220
Views
7
CrossRef citations to date
0
Altmetric
Review

Novel disease-modifying therapeutics for the treatment of Alzheimer’s disease

&
Pages 423-442 | Published online: 10 Jan 2014

References

  • Querfurth HW, LaFerla FM. Alzheimer’s disease. N. Engl. J. Med. 362(4), 329–344 (2010).
  • Selkoe DJ; American College of Physicians; American Physiological Society. Alzheimer disease: mechanistic understanding predicts novel therapies. Ann. Intern. Med. 140(8), 627–638 (2004).
  • McLean CA, Cherny RA, Fraser FW et al. Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46(6), 860–866 (1999).
  • Cummings JL. Alzheimer’s disease. N. Engl. J. Med. 351(1), 56–67 (2004).
  • Harris ME, Hensley K, Butterfield DA, Leedle RA, Carney JM. Direct evidence of oxidative injury produced by the Alzheimer’s β-amyloid peptide (1-40) in cultured hippocampal neurons. Exp. Neurol. 131(2), 193–202 (1995).
  • Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatr. 66(2), 137–147 (1999).
  • Hyman BT. Amyloid-dependent and amyloid-independent stages of Alzheimer disease. Arch. Neurol. 68(8), 1062–1064 (2011).
  • Prusiner SB. Cell biology. A unifying role for prions in neurodegenerative diseases. Science 336(6088), 1511–1513 (2012).
  • Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 277(10), 813–817 (1997).
  • Savva GM, Wharton SB, Ince PG, Forster G, Matthews FE, Brayne C; Medical Research Council Cognitive Function and Ageing Study. Age, neuropathology, and dementia. N. Engl. J. Med. 360(22), 2302–2309 (2009).
  • Lee VM. Disruption of the cytoskeleton in Alzheimer’s disease. Curr. Opin. Neurobiol. 5(5), 663–668 (1995).
  • Castello MA, Soriano S. Rational heterodoxy: cholesterol reformation of the amyloid doctrine. Ageing Res. Rev. 12(1), 282–288 (2013).
  • Sabbagh JJ, Kinney JW, Cummings JL. Animal systems in the development of treatments for Alzheimer’s disease: challenges, methods, and implications. Neurobiol. Aging 34(1), 169–183 (2013).
  • Driscoll M, Gerstbrein B. Dying for a cause: invertebrate genetics takes on human neurodegeneration. Nat. Rev. Genet. 4(3), 181–194 (2003).
  • Sarasa M, Pesini P. Natural non-trasgenic animal models for research in Alzheimer’s disease. Curr. Alzheimer Res. 6(2), 171–178 (2009).
  • Lewis J, Dickson DW, Lin WL et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293(5534), 1487–1491 (2001).
  • Li R, Lindholm K, Yang LB et al. Amyloid β peptide load is correlated with increased β-secretase activity in sporadic Alzheimer’s disease patients. Proc. Natl Acad. Sci. USA 101(10), 3632–3637 (2004).
  • Mawuenyega KG, Sigurdson W, Ovod V et al. Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 330(6012), 1774 (2010).
  • Kivipelto M, Ngandu T, Laatikainen T, Winblad B, Soininen H, Tuomilehto J. Risk score for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population-based study. Lancet Neurol. 5(9), 735–741 (2006).
  • Forette F, Seux ML, Staessen JA et al. Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet 352(9137), 1347–1351 (1998).
  • Tzourio C, Anderson C, Chapman N et al.; PROGRESS Collaborative Group. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch. Intern. Med. 163(9), 1069–1075 (2003).
  • Peters R, Beckett N, Forette F et al.; HYVET investigators. Incident dementia and blood pressure lowering in the Hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial. Lancet Neurol. 7(8), 683–689 (2008).
  • Gorelick PB, Scuteri A, Black SE et al.; American Heart Association Stroke Council, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 42(9), 2672–2713 (2011).
  • Bentley P, Driver J, Dolan RJ. Modulation of fusiform cortex activity by cholinesterase inhibition predicts effects on subsequent memory. Brain 132(Pt 9), 2356–2371 (2009).
  • Seltzer B. Donepezil: an update. Expert Opin. Pharmacother. 8(7), 1011–1023 (2007).
  • Birks J, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst. Rev. 1, CD001190 (2006).
  • Farlow MR, Salloway S, Tariot PN et al. Effectiveness and tolerability of high-dose (23 mg/d) versus standard-dose (10 mg/d) donepezil in moderate to severe Alzheimer’s disease: a 24-week, randomized, double-blind study. Clin. Ther. 32(7), 1234–1251 (2010).
  • Onor ML, Trevisiol M, Aguglia E. Rivastigmine in the treatment of Alzheimer’s disease: an update. Clin. Interv. Aging 2(1), 17–32 (2007).
  • Winblad B, Grossberg G, Frölich L et al. IDEAL: a 6-month, double-blind, placebo-controlled study of the first skin patch for Alzheimer disease. Neurology 69(4 Suppl. 1), S14–S22 (2007).
  • Birks J, Grimley Evans J, Iakovidou V, Tsolaki M, Holt FE. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst. Rev. 2, CD001191 (2009).
  • Cummings J, Froelich L, Black SE et al. Randomized, double-blind, parallel-group, 48-week study for efficacy and safety of a higher-dose rivastigmine patch (15 vs. 10 cm²) in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 33(5), 341–353 (2012).
  • Robinson DM, Plosker GL. Galantamine extended release in Alzheimer’s disease: profile report. Drugs Aging 23(10), 839–842 (2006).
  • Loy C, Schneider L. Galantamine for Alzheimer’s disease and mild cognitive impairment. Cochrane Database Syst. Rev. 1, CD001747 (2006).
  • Erkinjuntti T, Kurz A, Gauthier S, Bullock R, Lilienfeld S, Damaraju CV. Efficacy of galantamine in probable vascular dementia and Alzheimer’s disease combined with cerebrovascular disease: a randomised trial. Lancet 359(9314), 1283–1290 (2002).
  • Hogan DB, Goldlist B, Naglie G, Patterson C. Comparison studies of cholinesterase inhibitors for Alzheimer’s disease. Lancet Neurol. 3(10), 622–626 (2004).
  • Hogan DB, Bailey P, Carswell A et al. Management of mild to moderate Alzheimer’s disease and dementia. Alzheimers. Dement. 3(4), 355–384 (2007).
  • Massoud F, Desmarais JE, Gauthier S. Switching cholinesterase inhibitors in older adults with dementia. Int. Psychogeriatr. 23(3), 372–378 (2011).
  • Kavirajan H. Memantine: a comprehensive review of safety and efficacy. Expert Opin. Drug Saf. 8(1), 89–109 (2009).
  • McShane R, Areosa Sastre A, Minakaran N. Memantine for dementia. Cochrane Database Syst. Rev. 2, CD003154 (2006).
  • Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I; Memantine Study Group. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 291(3), 317–324 (2004).
  • Howard R, McShane R, Lindesay J et al. Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N. Engl. J. Med. 366(10), 893–903 (2012).
  • Rountree SD, Atri A, Lopez OL, Doody RS. Effectiveness of antidementia drugs in delaying Alzheimer’s disease progression. Alzheimers. Dement. 9(3), 338–345 (2013).
  • Doody RS, Geldmacher DS, Gordon B, Perdomo CA, Pratt RD; Donepezil Study Group. Open-label, multicenter, Phase 3 extension study of the safety and efficacy of donepezil in patients with Alzheimer disease. Arch. Neurol. 58(3), 427–433 (2001).
  • Raschetti R, Albanese E, Vanacore N, Maggini M. Cholinesterase inhibitors in mild cognitive impairment: a systematic review of randomised trials. PLoS Med. 4(11), e338 (2007).
  • Doody RS. We should not distinguish between symptomatic and disease-modifying treatments in Alzheimer’s disease drug development. Alzheimers. Dement. 4(1 Suppl. 1), S21–S25 (2008).
  • Blennow K. Biomarkers in Alzheimer’s disease drug development. Nat. Med. 16(11), 1218–1222 (2010).
  • Autio H, Mätlik K, Rantamäki T et al. Acetylcholinesterase inhibitors rapidly activate Trk neurotrophin receptors in the mouse hippocampus. Neuropharmacology 61(8), 1291–1296 (2011).
  • Bailey JA, Ray B, Greig NH, Lahiri DK. Rivastigmine lowers Aβ and increases sAPPa levels, which parallel elevated synaptic markers and metabolic activity in degenerating primary rat neurons. PLoS ONE 6(7), e21954 (2011).
  • Ott BR, Owens NJ. Complementary and alternative medicines for Alzheimer’s disease. J. Geriatr. Psychiatry Neurol. 11(4), 163–173 (1998).
  • Ha GT, Wong RK, Zhang Y. Huperzine a as potential treatment of Alzheimer’s disease: an assessment on chemistry, pharmacology, and clinical studies. Chem. Biodivers. 8(7), 1189–1204 (2011).
  • Wang Y, Tang XC, Zhang HY. Huperzine A alleviates synaptic deficits and modulates amyloidogenic and nonamyloidogenic pathways in APPswe/PS1dE9 transgenic mice. J. Neurosci. Res. 90(2), 508–517 (2012).
  • Rafii MS, Walsh S, Little JT et al.; Alzheimer’s Disease Cooperative Study. A Phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology 76(16), 1389–1394 (2011).
  • Thatte U. Phenserine Axonyx. Curr. Opin. Investig. Drugs 6(7), 729–739 (2005).
  • Becker RE. Lessons from Darwin: 21st century designs for clinical trials. Curr. Alzheimer Res. 4(4), 458–467 (2007).
  • Kadir A, Andreasen N, Almkvist O et al. Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer’s disease. Ann. Neurol. 63(5), 621–631 (2008).
  • Nordberg A. Amyloid imaging in early detection of Alzheimer’s disease. Neurodegener. Dis. 7(1-3), 136–138 (2010).
  • Shanks M, Kivipelto M, Bullock R, Lane R. Cholinesterase inhibition: is there evidence for disease-modifying effects? Curr. Med. Res. Opin. 25(10), 2439–2446 (2009).
  • Farlow M, Anand R, Messina J Jr, Hartman R, Veach J. A 52-week study of the efficacy of rivastigmine in patients with mild to moderately severe Alzheimer’s disease. Eur. Neurol. 44(4), 236–241 (2000).
  • Raskind MA, Peskind ER, Wessel T, Yuan W. Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. The Galantamine USA-1 Study Group. Neurology 54(12), 2261–2268 (2000).
  • Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron 6(4), 487–498 (1991).
  • Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054), 184–185 (1992).
  • Glabe CG. Structural classification of toxic amyloid oligomers. J. Biol. Chem. 283(44), 29639–29643 (2008).
  • LaFerla FM, Green KN, Oddo S. Intracellular amyloid-β in Alzheimer’s disease. Nat. Rev. Neurosci. 8(7), 499–509 (2007).
  • Tam JH, Pasternak SH. Amyloid and Alzheimer’s disease: inside and out. Can. J. Neurol. Sci. 39(3), 286–298 (2012).
  • Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8(2), 101–112 (2007).
  • Comery TA, Martone RL, Aschmies S et al. Acute γ-secretase inhibition improves contextual fear conditioning in the Tg2576 mouse model of Alzheimer’s disease. J. Neurosci. 25(39), 8898–8902 (2005).
  • Schenk D, Basi GS, Pangalos MN. Treatment strategies targeting amyloid ß-protein. Cold Spring Harb. Perspect. Med. 2(9), a006387 (2012).
  • Thathiah A, Spittaels K, Hoffmann M et al. The orphan G protein-coupled receptor 3 modulates amyloid-β peptide generation in neurons. Science 323(5916), 946–951 (2009).
  • Ni Y, Zhao X, Bao G et al. Activation of β2-adrenergic receptor stimulates γ-secretase activity and accelerates amyloid plaque formation. Nat. Med. 12(12), 1390–1396 (2006).
  • Teng L, Zhao J, Wang F, Ma L, Pei G. A GPCR/secretase complex regulates β- and γ-secretase specificity for Aβ production and contributes to AD pathogenesis. Cell Res. 20(2), 138–153 (2010).
  • Cai Z, Ratka A. Opioid system and Alzheimer’s disease. Neuromolecular Med. 14(2), 91–111 (2012).
  • Thathiah A, De Strooper B. The role of G protein-coupled receptors in the pathology of Alzheimer’s disease. Nat. Rev. Neurosci. 12(2), 73–87 (2011).
  • Thathiah A, Horré K, Snellinx A et al. β-arrestin 2 regulates Aβ generation and γ-secretase activity in Alzheimer’s disease. Nat. Med. 19(1), 43–49 (2013).
  • Kuhn PH, Wang H, Dislich B et al. ADAM10 is the physiologically relevant, constitutive α-secretase of the amyloid precursor protein in primary neurons. EMBO J. 29(17), 3020–3032 (2010).
  • Vingtdeux V, Marambaud P. Identification and biology of a-secretase. J. Neurochem. 120(Suppl. 1), 34–45 (2012).
  • Sennvik K, Fastbom J, Blomberg M, Wahlund LO, Winblad B, Benedikz E. Levels of α- and β-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer’s disease patients. Neurosci. Lett. 278(3), 169–172 (2000).
  • Nitsch RM, Slack BE, Wurtman RJ, Growdon JH. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258(5080), 304–307 (1992).
  • Davis AA, Fritz JJ, Wess J, Lah JJ, Levey AI. Deletion of M1 muscarinic acetylcholine receptors increases amyloid pathology in vitro and in vivo. J. Neurosci. 30(12), 4190–4196 (2010).
  • Fisher A. M1 muscarinic agonists target major hallmarks of Alzheimer’s disease--the pivotal role of brain M1 receptors. Neurodegener Dis. 5(3–4), 237–240 (2008).
  • Bodick NC, Offen WW, Levey AI et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch. Neurol. 54(4), 465–473 (1997).
  • Postina R. Activation of a-secretase cleavage. J. Neurochem. 120(Suppl. 1), 46–54 (2012).
  • Fisher A. Cholinergic modulation of amyloid precursor protein processing with emphasis on M1 muscarinic receptor: perspectives and challenges in treatment of Alzheimer’s disease. J. Neurochem. 120(Suppl. 1), 22–33 (2012).
  • Codony X, Vela JM, Ramírez MJ. 5-HT(6) receptor and cognition. Curr. Opin. Pharmacol. 11(1), 94–100 (2011).
  • Hamon M, Doucet E, Lefèvre K et al. Antibodies and antisense oligonucleotide for probing the distribution and putative functions of central 5-HT6 receptors. Neuropsychopharmacology 21(2 Suppl.), 68S–76S (1999).
  • Ivachtchenko AV, Ivanenkov YA, Tkachenko SE. 5-hydroxytryptamine subtype 6 receptor modulators: a patent survey. Expert Opin. Ther. Pat. 20(9), 1171–1196 (2010).
  • Marazziti D, Baroni S, Borsini F, Picchetti M, Falaschi V, Catena-Dell Osso M. Serotonin receptors of type 6 (5-HT6): from neuroscience to clinical pharmacology. Curr. Med. Chem. 20(3), 371–377 (2012).
  • Cirrito JR, Disabato BM, Restivo JL et al. Serotonin signaling is associated with lower amyloid-β levels and plaques in transgenic mice and humans. Proc. Natl Acad. Sci. USA 108(36), 14968–14973 (2011).
  • Marcade M, Bourdin J, Loiseau N et al. Etazolate, a neuroprotective drug linking GABA(A) receptor pharmacology to amyloid precursor protein processing. J. Neurochem. 106(1), 392–404 (2008).
  • Drott J, Desire L, Drouin D, Pando M, Haun F. Etazolate improves performance in a foraging and homing task in aged rats. Eur. J. Pharmacol. 634(1–3), 95–100 (2010).
  • Vellas B, Sol O, Snyder PJ et al.; EHT0202/002 study group. EHT0202 in Alzheimer’s disease: a 3-month, randomized, placebo-controlled, double-blind study. Curr. Alzheimer Res. 8(2), 203–212 (2011).
  • Etcheberrigaray R, Tan M, Dewachter I et al. Therapeutic effects of PKC activators in Alzheimer’s disease transgenic mice. Proc. Natl Acad. Sci. USA 101(30), 11141–11146 (2004).
  • Hongpaisan J, Sun MK, Alkon DL. PKC e activation prevents synaptic loss, Aβ elevation, and cognitive deficits in Alzheimer’s disease transgenic mice. J. Neurosci. 31(2), 630–643 (2011).
  • Kim H, Han SH, Quan HY et al. Bryostatin-1 promotes long-term potentiation via activation of PKCa and PKCe in the hippocampus. Neuroscience 226, 348–355 (2012).
  • Abraham I, El Sayed K, Chen ZS, Guo H. Current status on marine products with reversal effect on cancer multidrug resistance. Mar. Drugs 10(10), 2312–2321 (2012).
  • Sun M, Zhou T, Zhou L et al. Formononetin protects neurons against hypoxia-induced cytotoxicity through upregulation of ADAM10 and sAßPPa. J. Alzheimers Dis. 28(4), 795–808 (2012).
  • Ricciarelli R, Canepa E, Marengo B et al. Cholesterol and Alzheimer’s disease: a still poorly understood correlation. IUBMB Life 64(12), 931–935 (2012).
  • Simons M, Keller P, Dichgans J, Schulz JB. Cholesterol and Alzheimer’s disease: is there a link? Neurology 57(6), 1089–1093 (2001).
  • Hoglund K, Thelen KM, Syversen S et al. The effect of simvastatin treatment on the amyloid precursor protein and brain cholesterol metabolism in patients with Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 19(5–6), 256–265 (2005).
  • Boimel M, Grigoriadis N, Lourbopoulos A et al. Statins reduce the neurofibrillary tangle burden in a mouse model of tauopathy. J. Neuropathol. Exp. Neurol. 68(3), 314–325 (2009).
  • Duong T, Nikolaeva M, Acton PJ. C-reactive protein-like immunoreactivity in the neurofibrillary tangles of Alzheimer’s disease. Brain Res. 749(1), 152–156 (1997).
  • Strandberg TE, Vanhanen H, Tikkanen MJ. Effect of statins on C-reactive protein in patients with coronary artery disease. Lancet 353(9147), 118–119 (1999).
  • Carlsson CM, Gleason CE, Hess TM et al. Effects of simvastatin on cerebrospinal fluid biomarkers and cognition in middle-aged adults at risk for Alzheimer’s disease. J. Alzheimers Dis. 13(2), 187–197 (2008).
  • Sparks DL, Sabbagh MN, Connor DJ et al. Atorvastatin for the treatment of mild to moderate Alzheimer disease: preliminary results. Arch. Neurol. 62(5), 753–757 (2005).
  • Feldman HH, Doody RS, Kivipelto M et al.; LEADe Investigators. Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease: LEADe. Neurology 74(12), 956–964 (2010).
  • Sano M, Bell KL, Galasko D et al. A randomized, double-blind, placebo-controlled trial of simvastatin to treat Alzheimer disease. Neurology 77(6), 556–563 (2011).
  • Trompet S, van Vliet P, de Craen AJ et al. Pravastatin and cognitive function in the elderly. Results of the PROSPER study. J. Neurol. 257(1), 85–90 (2010).
  • McGuinness B, O’Hare J, Craig D, Bullock R, Malouf R, Passmore P. Statins for the treatment of dementia. Cochrane Database Syst. Rev. 8, CD007514 (2010).
  • Vassar R, Bennett BD, Babu-Khan S et al. β-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440), 735–741 (1999).
  • Sinha S, Anderson JP, Barbour R et al. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature 402(6761), 537–540 (1999).
  • Yan R, Bienkowski MJ, Shuck ME et al. Membrane-anchored aspartyl protease with Alzheimer’s disease β-secretase activity. Nature 402(6761), 533–537 (1999).
  • Hussain I, Powell D, Howlett DR et al. Identification of a novel aspartic protease (Asp 2) as β-secretase. Mol. Cell. Neurosci. 14(6), 419–427 (1999).
  • Vassar R. The β-secretase, BACE: a prime drug target for Alzheimer’s disease. J. Mol. Neurosci. 17(2), 157–170 (2001).
  • Rosenberg RN. Explaining the cause of the amyloid burden in Alzheimer disease. Arch. Neurol. 59(9), 1367–1368 (2002).
  • Fukumoto H, Cheung BS, Hyman BT, Irizarry MC. β-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch. Neurol. 59(9), 1381–1389 (2002).
  • Zetterberg H, Andreasson U, Hansson O et al. Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease. Arch. Neurol. 65(8), 1102–1107 (2008).
  • Eder J, Hommel U, Cumin F, Martoglio B, Gerhartz B. Aspartic proteases in drug discovery. Curr. Pharm. Des. 13(3), 271–285 (2007).
  • Fleck D, Garratt AN, Haass C, Willem M. BACE1 dependent neuregulin processing: review. Curr. Alzheimer Res. 9(2), 178–183 (2012).
  • Ohno M, Sametsky EA, Younkin LH et al. BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease. Neuron 41(1), 27–33 (2004).
  • Qiu WQ, Walsh DM, Ye Z et al. Insulin-degrading enzyme regulates extracellular levels of amyloid β-protein by degradation. J. Biol. Chem. 273(49), 32730–32738 (1998).
  • Sastre M, Dewachter I, Rossner S et al. Nonsteroidal anti-inflammatory drugs repress β-secretase gene promoter activity by the activation of PPARγ. Proc. Natl Acad. Sci. USA 103(2), 443–448 (2006).
  • Landreth G, Jiang Q, Mandrekar S, Heneka M. PPARgamma agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics 5(3), 481–489 (2008).
  • Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB. Diabetes mellitus and Alzheimer’s disease: shared pathology and treatment? Br. J. Clin. Pharmacol. 71(3), 365–376 (2011).
  • Hanyu H, Sato T, Kiuchi A, Sakurai H, Iwamoto T. Pioglitazone improved cognition in a pilot study on patients with Alzheimer’s disease and mild cognitive impairment with diabetes mellitus. J. Am. Geriatr. Soc. 57(1), 177–179 (2009).
  • Sato T, Hanyu H, Hirao K, Kanetaka H, Sakurai H, Iwamoto T. Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease. Neurobiol. Aging 32(9), 1626–1633 (2011).
  • Watson GS, Cholerton BA, Reger MA et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am. J. Geriatr. Psychiatry 13(11), 950–958 (2005).
  • Risner ME, Saunders AM, Altman JF et al.; Rosiglitazone in Alzheimer’s Disease Study Group. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J. 6(4), 246–254 (2006).
  • Gold M, Alderton C, Zvartau-Hind M et al. Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study. Dement. Geriatr. Cogn. Disord. 30(2), 131–146 (2010).
  • Salomone S, Caraci F, Leggio GM, Fedotova J, Drago F. New pharmacological strategies for treatment of Alzheimer’s disease: focus on disease modifying drugs. Br. J. Clin. Pharmacol. 73(4), 504–517 (2012).
  • Mandrekar-Colucci S, Karlo JC, Landreth GE. Mechanisms underlying the rapid peroxisome proliferator-activated receptor-?-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease. J. Neurosci. 32(30), 10117–10128 (2012).
  • Mandrekar-Colucci S, Landreth GE. Nuclear receptors as therapeutic targets for Alzheimer’s disease. Expert Opin. Ther. Targets 15(9), 1085–1097 (2011).
  • Zou L, Wang Z, Shen L et al. Receptor tyrosine kinases positively regulate BACE activity and Amyloid-β production through enhancing BACE internalization. Cell Res. 17(5), 389–401 (2007).
  • Zhang YW, Xu H. Alteration of β-secretase traffic by the receptor tyrosine kinase signaling pathway – a new mechanism for regulating Alzheimer’s β-amyloid production. Cell Res. 17(5), 385–386 (2007).
  • Takahashi H, Fukumoto H, Maeda R, Terauchi J, Kato K, Miyamoto M. Ameliorative effects of a non-competitive BACE1 inhibitor TAK-070 on Aβ peptide levels and impaired learning behavior in aged rats. Brain Res. 1361, 146–156 (2010).
  • Fukumoto H, Takahashi H, Tarui N et al. A noncompetitive BACE1 inhibitor TAK-070 ameliorates Aβ pathology and behavioral deficits in a mouse model of Alzheimer’s disease. J. Neurosci. 30(33), 11157–11166 (2010).
  • Chang WP, Huang X, Downs D et al. β-secretase inhibitor GRL-8234 rescues age-related cognitive decline in APP transgenic mice. FASEB J. 25(2), 775–784 (2011).
  • May PC, Dean RA, Lowe SL et al. Robust central reduction of amyloid-β in humans with an orally available, non-peptidic β-secretase inhibitor. J. Neurosci. 31(46), 16507–16516 (2011).
  • Jeppsson F, Eketjäll S, Janson J et al. Discovery of AZD3839, a potent and selective BACE1 inhibitor clinical candidate for the treatment of Alzheimer disease. J. Biol. Chem. 287(49), 41245–41257 (2012).
  • Kaether C, Haass C, Steiner H. Assembly, trafficking and function of γ-secretase. Neurodegener. Dis. 3(4–5), 275–283 (2006).
  • Beel AJ, Sanders CR. Substrate specificity of γ-secretase and other intramembrane proteases. Cell. Mol. Life Sci. 65(9), 1311–1334 (2008).
  • Barten DM, Meredith JE Jr, Zaczek R, Houston JG, Albright CF. γ-secretase inhibitors for Alzheimer’s disease: balancing efficacy and toxicity. Drugs R. D. 7(2), 87–97 (2006).
  • Shen J, Kelleher RJ 3rd. The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc. Natl Acad. Sci. USA 104(2), 403–409 (2007).
  • Henley DB, May PC, Dean RA, Siemers ER. Development of semagacestat (LY450139), a functional γ-secretase inhibitor, for the treatment of Alzheimer’s disease. Expert Opin. Pharmacother. 10(10), 1657–1664 (2009).
  • Siemers E, Skinner M, Dean RA et al. Safety, tolerability, and changes in amyloid β concentrations after administration of a γ-secretase inhibitor in volunteers. Clin. Neuropharmacol. 28(3), 126–132 (2005).
  • Siemers ER, Dean RA, Friedrich S et al. Safety, tolerability, and effects on plasma and cerebrospinal fluid amyloid-β after inhibition of γ-secretase. Clin. Neuropharmacol. 30(6), 317–325 (2007).
  • Fleisher AS, Raman R, Siemers ER et al. Phase 2 safety trial targeting amyloid β production with a γ-secretase inhibitor in Alzheimer disease. Arch. Neurol. 65(8), 1031–1038 (2008).
  • Bateman RJ, Siemers ER, Mawuenyega KG et al. A γ-secretase inhibitor decreases amyloid-β production in the central nervous system. Ann. Neurol. 66(1), 48–54 (2009).
  • Lilly E. Lilly halts development of semagacestat for Alzheimer’s disease based on preliminary results of Phase III clinical trials. (2010).
  • Samson K. NerveCenter: Phase III Alzheimer trial halted: Search for therapeutic biomarkers continues. Ann. Neurol. 68(4), A9–A12 (2010).
  • Schor NF. What the halted phase III γ-secretase inhibitor trial may (or may not) be telling us. Ann. Neurol. 69(2), 237–239 (2011).
  • Freeman SH, Raju S, Hyman BT, Frosch MP, Irizarry MC. Plasma Aβ levels do not reflect brain Aβ levels. J. Neuropathol. Exp. Neurol. 66(4), 264–271 (2007).
  • Hansson O, Zetterberg H, Vanmechelen E et al. Evaluation of plasma Aβ(40) and Aβ(42) as predictors of conversion to Alzheimer’s disease in patients with mild cognitive impairment. Neurobiol. Aging 31(3), 357–367 (2010).
  • Mayer SC, Kreft AF, Harrison B et al. Discovery of begacestat, a Notch-1-sparing γ-secretase inhibitor for the treatment of Alzheimer’s disease. J. Med. Chem. 51(23), 7348–7351 (2008).
  • Basi GS, Hemphill S, Brigham EF et al. Amyloid precursor protein selective γ-secretase inhibitors for treatment of Alzheimer’s disease. Alzheimers. Res. Ther. 2(6), 36 (2010).
  • Gillman KW, Starrett JE Jr., Parker MF et al. Discovery and evaluation of BMS-708163, a potent, selective and orally bioavailable γ-secretase inhibitor. ACS Med. Chem. Lett. 1(3), 120–124 (2010).
  • Tong G, Wang JS, Sverdlov O et al. Multicenter, randomized, double-blind, placebo-controlled, single-ascending dose study of the oral γ-secretase inhibitor BMS-708163 (Avagacestat): tolerability profile, pharmacokinetic parameters, and pharmacodynamic markers. Clin. Ther. 34(3), 654–667 (2012).
  • Martone RL, Zhou H, Atchison K et al. Begacestat (GSI-953): a novel, selective thiophene sulfonamide inhibitor of amyloid precursor protein γ-secretase for the treatment of Alzheimer’s disease. J. Pharmacol. Exp. Ther. 331(2), 598–608 (2009).
  • Hopkins CR. ACS chemical neuroscience molecule spotlight on ELND006: another γ-secretase inhibitor fails in the clinic. ACS Chem. Neurosci. 2(6), 279–280 (2011).
  • Weggen S, Eriksen JL, Das P et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414(6860), 212–216 (2001).
  • Green RC, Schneider LS, Amato DA et al.; Tarenflurbil Phase 3 Study Group. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial. JAMA 302(23), 2557–2564 (2009).
  • Galasko DR, Graff-Radford N, May S et al. Safety, tolerability, pharmacokinetics, and Aβ levels after short-term administration of R-flurbiprofen in healthy elderly individuals. Alzheimer Dis. Assoc. Disord. 21(4), 292–299 (2007).
  • Kounnas MZ, Danks AM, Cheng S et al. Modulation of γ-secretase reduces β-amyloid deposition in a transgenic mouse model of Alzheimer’s disease. Neuron 67(5), 769–780 (2010).
  • Bischoff F, Berthelot D, De Cleyn M et al. Design and synthesis of a novel series of bicyclic heterocycles as potent γ-secretase modulators. J. Med. Chem. 55(21), 9089–9106 (2012).
  • Kretner B, Fukumori A, Gutsmiedl A et al. Attenuated Aβ42 responses to low potency γ-secretase modulators can be overcome for many pathogenic presenilin mutants by second-generation compounds. J. Biol. Chem. 286(17), 15240–15251 (2011).
  • Kakuda N, Shoji M, Arai H et al.; Japanese Alzheimer’s Disease Neuroimaging Initiative. Altered γ-secretase activity in mild cognitive impairment and Alzheimer’s disease. EMBO Mol. Med. 4(4), 344–352 (2012).
  • Kakuda N, Akazawa K, Hatsuta H, Murayama S, Ihara Y; Japanese Alzheimer’s Disease Neuroimaging Initiative. Suspected limited efficacy of γ-secretase modulators. Neurobiol. Aging 34(4), 1101–1104 (2013).
  • Holtzman DM, Goate A, Kelly J, Sperling R. Mapping the road forward in Alzheimer’s disease. Science Transl. Med. 3(114), 114ps48 (2011).
  • Wisniewski T, Konietzko U. Amyloid-β immunisation for Alzheimer’s disease. Lancet Neurol. 7(9), 805–811 (2008).
  • Schenk D, Barbour R, Dunn W et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400(6740), 173–177 (1999).
  • Janus C, Pearson J, McLaurin J et al. A β peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408(6815), 979–982 (2000).
  • Check E. Nerve inflammation halts trial for Alzheimer's drug. Nature 415(6871), 462 (2002).
  • Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nat. Med. 9(4), 448–452 (2003).
  • Gilman S, Koller M, Black RS et al.; AN1792(QS-21)-201 Study Team. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64(9), 1553–1562 (2005).
  • Holmes C, Boche D, Wilkinson D et al. Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled Phase I trial. Lancet 372(9634), 216–223 (2008).
  • Vellas B, Black R, Thal LJ et al.; AN1792 (QS-21)-251 Study Team. Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr. Alzheimer Res. 6(2), 144–151 (2009).
  • Hock C, Konietzko U, Papassotiropoulos A et al. Generation of antibodies specific for β-amyloid by vaccination of patients with Alzheimer disease. Nat. Med. 8(11), 1270–1275 (2002).
  • Hock C, Konietzko U, Streffer JR et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 38(4), 547–554 (2003).
  • Hock C, Nitsch RM. Clinical observations with AN-1792 using TAPIR analyses. Neurodegener. Dis. 2(5), 273–276 (2005).
  • Fox NC, Black RS, Gilman S et al.; AN1792(QS-21)-201 Study. Effects of Aβ immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64(9), 1563–1572 (2005).
  • Lemere CA. Developing novel immunogens for a safe and effective Alzheimer’s disease vaccine. Prog. Brain Res. 175, 83–93 (2009).
  • Monsonego A, Zota V, Karni A et al. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease. J. Clin. Invest. 112(3), 415–422 (2003).
  • Winblad B, Andreasen N, Minthon L et al. Safety, tolerability, and antibody response of active Aβ immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol. 11(7), 597–604 (2012).
  • Galimberti D, Ghezzi L, Scarpini E. Immunotherapy against amyloid pathology in Alzheimer’s disease. J. Neurol. Sci. doi:10.1016/j.jns.2012.12.013 (2013) (Epub ahead of print).
  • Bard F, Cannon C, Barbour R et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med. 6(8), 916–919 (2000).
  • Salloway S, Sperling R, Gilman S et al.; Bapineuzumab 201 Clinical Trial Investigators. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology 73(24), 2061–2070 (2009).
  • Rinne JO, Brooks DJ, Rossor MN et al. 11C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 9(4), 363–372 (2010).
  • Kerchner GA, Boxer AL. Bapineuzumab. Expert Opin. Biol. Ther. 10(7), 1121–1130 (2010).
  • Chalmers K, Wilcock GK, Love S. APOE epsilon 4 influences the pathological phenotype of Alzheimer’s disease by favouring cerebrovascular over parenchymal accumulation of A β protein. Neuropathol. Appl. Neurobiol. 29(3), 231–238 (2003).
  • Samadi H, Sultzer D. Solanezumab for Alzheimer’s disease. Expert Opin. Biol. Ther. 11(6), 787–798 (2011).
  • Seubert P, Barbour R, Khan K et al. Antibody capture of soluble Aβ does not reduce cortical Aβ amyloidosis in the PDAPP mouse. Neurodegener. Dis. 5(2), 65–71 (2008).
  • Farlow M, Arnold SE, van Dyck CH et al. Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers. Dement. 8(4), 261–271 (2012).
  • Callaway E. Alzheimer’s drugs take a new tack. Nature 489(7414), 13–14 (2012).
  • Adolfsson O, Pihlgren M, Toni N et al. An effector-reduced anti-β-amyloid (Aβ) antibody with unique aβ binding properties promotes neuroprotection and glial engulfment of Aβ. J. Neurosci. 32(28), 9677–9689 (2012).
  • Bohrmann B, Baumann K, Benz J et al. Gantenerumab: a novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β. J. Alzheimers Dis. 28(1), 49–69 (2012).
  • Delrieu J, Ousset PJ, Vellas B. Gantenerumab for the treatment of Alzheimer’s disease. Expert Opin. Biol. Ther. 12(8), 1077–1086 (2012).
  • Ostrowitzki S, Deptula D, Thurfjell L et al. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch. Neurol. 69(2), 198–207 (2012).
  • Biscaro B, Lindvall O, Hock C, Ekdahl CT, Nitsch RM. Aβ immunotherapy protects morphology and survival of adult-born neurons in doubly transgenic APP/PS1 mice. J. Neurosci. 29(45), 14108–14119 (2009).
  • Englund H, Sehlin D, Johansson AS et al. Sensitive ELISA detection of amyloid-β protofibrils in biological samples. J. Neurochem. 103(1), 334–345 (2007).
  • Lord A, Gumucio A, Englund H et al. An amyloid-β protofibril-selective antibody prevents amyloid formation in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 36(3), 425–434 (2009).
  • Burstein AH, Zhao Q, Ross J et al. Safety and pharmacology of ponezumab (PF-04360365) after a single 10-minute intravenous infusion in subjects with mild to moderate Alzheimer disease. Clin. Neuropharmacol. 36(1), 8–13 (2013).
  • Landen JW, Zhao Q, Cohen S et al. Safety and pharmacology of a single intravenous dose of ponezumab in subjects with mild-to-moderate Alzheimer disease: a Phase I, randomized, placebo-controlled, double-blind, dose-escalation study. Clin. Neuropharmacol. 36(1), 14–23 (2013).
  • La Porte SL, Bollini SS, Lanz TA et al. Structural basis of C-terminal β-amyloid peptide binding by the antibody ponezumab for the treatment of Alzheimer’s disease. J. Mol. Biol. 421(4-5), 525–536 (2012).
  • Dodel R, Hampel H, Depboylu C et al. Human antibodies against amyloid β peptide: a potential treatment for Alzheimer’s disease. Ann. Neurol. 52(2), 253–256 (2002).
  • Du Y, Dodel R, Hampel H et al. Reduced levels of amyloid β-peptide antibody in Alzheimer disease. Neurology 57(5), 801–805 (2001).
  • Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer’s disease. Ther. Adv. Neurol. Disord. 6(1), 19–33 (2013).
  • Dodel RC, Du Y, Depboylu C et al. Intravenous immunoglobulins containing antibodies against β-amyloid for the treatment of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatr. 75(10), 1472–1474 (2004).
  • Dodel R, Rominger A, Bartenstein P et al. Intravenous immunoglobulin for treatment of mild-to-moderate Alzheimer’s disease: a phase 2, randomised, double-blind, placebo-controlled, dose-finding trial. Lancet Neurol. 12(3), 233–243 (2013).
  • Holmes C. Intravenous immunoglobulin for Alzheimer’s disease. Lancet Neurol. 12(3), 218–219 (2013).
  • Dodel R, Neff F, Noelker C et al. Intravenous immunoglobulins as a treatment for Alzheimer’s disease: rationale and current evidence. Drugs 70(5), 513–528 (2010).
  • Dobson CM. Protein folding and misfolding. Nature 426(6968), 884–890 (2003).
  • Liu D, Xu Y, Feng Y et al. Inhibitor discovery targeting the intermediate structure of β-amyloid peptide on the conformational transition pathway: implications in the aggregation mechanism of β-amyloid peptide. Biochemistry 45(36), 10963–10972 (2006).
  • Townsend M, Cleary JP, Mehta T et al. Orally available compound prevents deficits in memory caused by the Alzheimer amyloid-β oligomers. Ann. Neurol. 60(6), 668–676 (2006).
  • Gervais F, Paquette J, Morissette C et al. Targeting soluble Aβ peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiol. Aging 28(4), 537–547 (2007).
  • Aisen PS, Saumier D, Briand R et al. A Phase II study targeting amyloid-β with 3APS in mild-to-moderate Alzheimer disease. Neurology 67(10), 1757–1763 (2006).
  • Santa-Maria I, Hernández F, Del Rio J, Moreno FJ, Avila J. Tramiprosate, a drug of potential interest for the treatment of Alzheimer’s disease, promotes an abnormal aggregation of tau. Mol. Neurodegener. 2, 17 (2007).
  • Swanoski MT. Homotaurine: a failed drug for Alzheimer’s disease and now a nutraceutical for memory protection. Am. J. Health. Syst. Pharm. 66(21), 1950–1953 (2009).
  • Aisen PS, Gauthier S, Ferris SH et al. Tramiprosate in mild-to-moderate Alzheimer’s disease – a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study). Arch. Med. Sci. 7(1), 102–111 (2011).
  • Salloway S, Sperling R, Keren R et al.; ELND005-AD201 Investigators. A Phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology 77(13), 1253–1262 (2011).
  • Adlard PA, Cherny RA, Finkelstein DI et al. Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Aβ. Neuron 59(1), 43–55 (2008).
  • Lannfelt L, Blennow K, Zetterberg H et al.; PBT2-201-EURO study group. Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: a Phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 7(9), 779–786 (2008).
  • Faux NG, Ritchie CW, Gunn A et al. PBT2 rapidly improves cognition in Alzheimer’s Disease: additional Phase II analyses. J. Alzheimers Dis. 20(2), 509–516 (2010).
  • Kenche VB, Barnham KJ. Alzheimer’s disease & metals: therapeutic opportunities. Br. J. Pharmacol. 163(2), 211–219 (2011).
  • Berg L, McKeel DW Jr, Miller JP et al. Clinicopathologic studies in cognitively healthy aging and Alzheimer’s disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. Arch. Neurol. 55(3), 326–335 (1998).
  • Nelson PT, Alafuzoff I, Bigio EH et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71(5), 362–381 (2012).
  • Golde TE, Petrucelli L, Lewis J. Targeting Aβ and tau in Alzheimer’s disease, an early interim report. Exp. Neurol. 223(2), 252–266 (2010).
  • Wischik CM, Edwards PC, Lai RY, Roth M, Harrington CR. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc. Natl Acad. Sci. USA 93(20), 11213–11218 (1996).
  • Wischik C, Staff R. Challenges in the conduct of disease-modifying trials in AD: practical experience from a Phase 2 trial of Tau-aggregation inhibitor therapy. J. Nutr. Health Aging 13(4), 367–369 (2009).
  • Masuda M, Suzuki N, Taniguchi S et al. Small molecule inhibitors of alpha-synuclein filament assembly. Biochemistry 45(19), 6085–6094 (2006).
  • Crowe A, Huang W, Ballatore C et al. Identification of aminothienopyridazine inhibitors of tau assembly by quantitative high-throughput screening. Biochemistry 48(32), 7732–7745 (2009).
  • Churcher I. Tau therapeutic strategies for the treatment of Alzheimer’s disease. Curr. Top. Med. Chem. 6(6), 579–595 (2006).
  • Martinez A, Castro A, Dorronsoro I, Alonso M. Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Med. Res. Rev. 22(4), 373–384 (2002).
  • Schaffer BA, Bertram L, Miller BL et al. Association of GSK3B with Alzheimer disease and frontotemporal dementia. Arch. Neurol. 65(10), 1368–1374 (2008).
  • Leroy K, Yilmaz Z, Brion JP. Increased level of active GSK-3β in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol. Appl. Neurobiol. 33(1), 43–55 (2007).
  • Forlenza OV, Torres CA, Talib LL et al. Increased platelet GSK3B activity in patients with mild cognitive impairment and Alzheimer’s disease. J. Psychiatr. Res. 45(2), 220–224 (2011).
  • Hampel H, Ewers M, Bürger K et al. Lithium trial in Alzheimer’s disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J. Clin. Psychiatr. 70(6), 922–931 (2009).
  • Tariot PN, Schneider LS, Cummings J et al.; Alzheimer’s Disease Cooperative Study Group. Chronic divalproex sodium to attenuate agitation and clinical progression of Alzheimer disease. Arch. Gen. Psychiatry 68(8), 853–861 (2011).
  • Tariot PN, Aisen PS. Can lithium or valproate untie tangles in Alzheimer’s disease? J. Clin. Psychiatry 70(6), 919–921 (2009).
  • Forlenza OV, Diniz BS, Radanovic M, Santos FS, Talib LL, Gattaz WF. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br. J. Psychiatry 198(5), 351–356 (2011).
  • Martinez A, Perez DI. GSK-3 inhibitors: a ray of hope for the treatment of Alzheimer’s disease? J. Alzheimers Dis. 15(2), 181–191 (2008).
  • Kramer T, Schmidt B, Monte Lo F. Small-Molecule Inhibitors of GSK-3: Structural Insights and Their Application to Alzheimer’s Disease Models. Int. J. Alzheimers Dis. 6, 1–32 (2012).
  • Domínguez JM, Fuertes A, Orozco L, del Monte-Millán M, Delgado E, Medina M. Evidence for irreversible inhibition of glycogen synthase kinase-3β by tideglusib. J. Biol. Chem. 287(2), 893–904 (2012).
  • Luna-Medina R, Cortes-Canteli M, Sanchez-Galiano S et al. NP031112, a thiadiazolidinone compound, prevents inflammation and neurodegeneration under excitotoxic conditions: potential therapeutic role in brain disorders. J. Neurosci. 27(21), 5766–5776 (2007).
  • Le Corre S, Klafki HW, Plesnila N et al. An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proc. Natl Acad. Sci. USA 103(25), 9673–9678 (2006).
  • Sontag E, Hladik C, Montgomery L et al. Downregulation of protein phosphatase 2A carboxyl methylation and methyltransferase may contribute to Alzheimer disease pathogenesis. J. Neuropathol. Exp. Neurol. 63(10), 1080–1091 (2004).
  • Kins S, Crameri A, Evans DR, Hemmings BA, Nitsch RM, Gotz J. Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice. J. Biol. Chem. 276(41), 38193–38200 (2001).
  • Tanimukai H, Kudo T, Tanaka T, Grundke-Iqbal I, Iqbal K, Takeda M. Novel therapeutic strategies for neurodegenerative disease. Psychogeriatrics 9(2), 103–109 (2009).
  • Sigurdsson EM. Immunotherapy targeting pathological tau protein in Alzheimer’s disease and related tauopathies. J. Alzheimers Dis. 15(2), 157–168 (2008).
  • Bi M, Ittner A, Ke YD, Götz J, Ittner LM. Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS ONE 6(12), e26860 (2011).
  • Boutajangout A, Ingadottir J, Davies P, Sigurdsson EM. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J. Neurochem. 118(4), 658–667 (2011).
  • Gu J, Sigurdsson EM. Immunotherapy for tauopathies. J. Mol. Neurosci. 45(3), 690–695 (2011).
  • McGeer PL, McGeer E, Rogers J, Sibley J. Anti-inflammatory drugs and Alzheimer disease. Lancet 335(8696), 1037 (1990).
  • The Canadian Study of Health and Aging. Risk factors for Alzheimer’s disease in Canada. Neurology 44(11), 2073–2080 (1994).
  • Stewart WF, Kawas C, Corrada M, Metter EJ. Risk of Alzheimer’s disease and duration of NSAID use. Neurology 48(3), 626–632 (1997).
  • Szekely CA, Thorne JE, Zandi PP et al. Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease: a systematic review. Neuroepidemiology 23(4), 159–169 (2004).
  • Imbimbo BP. An update on the efficacy of non-steroidal anti-inflammatory drugs in Alzheimer’s disease. Expert Opin. Investig. Drugs 18(8), 1147–1168 (2009).
  • Breitner JC, Haneuse SJ, Walker R et al. Risk of dementia and AD with prior exposure to NSAIDs in an elderly community-based cohort. Neurology 72(22), 1899–1905 (2009).
  • Tayeb HO, Yang HD, Price BH, Tarazi FI. Pharmacotherapies for Alzheimer’s disease: beyond cholinesterase inhibitors. Pharmacol. Ther. 134(1), 8–25 (2012).
  • DeKosky ST, Williamson JD, Fitzpatrick AL et al.; Ginkgo Evaluation of Memory (GEM) Study Investigators. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA 300(19), 2253–2262 (2008).
  • Solomon PR, Adams F, Silver A, Zimmer J, DeVeaux R. Ginkgo for memory enhancement: a randomized controlled trial. JAMA 288(7), 835–840 (2002).
  • Cupp MJ. Herbal remedies: adverse effects and drug interactions. Am. Fam. Physician 59(5), 1239–1245 (1999).
  • Appleby BS, Nacopoulos D, Milano N, Zhong K, Cummings JL. A review: treatment of Alzheimer’s disease discovered in repurposed agents. Dement. Geriatr. Cogn. Disord. 35(1–2), 1–22 (2013).
  • Corbett A, Pickett J, Burns A et al. Drug repositioning for Alzheimer’s disease. Nat. Rev. Drug Discov. 11(11), 833–846 (2012).
  • Cramer PE, Cirrito JR, Wesson DW et al. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335(6075), 1503–1506 (2012).
  • Vellas B, Aisen PS, Sampaio C et al. Prevention trials in Alzheimer’s disease: an EU-US task force report. Prog. Neurobiol. 95(4), 594–600 (2011).
  • Niva C, Parkinson J, Olsson F, van Schaick E, Lundkvist J, Visser SA. Has inhibition of Aβ production adequately been tested as therapeutic approach in mild AD? A model-based meta-analysis of γ-secretase inhibitor data. Eur. J. Clin. Pharmacol. 69(6), 1247–1260 (2013).
  • Dubois B, Feldman HH, Jacova C et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6(8), 734–746 (2007).
  • Dubois B, Feldman HH, Jacova C et al. Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol. 9(11), 1118–1127 (2010).
  • Albert MS, DeKosky ST, Dickson D et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers. Dement. 7(3), 270–279 (2011).
  • McKhann GM, Knopman DS, Chertkow H et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers. Dement. 7(3), 263–269 (2011).
  • Sperling RA, Aisen PS, Beckett LA et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers. Dement. 7(3), 280–292 (2011).
  • Hampel H, Lista S, Khachaturian ZS. Development of biomarkers to chart all Alzheimer’s disease stages: the royal road to cutting the therapeutic Gordian Knot. Alzheimers. Dement. 8(4), 312–336 (2012).
  • Holland D, McEvoy LK, Desikan RS, Dale AM; Alzheimer’s Disease Neuroimaging Initiative. Enrichment and stratification for predementia Alzheimer disease clinical trials. PLoS ONE 7(10), e47739 (2012).
  • Golde TE, Schneider LS, Koo EH. Anti-aβ therapeutics in Alzheimer’s disease: the need for a paradigm shift. Neuron 69(2), 203–213 (2011).
  • Aisen PS. Clinical trial methodologies for disease-modifying therapeutic approaches. Neurobiol. Aging 32(Suppl. 1), S64–S66 (2011).
  • Cummings J, Gould H, Zhong K. Advances in designs for Alzheimer’s disease clinical trials. Am. J. Neurodegener. Dis. 1(3), 205–216 (2012).
  • Golde TE, Lamb BT, Galasko D. Right sizing funding for Alzheimer’s disease. Alzheimers. Res. Ther. 3(3), 17 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.