug disposition and drug interactions. DDT: Biosilico2(1), 38–45 (2004).
  • Butina D, Segall MD, Frankcombe K. Predicting ADME properties in silico: methods and models. Drug Discov. Today7(Suppl. 11), S83–S88 (2002).
  • Lin J, Sahakian DC, de Morais SM, Xu JJ, Polzer RJ, Winter SM. The role of absorption, distribution, metabolism, excretion and toxicity in drug discovery. Curr. Top. Med. Chem.3(10), 1125–1154 (2003).
  • Ekins S, Ecker GF, Chiba P, Swaan PW. Future directions for drug transporter modelling. Xenobiotica37(10–11), 1152–1170 (2007).
  • Goh LB, Spears KJ, Yao D et al. Endogenous drug transporters in in vitro and in vivo models for the prediction of drug disposition in man. Biochem. Pharmacol.64, 1569–1578 (2002).
  • Ayrton A, Morgan P. The role of transport proteins in drug absorption, distribution and excretion. Xenobiotica31, 469–497 (2001).
  • Zhang EY, Phelps MA, Cheng C, Ekins S, Swaan PW. Modeling of active transport systems. Adv. Drug Deliv. Rev.54, 329–354 (2002).
  • Paine MF, Hart HL, Ludington SS et al. The human intestinal cytochrome P450 ‘pie’. Drug Metab. Dispos.34(5), 880–886 (2006).
  • Yang J, Jamei M, Yeo KR et al. Prediction of intestinal first-pass drug metabolism. Curr. Drug Metab.8(7), 676–684 (2007).
  • Klotz U. Effect of age on pharmacokinetics and pharmacodynamics in man. Int. J. Clin. Pharmacol. Ther.36(11), 581–585 (1998).
  • Kearns GL, Reed MD. Clinical pharmacokinetics in infants and children: a reappraisal. Clin. Pharmacokinet.17(Suppl. 1), 29–67 (1989).
  • Zhou H. Pharmacokinetic strategies in deciphering atypical drug absorption profiles. J. Clin. Pharmacol.43, 211–227 (2003).
  • Hardman JG, Limbird LE, Gilman AG. Pharmacokinetic data. Goodman & Gilman’s The Pharmacological Basis of Therapeutics (10th Edition). McGraw-Hill, NY, USA, 1924 (2001).
  • Al-Fahemi JH, Cooper DL, Allan NL. Investigating the utility of momentum-space descriptors for predicting blood–brain barrier penetration. J. Mol. Graph. Model.26(3), 607–612 (2007).
  • Lessigiarska I, Pajeva I, Cronin MT, Worth AP. 3D QSAR investigation of the blood–brain barrier penetration of chemical compounds. SAR QSAR Environ. Res.16(1–2), 79–91 (2005).
  • Hou TJ, Xu XJ. ADME evaluation in drug discovery. 3. Modeling blood–brain barrier partitioning using simple molecular descriptors. J. Chem. Inf. Comput. Sci.4(2), 766–770 (2004).
  • Harmsen S, Meijerman I, Beijnen JH, Schellens JH. The role of nuclear receptors in pharmacokinetic drug–drug interactions in oncology. Cancer Treat. Rev.33(4), 369–380 (2007).
  • Wang J, Krudy G, Hou T, Zhang W, Holland G, Xu X. Development of reliable aqueous solubility models and their application in druglike analysis. J. Chem. Inf. Model.47(4), 1395–1404 (2007).
  • Hou TJ, Xia K, Zhang W, Xu XJ. ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J. Chem. Inf. Comput. Sci.44(1), 266–275 (2004).
  • Moda T, Torres LG, Carrara AE, Andricopulo AD. PK/DB: database for pharmacokinetic properties and predictive in silico ADME models, Bioinformatics24(19), 2270–2271 (2008).
  • Kesisoglou F, Wu Y. Understanding the effect of API properties on bioavailability through absorption modelling. AAPS J. (2009) (Epub ahead of print).
  • Dressman JB, Thelen K, Jantratid E. Towards quantitative prediction of oral drug absorption. Clin. Pharmacokinet.47(10), 655–667 (2008).
  • Okazaki A, Mano T, Sugano K. Theoretical dissolution model of poly-disperse drug particles in biorelevant media. J. Pharm. Sci.97, 1843–1852 (2008).
  • Lavé T, Parrott N, Grimm HP, Fleury A, Reddy M. Challenges and opportunities with modeling and simulation in drug discovery and drug development. Xenobiotica37(10–11), 1295–1310 (2007).
  • Bains W, Gilbert R, Sviridenko L et al. Evolutionary computational methods to predict oral bioavailability QSPRs. Curr. Opin. Drug Disc. Dev.5, 44–51 (2002).
  • Michelson S. The impact of systems biology and biosimulation on drug discovery and development. Mol. Biosyst.2(6–7), 288–291 (2006).
  • Kansal AR, Trimmer J. Application of predictive biosimulation within pharmaceutical clinical development: examples of significance for translational medicine and clinical trial design. Syst. Biol. (Stevenage)152(4), 214–220 (2005).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.