277
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Use of quantitative pharmacology tools to improve malaria treatments

, , , , &
Pages 303-316 | Received 20 Oct 2015, Accepted 04 Dec 2015, Published online: 25 Dec 2015

References

  • Talisuna AO, Bloland P, D’Alessandro U. History, dynamics, and public health importance of malaria parasite resistance. Clin Microbiol Rev. 2004;17(1):235–254.
  • Wongsrichanalai C, Sibley CH. Fighting drug-resistant Plasmodium falciparum: the challenge of artemisinin resistance. Clin Microbiol Infect. 2013;19(10):908–916.
  • World Health Organization, WHO Global Malaria Programme. Guidelines for the treatment of malaria. Geneva: World Health Organization; 2015.
  • White NJ. Pharmacokinetic and pharmacodynamic considerations in antimalarial dose optimization. Antimicrob Agents Chemother. 2013;57(12):5792–5807.
  • Simpson JA, Zaloumis S, DeLivera AM, et al. Making the most of clinical data: reviewing the role of pharmacokinetic-pharmacodynamic models of anti-malarial drugs. Aaps J. 2014;16(5):962–974.
  • World Health Organization. Assessment and monitoring of antimalarial drug efficacy for the treatment of uncomplicated falciparum malaria. Geneva: World Health Organization; 2003.
  • Shah VP, Midha KK, Dighe S, et al. Analytical methods validation: bioavailability, bioequivalence and pharmacokinetic studies. Conference report. Eur J Drug Metab Pharmacokinet. 1991;16(4):249–255.
  • U.S. Department of Health and Human Services FaDA, Center for Drug Evaluation and Research (CDER) [Internet]. Guidance for Industry. Bioanalytical Method Validation; 2013. [cited 2015 Oct]. Available from: http://www.fda.gov/downloads/Drugs/…/Guidances/ucm070107.pdf
  • World Health Organization. Methods and techniques for assessing exposure to antimalarial drugs in clinical field studies. Geneva: World Health Organization; 2011.
  • Thomas CG, Ward SA, Edwards G. Selective determination, in plasma, of artemether and its major metabolite, dihydroartemisinin, by high-performance liquid chromatography with ultraviolet detection. J Chromatogr. 1992;583(1):131–136.
  • Batty KT, Davis TM, Thu LT, et al. Selective high-performance liquid chromatographic determination of artesunate and alpha- and beta-dihydroartemisinin in patients with falciparum malaria. J Chromatogr B Biomed Appl. 1996;677(2):345–350.
  • Melendez V, Peggins JO, Brewer TG, et al. Determination of the antimalarial arteether and its deethylated metabolite dihydroartemisinin in plasma by high-performance liquid chromatography with reductive electrochemical detection. J Pharm Sci. 1991;80(2):132–138.
  • Batty KT, Salman S, Moore BR, et al. Artemisinin-naphthoquine combination therapy for uncomplicated pediatric malaria: a pharmacokinetic study. Antimicrob Agents Chemother. 2012;56(5):2472–2484.
  • Birgersson S, Ericsson T, Blank A, et al. A high-throughput LC-MS/MS assay for quantification of artesunate and its metabolite dihydroartemisinin in human plasma and saliva. Bioanalysis. 2014;6(18):2357–2369.
  • Hilhorst MJ, Hendriks G, De Vries R, et al. A high-performance liquid chromatography-tandem mass spectrometry method for the determination of artemether and dihydroartemisinin in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;965:45–53.
  • Lindegardh N, Hanpithakpong W, Kamanikom B, et al. Quantification of dihydroartemisinin, artesunate and artemisinin in human blood: overcoming the technical challenge of protecting the peroxide bridge. Bioanalysis. 2011;3(14):1613–1624.
  • Debrus B, Lebrun P, Kindenge JM, et al. Innovative high-performance liquid chromatography method development for the screening of 19 antimalarial drugs based on a generic approach, using design of experiments, independent component analysis and design space. J Chromatogr A. 2011;1218(31):5205–5215.
  • Sheiner LB. The population approach to pharmacokinetic data analysis: rationale and standard data analysis methods. Drug Metab Rev. 1984;15(1–2):153–171.
  • Sheiner LB, Rosenberg B, Marathe VV. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm. 1977;5(5):445–479.
  • Aarons L, Ogungbenro K. Optimal design of pharmacokinetic studies. Basic Clin Pharmacol Toxicol. 2010;106(3):250–255.
  • Steimer JL, Mallet A, Golmard JL, et al. Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixed-effect model. Drug Metab Rev. 1984;15(1–2):265–292.
  • Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481–504.
  • Holford N. A time to event tutorial for pharmacometricians. CPT Pharmacometrics Syst Pharmacol. 2013;2:e43.
  • Savic RM, Jonker DM, Kerbusch T, et al. Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn. 2007;34(5):711–726.
  • Klayman DL. Qinghaosu (artemisinin): an antimalarial drug from China. Science. 1985;228(4703):1049–1055.
  • De Vries PJ, Dien TK. Clinical pharmacology and therapeutic potential of artemisinin and its derivatives in the treatment of malaria. Drugs. 1996;52(6):818–836.
  • Davis TM, Karunajeewa HA, Ilett KF. Artemisinin-based combination therapies for uncomplicated malaria. Med J Aust. 2005;182(4):181–185.
  • Dondorp A, Nosten F, Stepniewska K, et al., South East Asian Quinine Artesunate Malaria Trial g. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet. 2005;366(9487):717–725.
  • Dondorp AM, Fanello CI, Hendriksen IC, et al. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet. 2010;376(9753):1647–1657.
  • Qinghaosu Antimalarial Coordinating Research Group. Antimalaria studies on Qinghaosu. Chin Med J (Engl). 1979;92(12):811–816.
  • Edwards G. Measurement of artemisinin and its derivatives in biological fluids. Trans R Soc Trop Med Hyg. 1994;88(Suppl 1):S37–S39.
  • Lindegardh N, Hanpithakpong W, Kamanikom B, et al. Major pitfalls in the measurement of artemisinin derivatives in plasma in clinical studies. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;876(1):54–60.
  • Hien TT, Davis TM, Chuong LV, et al. Comparative pharmacokinetics of intramuscular artesunate and artemether in patients with severe falciparum malaria. Antimicrob Agents Chemother. 2004;48(11):4234–4239.
  • Davis TM, Phuong HL, Ilett KF, et al. Pharmacokinetics and pharmacodynamics of intravenous artesunate in severe falciparum malaria. Antimicrob Agents Chemother. 2001;45(1):181–186.
  • Skinner TS, Manning LS, Johnston WA, et al. In vitro stage-specific sensitivity of Plasmodium falciparum to quinine and artemisinin drugs. Int J Parasitol. 1996;26(5):519–525.
  • Zaloumis SG, Tarning J, Krishna S, et al. Population pharmacokinetics of intravenous artesunate: a pooled analysis of individual data from patients with severe malaria. CPT Pharmacometrics Syst Pharmacol. 2014;3:e145.
  • Salman S, Page-Sharp M, Griffin S, et al. Population pharmacokinetics of artemether, lumefantrine, and their respective metabolites in Papua New Guinean children with uncomplicated malaria. Antimicrob Agents Chemother. 2011;55(11):5306–5313.
  • Sambol NC, Yan L, Creek DJ, et al. Population pharmacokinetics of piperaquine in young Ugandan children treated with dihydroartemisinin-piperaquine for uncomplicated malaria. Clin Pharmacol Ther. 2015;98(1):87–95.
  • Tarning J, Zongo I, Some FA, et al. Population pharmacokinetics and pharmacodynamics of piperaquine in children with uncomplicated falciparum malaria. Clin Pharmacol Ther. 2012;91(3):497–505.
  • WorldWide Antimalarial Resistance Network Lumefantrine PKPDSG. Artemether-lumefantrine treatment of uncomplicated Plasmodium falciparum malaria: a systematic review and meta-analysis of day 7 lumefantrine concentrations and therapeutic response using individual patient data. BMC Med. 2015;13(1):227.
  • Gordi T, Xie R, Huong NV, et al. A semiphysiological pharmacokinetic model for artemisinin in healthy subjects incorporating autoinduction of metabolism and saturable first-pass hepatic extraction. Br J Clin Pharmacol. 2005;59(2):189–198.
  • Salman S, Page-Sharp M, Batty KT, et al. Pharmacokinetic comparison of two piperaquine-containing artemisinin combination therapies in Papua New Guinean children with uncomplicated malaria. Antimicrob Agents Chemother. 2012;56(6):3288–3297.
  • White LJ, Flegg JA, Phyo AP, et al. Defining the in vivo phenotype of artemisinin-resistant falciparum malaria: a modelling approach. PLoS Med. 2015;12(4):e1001823.
  • Bethell D, Se Y, Lon C, et al. Artesunate dose escalation for the treatment of uncomplicated malaria in a region of reported artemisinin resistance: a randomized clinical trial. PLoS One. 2011;6(5):e19283.
  • Kay K, Hastings IM. Improving pharmacokinetic-pharmacodynamic modeling to investigate anti-infective chemotherapy with application to the current generation of antimalarial drugs. PLoS Comput Biol. 2013;9(7):e1003151.
  • Brewer TG, Grate SJ, Peggins JO, et al. Fatal neurotoxicity of arteether and artemether. Am J Trop Med Hyg. 1994;51(3):251–259.
  • Davis TM, Breheny FX, Kendall PA, et al. Severe falciparum malaria with hyperparasitaemia treated with intravenous artesunate. Med J Aust. 1997;166(8):416–418.
  • Hien TT, Turner GD, Mai NT, et al. Neuropathological assessment of artemether-treated severe malaria. Lancet. 2003;362(9380):295–296.
  • Ramos-Martin V, Gonzalez-Martinez C, Mackenzie I, et al. Neuroauditory toxicity of artemisinin combination therapies-have safety concerns been addressed? Am J Trop Med Hyg. 2014;91(1):62–73.
  • Davis TM, Binh TQ, Ilett KF, et al. Penetration of dihydroartemisinin into cerebrospinal fluid after administration of intravenous artesunate in severe falciparum malaria. Antimicrob Agents Chemother. 2003;47(1):368–370.
  • Manning L, Laman M, Page-Sharp M, et al. Meningeal inflammation increases artemether concentrations in cerebrospinal fluid in Papua New Guinean children treated with intramuscular artemether. Antimicrob Agents Chemother. 2011;55(11):5027–5033.
  • World Health Organisation. Assessment of the safety of artemisinin compounds in pregnancy. Geneva: World Health Organisation; 2006.
  • Davis TME, Mueller I, Rogerson SJ. Prevention and treatment of malaria in pregnancy. Future Microbiology. 2010;5(10):1599–1613.
  • Benjamin JM, Moore BR, Salman S, et al. Population pharmacokinetics, tolerability, and safety of dihydroartemisinin-piperaquine and sulfadoxine-pyrimethamine-piperaquine in pregnant and nonpregnant Papua New Guinean women. Antimicrob Agents Chemother. 2015;59(7):4260–4271.
  • Tarning J, Rijken MJ, McGready R, et al. Population pharmacokinetics of dihydroartemisinin and piperaquine in pregnant and nonpregnant women with uncomplicated malaria. Antimicrob Agents Chemother. 2012;56(4):1997–2007.
  • Jansen FH, Jansen-Luts A, Ameye C, et al. Is artesunate or its active metabolite dihydroartemisinin being excreted in the milk of lactating mothers? Am J Trop Med Hyg. 2006;75(5 Suppl):158 (Abstract 543).
  • D’Alessandro U, Ubben D, Hamed K, et al. Malaria in infants aged less than six months - is it an area of unmet medical need? Malar J. 2012;11:400.
  • Larru B, Molyneux E, Ter Kuile FO, et al. Malaria in infants below six months of age: retrospective surveillance of hospital admission records in Blantyre, Malawi. Malar J. 2009;8:310.
  • Milsap RL, Jusko WJ. Pharmacokinetics in the infant. Environ Health Perspect. 1994;102(Suppl 11):107–110.
  • Kiang TK, Wilby KJ, Ensom MH. Clinical pharmacokinetic drug interactions associated with artemisinin derivatives and HIV-antivirals. Clin Pharmacokinet. 2014;53(2):141–153.
  • Van Geertruyden JP. Interactions between malaria and human immunodeficiency virus anno 2014. Clin Microbiol Infect. 2014;20(4):278–285.
  • Andrews KT, Fairlie DP, Madala PK, et al. Potencies of human immunodeficiency virus protease inhibitors in vitro against Plasmodium falciparum and in vivo against murine malaria. Antimicrob Agents Chemother. 2006;50(2):639–648.
  • Achan J, Kakuru A, Ikilezi G, et al. Antiretroviral agents and prevention of malaria in HIV-infected Ugandan children. N Engl J Med. 2012;367(22):2110–2118.
  • Gomes MF, Faiz MA, Gyapong JO, et al. Pre-referral rectal artesunate to prevent death and disability in severe malaria: a placebo-controlled trial. Lancet. 2009;373(9663):557–566.
  • Karunajeewa HA, Manning L, Mueller I, et al. Rectal administration of artemisinin derivatives for the treatment of malaria. Jama. 2007;297(21):2381–2390.
  • Salman S, Bendel D, Lee TC, et al. Pharmacokinetics of a novel sublingual spray formulation of the antimalarial drug artemether in African children with malaria. Antimicrob Agents Chemother. 2015;59(6):3208–3215.
  • Bendel D, Rulisa S, Ansah P, et al. Efficacy of a novel sublingual spray formulation of artemether in African children with falciparum malaria. Antimicrob Agents Chemother. 2015;59(11):6930–6938.
  • Chen PQ, Li GQ, Guo XB, et al. The infectivity of gametocytes of Plasmodium falciparum from patients treated with artemisinin. Chin Med J (Engl). 1994;107(9):709–711.
  • Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev. 2011;24(2):377–410.
  • Karl S, Laman M, Moore BR, et al. Gametocyte clearance kinetics determined by quantitative magnetic fractionation in Melanesian children with uncomplicated malaria treated with artemisinin combination therapy. Antimicrob Agents Chemother. 2015;59(8):4489–4496.
  • Makanga M. A review of the effects of artemether-lumefantrine on gametocyte carriage and disease transmission. Malar J. 2014;13:291.
  • Delves MJ, Ruecker A, Straschil U, et al. Male and female Plasmodium falciparum mature gametocytes show different responses to antimalarial drugs. Antimicrob Agents Chemother. 2013;57(7):3268–3274.
  • White NJ, Nosten F, Looareesuwan S, et al. Averting a malaria disaster. Lancet. 1999;353(9168):1965–1967.
  • Adjuik M, Babiker A, Garner P, et al. Artesunate combinations for treatment of malaria: meta-analysis. Lancet. 2004;363(9402):9–17.
  • Davis TM, Hung TY, Sim IK, et al. Piperaquine: a resurgent antimalarial drug. Drugs. 2005;65(1):75–87.
  • Batty KT, Moore BR, Stirling V, et al. Investigation of reproductive toxicity of piperaquine in mice. Reprod Toxicol. 2010;29(2):206–213.
  • Karunajeewa HA, Mueller I, Senn M, et al. A trial of combination antimalarial therapies in children from Papua New Guinea. N Engl J Med. 2008;359(24):2545–2557.
  • Ratcliff A, Siswantoro H, Kenangalem E, et al. Two fixed-dose artemisinin combinations for drug-resistant falciparum and vivax malaria in Papua, Indonesia: an open-label randomised comparison. Lancet. 2007;369(9563):757–765.
  • Aweeka FT, German PI. Clinical pharmacology of artemisinin-based combination therapies. Clin Pharmacokinet. 2008;47(2):91–102.
  • Ezzet F, Mull R, Karbwang J. Population pharmacokinetics and therapeutic response of CGP 56697 (artemether + benflumetol) in malaria patients. Br J Clin Pharmacol. 1998;46(6):553–561.
  • Ramharter M, Kurth F, Schreier AC, et al. Fixed-dose pyronaridine-artesunate combination for treatment of uncomplicated falciparum malaria in pediatric patients in Gabon. J Infect Dis. 2008;198(6):911–919.
  • Denis MB, Tsuyuoka R, Lim P, et al. Efficacy of artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in northwest Cambodia. Trop Med Int Health. 2006;11(12):1800–1807.
  • Spring MD, Lin JT, Manning JE, et al. Dihydroartemisinin-piperaquine failure associated with a triple mutant including kelch13 C580Y in Cambodia: an observational cohort study. Lancet Infect Dis. 2015;15(6):683–691.
  • Tshefu AK, Gaye O, Kayentao K, et al. Efficacy and safety of a fixed-dose oral combination of pyronaridine-artesunate compared with artemether-lumefantrine in children and adults with uncomplicated Plasmodium falciparum malaria: a randomised non-inferiority trial. Lancet. 2010;375(9724):1457–1467.
  • European Medicines Agency. Assessment report. Pyramax (pyronaridine tetraphosphate/artesunate). [Internet] Procedure No.: EMEA/H/W/002319; 2012. [cited 2015 Oct]. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Other/2012/06/WC500129290.pdf
  • Sagara I, Beavogui AH, Zongo I, et al. Safety and efficacy of re-treatments with pyronaridine-artesunate in African patients with malaria: a substudy of the WANECAM randomised trial. Lancet Infect Dis. 2015. doi:10.1016/S1473-3099(15)00318-7. [Epub ahead of print].
  • Wang JY, Cao WC, Shan CQ, et al. Naphthoquine phosphate and its combination with artemisinine. Acta Trop. 2004;89(3):375–381.
  • Benjamin J, Moore B, Lee ST, et al. Artemisinin-naphthoquine combination therapy for uncomplicated pediatric malaria: a tolerability, safety, and preliminary efficacy study. Antimicrob Agents Chemother. 2012;56(5):2465–2471.
  • Laman M, Moore BR, Benjamin JM, et al. Artemisinin-naphthoquine versus artemether-lumefantrine for uncomplicated malaria in Papua New Guinean children: an open-label randomized trial. PLoS Med. 2014;11(12):e1001773.
  • Hastings IM, Hodel EM. Pharmacological considerations in the design of anti-malarial drug combination therapies - is matching half-lives enough? Malar J. 2014;13:62.
  • Hung TY, Davis TM, Ilett KF. Measurement of piperaquine in plasma by liquid chromatography with ultraviolet absorbance detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;791(1–2):93–101.
  • Karunajeewa HA, Ilett KF, Mueller I, et al. Pharmacokinetics and efficacy of piperaquine and chloroquine in Melanesian children with uncomplicated malaria. Antimicrob Agents Chemother. 2008;52(1):237–243.
  • Laman M, Benjamin JM, Moore BR, et al. Artemether-lumefantrine versus artemisinin-naphthoquine in Papua New Guinean children with uncomplicated malaria: a six months post-treatment follow-up study. Malar J. 2015;14:121.
  • Visser BJ, Wieten RW, Kroon D, et al. Efficacy and safety of artemisinin combination therapy (ACT) for non-falciparum malaria: a systematic review. Malar J. 2014;13:463.
  • Howie SR. Blood sample volumes in child health research: review of safe limits. Bull World Health Organ. 2011;89(1):46–53.
  • Kay K, Hodel EM, Hastings IM. Improving the role and contribution of pharmacokinetic analyses in antimalarial drug clinical trials. Antimicrob Agents Chemother. 2014;58(10):5643–5649.
  • Jager NG, Rosing H, Schellens JH, et al. Procedures and practices for the validation of bioanalytical methods using dried blood spots: a review. Bioanalysis. 2014;6(18):2481–2514.
  • Hastings IM, Watkins WM, White NJ. The evolution of drug-resistant malaria: the role of drug elimination half-life. Philos Trans R Soc Lond B Biol Sci. 2002;357(1420):505–519.
  • Koleala T, Karl S, Laman M, et al. Temporal changes in Plasmodium falciparum anti-malarial drug sensitivity in vitro and resistance-associated genetic mutations in isolates from Papua New Guinea. Malar J. 2015;14:37.
  • Pascual A, Parola P, Benoit-Vical F, et al. Ex vivo activity of the ACT new components pyronaridine and piperaquine in comparison with conventional ACT drugs against isolates of Plasmodium falciparum. Malar J. 2012;11:45.
  • Moore BR, Salman S, Benjamin J, et al. Pharmacokinetics of piperaquine transfer into the breast milk of Melanesian mothers. Antimicrob Agents Chemother. 2015;59(7):4272–4278.
  • White NJ. Cardiotoxicity of antimalarial drugs. Lancet Infect Dis. 2007;7(8):549–558.
  • Bouchaud O, Imbert P, Touze JE, et al. Fatal cardiotoxicity related to halofantrine: a review based on a worldwide safety data base. Malar J. 2009;8:289.
  • Van Vugt M, Ezzet F, Nosten F, et al. No evidence of cardiotoxicity during antimalarial treatment with artemether-lumefantrine. Am J Trop Med Hyg. 1999;61(6):964–967.
  • Sim IK, Davis TM, Ilett KF. Effects of a high-fat meal on the relative oral bioavailability of piperaquine. Antimicrob Agents Chemother. 2005;49(6):2407–2411.
  • European Medicines Agency. Eurartesim: annex I. Summary of product characteristics; 2011. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/001199/human_med_001450.jsp&mid=WC0b01ac058001d124
  • Manning J, Vanachayangkul P, Lon C, et al. Randomized, double-blind, placebo-controlled clinical trial of a two-day regimen of dihydroartemisinin-piperaquine for malaria prevention halted for concern over prolonged corrected QT interval. Antimicrob Agents Chemother. 2014;58(10):6056–6067.
  • Borsini F, Crumb W, Pace S, et al. In vitro cardiovascular effects of dihydroartemisin-piperaquine combination compared with other antimalarials. Antimicrob Agents Chemother. 2012;56(6):3261–3270.
  • Moore BR, Benjamin JM, Salman S, et al. Effect of coadministered fat on the tolerability, safety, and pharmacokinetic properties of dihydroartemisinin-piperaquine in Papua New Guinean children with uncomplicated malaria. Antimicrob Agents Chemother. 2014;58(10):5784–5794.
  • Van Dorn CS, Johnson JN, Taggart NW, et al. QTc values among children and adolescents presenting to the emergency department. Pediatrics. 2011;128(6):e1395–e1401.
  • Nguyen TH, Day NP, Ly VC, et al. Post-malaria neurological syndrome. Lancet. 1996;348(9032):917–921.
  • Isba R, Zani B, Gathu M, et al. Artemisinin-naphthoquine for treating uncomplicated Plasmodium falciparum malaria. Cochrane Database Syst Rev. 2015;2:CD011547.
  • Trinkley KE, Page RL 2nd, Lien H, et al. QT interval prolongation and the risk of torsades de pointes: essentials for clinicians. Curr Med Res Opin. 2013;29(12):1719–1726.
  • Chico RM, Chandramohan D. Azithromycin plus chloroquine: combination therapy for protection against malaria and sexually transmitted infections in pregnancy. Expert Opin Drug Metab Toxicol. 2011;7(9):1153–1167.
  • Lee SH, Chen SA, Wu TJ, et al. Effects of pregnancy on first onset and symptoms of paroxysmal supraventricular tachycardia. Am J Cardiol. 1995;76(10):675–678.
  • Smalley ME, Sinden RE. Plasmodium falciparum gametocytes: their longevity and infectivity. Parasitology. 1977;74(1):1–8.
  • Stepniewska K, Taylor WR, Mayxay M, et al. In vivo assessment of drug efficacy against Plasmodium falciparum malaria: duration of follow-up. Antimicrob Agents Chemother. 2004;48(11):4271–4280.
  • Baird JK, Hoffman SL. Primaquine therapy for malaria. Clin Infect Dis. 2004;39(9):1336–1345.
  • Crockett M, Kain KC. Tafenoquine: a promising new antimalarial agent. Expert Opin Investig Drugs. 2007;16(5):705–715.
  • John GK, Douglas NM, Von Seidlein L, et al. Primaquine radical cure of Plasmodium vivax: a critical review of the literature. Malar J. 2012;11:280.
  • Ebringer A, Heathcote G, Baker J, et al. Evaluation of the safety and tolerability of a short higher-dose primaquine regimen for presumptive anti-relapse therapy in healthy subjects. Trans R Soc Trop Med Hyg. 2011;105(10):568–573.
  • Moore BR, Salman S, Benjamin J, et al. Pharmacokinetic properties of single-dose primaquine in Papua New Guinean children: feasibility of abbreviated high-dose regimens for radical cure of vivax malaria. Antimicrob Agents Chemother. 2014;58(1):432–439.
  • Bennett JW, Pybus BS, Yadava A, et al. Primaquine failure and cytochrome P-450 2D6 in Plasmodium vivax malaria. N Engl J Med. 2013;369(14):1381–1382.
  • Potter BM, Xie LH, Vuong C, et al. Differential CYP 2D6 metabolism alters primaquine pharmacokinetics. Antimicrob Agents Chemother. 2015;59(4):2380–2387.
  • Tenero D, Green JA, Goyal N. Exposure-response analyses for tafenoquine after administration to patients with plasmodium vivax malaria. Antimicrob Agents Chemother. 2015;59(10):6188–6194.
  • Rajapakse S, Rodrigo C, Fernando SD. Tafenoquine for preventing relapse in people with Plasmodium vivax malaria. Cochrane Database Syst Rev. 2015;4:CD010458.
  • Marcsisin SR, Sousa JC, Reichard GA, et al. Tafenoquine and NPC-1161B require CYP 2D metabolism for anti-malarial activity: implications for the 8-aminoquinoline class of anti-malarial compounds. Malar J. 2014;13:2.
  • Leary KJ, Riel MA, Roy MJ, et al. A randomized, double-blind, safety and tolerability study to assess the ophthalmic and renal effects of tafenoquine 200 mg weekly versus placebo for 6 months in healthy volunteers. Am J Trop Med Hyg. 2009;81(2):356–362.
  • Held J, Jeyaraj S, Kreidenweiss A. Antimalarial compounds in Phase II clinical development. Expert Opin Investig Drugs. 2015;24(3):363–382.
  • Rottmann M, McNamara C, Yeung BK, et al. Spiroindolones, a potent compound class for the treatment of malaria. Science. 2010;329(5996):1175–1180.
  • Zhang R, Suwanarusk R, Malleret B, et al. A basis for rapid clearance of circulating ring-stage malaria parasites by the spiroindolone KAE609. J Infect Dis. 2015;213(1):100–104.
  • Leong FJ, Li R, Jain JP, et al. A first-in-human randomized, double-blind, placebo-controlled, single- and multiple-ascending oral dose study of novel antimalarial Spiroindolone KAE609 (Cipargamin) to assess its safety, tolerability, and pharmacokinetics in healthy adult volunteers. Antimicrob Agents Chemother. 2014;58(10):6209–6214.
  • White NJ, Pukrittayakamee S, Phyo AP, et al. Spiroindolone KAE609 for falciparum and vivax malaria. N Engl J Med. 2014;371(5):403–410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.