458
Views
125
CrossRef citations to date
0
Altmetric
Review

Primary and secondary hemophagocytic lymphohistiocytosis: clinical features, pathogenesis and therapy

&
Pages 137-154 | Published online: 10 Jan 2014

References

  • Henter JI, Elinder G, Soder O, Ost A. Incidence in Sweden and clinical features of familial hemophagocytic lymphohistiocytosis. Acta Paediatr. Scand.80, 428–435 (1991).
  • Farquhar JW, Claireaux AE. Familial haemophagocytic reticulosis. Arch. Dis. Child.27, 519–525 (1952).
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell124(4), 783–801 (2006).
  • Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol.22(11), 633–640 (2001).
  • Aktas E, Kucuksezer UC, Bilgic S, Erten G, Deniz G. Relationship between CD107a expression and cytotoxic activity. Cell Immunol.254(2), 149–154 (2009).
  • Strowig T, Brilot F, Munz C. Noncytotoxic functions of NK cells: direct pathogen restriction and assistance to adaptive immunity. J. Immunol.180(12), 7785–7791 (2008).
  • Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol.17, 189–220 (1999).
  • Dalbeth N, Gundle R, Davies RJ et al. CD56bright NK cells are enriched at inflammatory sites and can engage with monocytes in a recipricol program of activation. J. Immunol.173(10), 6418–6426 (2004).
  • Medzhitov R. Recognition of microorganisms and activation of the immune respose. Nature449(7164), 819–826 (2007).
  • Badovinac VP, Harty JT. CD8+ T-cell homeostasis after infection: setting the ‘curve’. Microbes Infect.4, 441–447 (2002).
  • de Saint Basile G, Fischer A. Defective cytotoxic granule-mediated cell death pathway impairs T lymphocyte homeostasis. Curr. Opin. Rheumatol.15, 436–445 (2003).
  • Verbsky JW, Grossman WJ. Hemophagocytic lymphohistiocytosis: diagnosis, pathophysiology, treatment, and future perspectives. Ann. Med.38, 20–31 (2006).
  • Hersperger AR, Makedonas G, Betts MR. Flow cytometric detection of perforin upregulation in human CD8 T cells. Cytometry A73(11), 1050–1057 (2008).
  • Stinchcombe JC, Griffiths GM. Secretory mechanisms in cell-mediated cytotoxicity. Annu. Rev. Cell. Dev. Biol.23, 495–517 (2007).
  • Neeft M, Weiffer M, de Jong AS et al. Munc13-4 is an effector of rab27a and controls secretion of lysosomes in hematopoietic cells. Mol. Biol. Cell16(2), 731–741 (2005).
  • Fukuda M. Regulation of secretory vesicle traffic by Rab small GTPases. Cell. Mol. Life Sci.65(18), 2801–2813 (2008).
  • Betts MR, Brenchley JM, Price DA et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods281(1–2), 65–78 (2003).
  • Filipovich AH. Hemophagocytic lymphohistiocytosis and related disorders. Curr. Opin. Allergy Clin. Immunol.6, 410–415 (2006).
  • Grossman WJ, Verbsky JW, Tollefsen BL et al. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood104(9), 2842–2848 (2004).
  • Pipkin ME, Lieberman J. Delivering the kiss of death: progress on understanding how perforin works. Curr. Opin. Immunol.19(3), 301–308 (2007).
  • Liu C, Walsh CM, Young JD. Perforin: structure and function. Immunol. Today16, 194–201 (1995).
  • Urrea Moreo R, Gil J, Rodriguez-Sainz C et al. Functional assessment of perforin C2 domain mutations illustrates the critical role for calcium-dependent binding in perforin cytotoxic function. Blood113(2), 338–346 (2009).
  • Pinkoski MJ, Green DR. Lymphocyte apoptosis: refining the paths to perdition. Curr. Opin. Hematol.9, 43–49 (2002).
  • Metkar SS, Wang B, Aguilar-Santelises M et al. Cytotoxic cell granule-mediated apoptosis: perforin delivers granzyme B-serglycin complexes into target cells without plasma membrane pore formation. Immunity16, 417–428 (2002).
  • Voskoboinik I, Smyth MJ, Trapani JA. Perforin-mediated target-cell death and immune homeostasis. Nat. Rev. Immunol.6, 940–952 (2006).
  • Palm-Apergi C, Lorents A, Padari K, Pooga M, Hallbrink M. The membrane repair response masks membrane disturbances caused by cell-penetrating peptide uptake. FASEB J.23(1), 214–223 (2009).
  • Keefe K, Shi L, Feske S et al. Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity23(3), 249–262 (2005).
  • Bots M, Medema JP. Granzymes at a glance. J. Cell Sci.119, 5011–5014 (2006).
  • Fellows E, Gil-Parrado S, Jenne DE, Kurschus FC. Natural killer cell-derived human granzyme H induces an alternative, caspase-independent cell-death program. Blood110(2), 544–552 (2007).
  • Bratke K, Kuepper M, Bade B, Virchow JC, Luttmann W. Differential expression of human granzymes A, B, and K in natural killer cells and during CD8+ T cell differentiation in peripheral blood. Eur. J. Immunol.35(9), 2608–2616 (2005).
  • Snoeck HW, Van Bockstaele DR, Nys G et al. Interferon γ selectively inhibits very primitive CD342+CD38- and not more mature CD34+CD38+ human hematopoietic progenitor cells. J. Exp. Med.180(3), 1177–1182 (1994).
  • Zeerleder S, Hack CE, Caliezi C et al. Activated cytotoxic T cells and NK cells in severe sepsis and septic shock and their role in multiple organ dysfunction. Clin. Immunol.116(2), 158–165 (2005).
  • Sato T, Seller C, Young NS, Maciejeskwi JP. Hematopoietic inhibition by interferon-γ is partially mediated through interferon regulatory factor-1. Blood86(9), 3373–3380 (1995).
  • Jordan MB, Hildeman D, Kappler J, Marrack P. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon g are essential for the disorder. Blood104, 735–743 (2004).
  • Osugi Y, Hara J, Tagawa S et al. Cytokine production regulating Th1 and Th2 cytokines in hemophagocytic lymphohistiocytosis. Blood89(11), 4100–4103 (1997).
  • Marcenaro S, Gallo F, Martini S et al. Analysis of natural killer-cell function in familial hemphagocytic lymphohistiocytosis (FHL): defective CD107a surface expression heralds Munc13-4 defect and discriminates between genetic subtypes of the disease. Blood108, 2316–2323 (2006).
  • Billiau AD, Roskams T, Van Damme-Lombaerts R, Matthys P, Wouters C. Macrophage activation syndrome: characteristic findings on livery biopsy illustrating the key role of activated, IFN-γ-producing lymphocytes and IL-6- and TNF-α-producing macrophages. Blood105(4), 1648–1651 (2005).
  • Haddad E, Sulis ML, Jabado N et al. Frequency and severity of central nervous system lesions in hemophagocytic lymphohistiocytosis. Blood89(3), 794–800 (1997).
  • Imashuku S, Hibi S, Sako M et al. Heterogeneity of immune markers in hemophagocytic lymphohistiocytosis: comparitive study of 9 familial and 14 familial inheritance-unproven cases. J. Pediatr. Hematol. Oncol.20(3), 207–214 (1998).
  • Schneider EM, Lorenz I, Muller-Rosenberger M et al. Hemophagocytic lymphohistiocytosis is associated with deficiencies of cellular cytolysis but normal expression of transcripts relevant to killer-cell-induced apoptosis. Blood89, 4100–4103 (2002).
  • Imashuku S, Ikushima S, Esumi N, Todo S, Saito M. Serum levels of interferon-γ, cytotoxic factor and soluble interleukin-2 receptor in childhood hemophagocytic syndromes. Leuk. Lymphoma3, 287 (1991).
  • Henter JI, Elinder G, Soder O et al. Hypercytokinemia in familial hemophagocytosis. Blood78, 2918–2922 (1991).
  • Fujiwara F, Hibi S, Imashuku S. Hypercytokinemia in hemophagocytic syndrome. Am. J. Pedatr. Hematol. Oncol.15, 92–98 (1993).
  • Ohga S, Matsuzaki A, Nishizaki M et al. Inflammatory cytokines in virus-associated hemophagocytic syndrome: interferon-γ as a sensitive indicator of disease activity. Am. J. Pedatr. Hematol. Oncol.15, 291–298 (1993).
  • Akashi K, Hayashi S, Gondo H et al. Involvement of interferon-γ and macrophage colony-stimulating factor in pathogenesis of hemophagocytic lymphohistiocytosis in adults. Br. J. Haematol.87, 243–250 (1994).
  • Tamura K, Kanazawa T, Tsukada S et al. Increased serum monocyte chemoattractant protein-1, macrophage inflammatory protein-1β, and interleukin-8 concentrations in hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer51(5), 662–668 (2008).
  • van Dommelen SLH, Sumaria N, Schreiber RD et al. Perforin and granzyme have distinct roles in defensive immunity and immunopathology. Immunity25, 835–848 (2006).
  • Sullivan KE, Delaat CA, Douglas SD, Filipovich AH. Defective natural killer cell function in patients with hemophagocytic lymphohistiocytosis and in first-degree relatives. Pediatr. Res.44, 465–468 (1998).
  • Schneider EM, Lorenz I, Walther P, Janka GE. Natural killer deficiency: a minor or major factor in the manifestation of hemophagocytic lymphohistiocytosis? J. Pediatr. Hematol. Oncol.25(9), 680–683 (2003).
  • Larroche C, Mouthon L. Pathogenesis of hemophagocytic syndrome (HPS). Autoimmun. Rev.3, 69–75 (2004).
  • Badovinac VP, Porter BB, Harty JT. Programmed contraction of CD8+ T cells after infection. Nat. Immunol.3(7), 619–626 (2002).
  • Badovinac VP, Porter BB, Harty JT. CD8+ T cell contraction is controlled by early inflammation. Nat. Immunol.5(8), 809–817 (2004).
  • Andrews DM, Andoniou CD, Fleming P, Smyth MJ, Degli-Esposti MA. The early kinetics of cytomegalovirus-specific CD8+ T-cell responses are not affected by antigen load or the absence of perforin or g interferon. J. Virol.82, 4931–4937 (2008).
  • Kagi D, Odermatt B, Mak TW. Homeostatic regulation of CD8+ T cells by perforin. Eur. J. Immunol.29, 3262–3272 (1999).
  • Ohadi M, Lalloz MRA, Sham P et al. Localization of a gene for familial hemophagocytic lymphohistiocytosis at chromosome 9q21.3–22 by homozygosity mapping. Am. J. Hum. Genet.64, 165–171 (1999).
  • Stepp SE, Dufourcq-Lagelouse R, Le Deist F et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science286, 1957–1959 (1999).
  • Kogawa K, Lee SM, Villanueva J et al. Perforin expression in cytotoxic lymphocytes from patients with hemophagocytic lymphohistiocytosis and their family members. Blood99(1), 61–66 (2002).
  • Ueda I, Morimoto A, Inaba T et al. Characteristic perforin gene mutations of haemophagocytic lymphohistiocytosis patients in Japan. Br. J. Haematol.121, 503–510 (2003).
  • Molleran Lee S, Villanueva J, Sumegi J et al. Characterisation of diverse PRF1 mutations leading to decreased natural killer cell activity in North American families with haemophagocytic lymphohistiocytosis. J. Med. Genet.41(2), 137–144 (2004).
  • Lieberman J. The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat. Rev. Immunol.3, 361–370 (2003).
  • Molleran Lee S, Sumegi J, Villanueva J et al. Patients of African ancestry with hemophagocytic lymphohistiocytosis share a common haplotype of PRF1 with a 50DELT mutation. J. Pediatr.149, 134–137 (2006).
  • Clementi R, Zur Stadt U, Savoldi G et al. Six novel mutations in the PRF1 gene in children with haemophagocytic lymphohistiocytosis. J. Med. Genet.38, 643–646 (2001).
  • Trizzino A, Zur Stadt U, Risma K et al. Genotype phenotype study of familial haemophagocytic lymphohistiocytosis due to perforin mutations. J. Med. Genet.45, 15–21 (2008).
  • Voskoboinik I, Sutton VR, Ciccone A et al. Perforin activity and immune homeostasis: the common A91V polymorphisim in perforin results in both presynaptic and postsynaptic defects in function. Blood110(4), 1184–1190 (2007).
  • Zhang K, Johnson JA, Biroschak J et al. Familial haemophagocytic lymphohistiocytosis in patients who are heterozygous for the A91V perforin variation is often associated with other genetic defects. Int. J. Immunogenet.34(4), 231–233 (2007).
  • Dufourcq-Lagelouse R, Jabado N, Le Deist F et al. Linkage of familial hemophagocytic lymphhistiocytosis to 10q21–22 and evidence for heterogeneity. Am. J. Hum. Genet.64, 172–179 (1999).
  • Graham GE, Graham LM, Bridge PJ et al. Further evidence for genetic heterogeneity in familial hemophagocytic lymphohistiocytosis (FHLH). Pediatr. Res.48(2), 227–232 (2000).
  • Feldmann J, Callebaut I, Raposo G et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell115, 461–473 (2003).
  • Pivot-Pajot C, Varoqueaux F, De Saint Basile G, Bourgain SG. Munc13-4 regulates granule secretion in human neutrophils. J. Immunol.180(10), 6786–6797 (2008).
  • Menasche G, Pastural E, Feldmann J et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat. Genet.25(2), 173–176 (2000).
  • Ishii E, Ohga S, Imashuku S et al. Review of hemophagocytic lymphohistiocytosis (HLH) in children with focus on Japanese experiences. Crit. Rev. Oncol. Hematol.53, 209–223 (2005).
  • Santoro A, Cannella S, Trizzino A et al. Mutations affecting mRNA splicing are the most common molecular defect in patients with familial hemophagocytic lymphohistiocytosis type 3. Haematologica93, 1086–1090 (2008).
  • Rudd E, Bryceson YT, Zheng C et al. Spectrum, and clinical and functional implications of UNC13D mutations in familial haemophagocytic lymphohistiocytosis. J. Med. Genet.45(3), 134–141 (2008).
  • Ueda I, Ishii E, Morimoto A et al. Correlation between phenotypic heterogeneity and gene mutational characteristics in familial hemophagocytic lymphohistiocytosis (FHL). Pedatr. Blood Cancer46, 482–488 (2006).
  • Zur Stadt U, Beutel K, Kolberg S et al. Mutation spectrum in children with primary hemophagocytic lymphohistiocytosis: molecular and functional analyses of PRF1, UNC13D, STX11 and RAB27A. Hum. Mutat.27(1), 62–68 (2006).
  • Bryceson YT, Rudd E, Zheng C et al. Defective cytotoxic lymphocyte degranulation in syntaxin-11 deficient familial hemophagoctic lymphohistiocytosis 4 (FHL4) patients. Blood110(6), 1906–1915 (2007).
  • Crozat K, Hoebe K, Ugolini S et al. Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis. J. Exp. Med.204(4), 853–863 (2007).
  • Zur Stadt U, Schmidt S, Kasper B et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum. Mol. Gen.14(6), 827–834 (2005).
  • Janka G, zur Stadt U. Familial and acquired hemophagocytic lymphohistiocytosis. Hematology Am. Soc. Hematol. Educ. Program82–88 (2005).
  • Yamamoto K, Ishii E, Horiuchi H et al. Mutations of syntaxin 11 and SNAP23 genes as causes of familial hemophagocytic lymphohistiocytosis were not found in Japanese people. J. Hum. Genet.50, 600–603 (2005).
  • Arenson LN, Brickshawana A, Segovis CM et al. Cutting edge: syntaxin 11 regulates lymphocyte-mediated secretion and cytotoxicity. J. Immunol.179(6), 3397–3401 (2007).
  • Kaplan J, De Domenico I, McVey Ward D. Chediak–Higashi syndrome. Curr. Opin. Hematol.15, 22–29 (2008).
  • Enders A, Zieger B, Schwarz K et al. Lethal hemphagocytic lymphohistiocytosis in Hermansky–Pudlak syndrome type II. Blood108, 81–87 (2006).
  • Engel P, Eck MJ, Terhorst C. The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nat. Rev. Immunol.3, 813–821 (2003).
  • Grunebaum E, Zhang J, Dadi H, Roifman CM. Haemophagocytic lymphohistiocytosis in X-linked severe combined immunodeficiency. Br. J. Haematol.108, 834–837 (2000).
  • Schultz KAP, Neglia JP, Smith AR et al. Familial hemophagocytic lymphohistiocytosis in two brothers with X-linked agammaglobulinemia. Pediatr. Blood Cancer51, 293–295 (2008).
  • Stinchcombe J, Bossi G, Griffiths G. Linking albinism and immunity: the secrets of secretory lysosomes. Science305(5680), 55–59 (2004).
  • Schmid JP, Ho C, Diana J et al. A Griscelli syndrome type 2 murine model of hemophagocytic lymphohistiocytosis (HLH). Eur. J. Immunol.38, 3219–3225 (2008).
  • Stinchcombe J, Bossi G, Booth S, Griffiths GM. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity15(5), 751–761 (2001).
  • Nagle DL, Karim MA, Woolf EA et al. Identification and mutation analysis of the complete gene for Chediak–Higashi syndrome. Nat. Genet.14(3), 307–311 (1996).
  • Fontana S, Parolini S, Vermi W et al. Innate immunity defects in Hermansky–Pudlak type 2 syndrome. Blood107(12), 4857–4864 (2006).
  • Ma CS, Nichols KE, Tangye SG. Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu. Rev. Immunol.25, 337–379 (2007).
  • Tabata Y, Villanueva J, Lee SM et al. Rapid detection of intracellular SH2D1A protein in cytotoxic lymphocytes from patients with X-linked lymphoproliferative disease and their family members. Blood105(8), 3066–3071 (2005).
  • Rigaud S, Fondaneche MC, Lambert N et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature444(7115), 110–114 (2006).
  • Janka GE. Familial erythrophagocytic lymphohistiocytosis. Eur. J. Pediatr.140, 221–230 (1983).
  • Arico M, Janka G, Fischer A et al. Hemophagocytic lymphohistiocytosis. Report of 122 children from the International Registry. Leukemia10, 197–203 (1996).
  • Hirst WJ, Layton DM, Singh S, Mieli-Vergani G, Chessells JM. Haemophagocytic lymphohistiocytosis: experience at two U.K. centres. Br. J. Haematol.88, 731–739 (1994).
  • Morrell DS, Pepping MA, Scott P, Esterly NB, Drolet BA. Cutaneous manifestations of hemophagocytic lymphohistiocytosis. Arch. Dermatol.138, 1208–1212 (2002).
  • Horne A, Trottestam H, Arico M et al. Frequency and spectrum of central nervous system involvement in 193 children with haemophagocytic lymphohistiocytosis. Br. J. Haematol.140, 327–335 (2007).
  • Stapp J, Wilkerson S, Stewart D et al. Fulminant neonatal liver failure in siblings: probably congenital hemophagocytic lymphohistiocytosis. Pediatr. Dev. Pathol.9(3), 239–244 (2006).
  • Henter JI, Elinder G, Ost A. Diagnostic guidelines for hemophagocytic lymphohistiocytosis. Semin. Oncol.28, 342–347 (1991).
  • Gupta A, Tyrrell P, Valani R et al. The role of the initial bone marrow aspirate in the diagnosis of hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer51, 402–404 (2008).
  • Goo HW, Weon YC. A spectrum of neuroradiological findings in children with haemophagocytic lymphohistiocytosis. Pediatr. Radiol.37, 1110–1117 (2007).
  • Kataoka Y, Todo S, Morioka Y et al. Impaired natural killer activity and expression of interleukin-2 receptor antigen in familial erythrophagocytic lymphohistiocytosis. Cancer65, 1937–1941 (1990).
  • Perez N, Virelizier J, Arenzana-Seisdedos F, Fischer A, Griscelli C. Impaired natural killer cell activity in lymphohistiocytosis syndrome. J. Pediatr. Hematol. Oncol.104, 569–573 (1984).
  • Eife R, Janke GE, Belohrasky BH. Natural killer cell function and interferon production in familial hemophagocytic lymphohistiocytosis. Pediatr. Hematol. Oncol.6, 265–272 (1989).
  • Arico M, Danesino C, Pende D, Moretta L. Pathogenesis of hemophagocytic lymphohistiocytosis. Br. J. Haematol.114, 761–769 (1991).
  • Filipovich A. Hemophagocytic lymphohistiocytosis. Immunol. Allergy Clin. N. Am.22, 281–300 (2002).
  • Janka G, Muller-Rosenberger M, Schneider EM. Persistent defect of cellular cytotoxicity after Epstein–Barr virus-associated hemophagocytic lymphohistiocytosis. Blood96, 36b (2001).
  • Janka G, Schneider EM. Modern management of children with haemophagocytic lymphohistiocytosis. Br. J. Haematol.124, 4–14 (2004).
  • Henter JI, Horne A, Arico M et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer48, 124–131 (2007).
  • Palazzi DL, McClain KL, Kaplan SL. Hemophagocytic syndrome in children: an important diagnostic consideration in fever of unknown origin. Clin. Infect. Dis.36, 306–312 (2003).
  • Castillo L. High elevated ferritin levels and the diagnosis of HLH/Sepsis/SIRS/MODS/MAS. Pediatr. Blood Cancer51, 710–711 (2008).
  • Suster S, Hilsenbeck S, Rywlin AM. Reactive histiocytic hyperplasia with hemophagocytosis in hematopoietic organs: a reevaluation of the benign hemophagocytic proliferations. Hum. Pathol.19, 705–712 (1988).
  • Strauss R, Neureiter D, Westenburger B et al. Multifactorial risk analysis of bone marrow histiocytic hyperplasia with hemophagocytosis in critically ill medical patients – a postmortem clinicopathologic analysis. Crit. Care Med.32(6), 1316–1321 (2004).
  • Gauvin F, Toledano B, Champagne J, Lacroix J. Reactive hemophagocytic syndrome presenting as a component of multiple organ dysfunction syndrome. Crit. Care Med.28(9), 3341–3345 (2000).
  • Allen CE, Yu X, Kozinetz CA, McClain KL. Highly elevated ferritin levels and the diagnosis of hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer50, 1227–1235 (2008).
  • Kapoor S. Distinguishing hemophagocytic lymphohistiocytosis from hemochromatosis in patients with hyperferritinemia. Pediatr. Blood Cancer50, 1287–1297 (2008).
  • Allen CE, McClain KL, Filipovich L. Highly elevated ferritin levels and the diagnosis of HLH/sepsis/SIRS/MODS/MAS – response. Pediatr. Blood Cancer51, 711 (2008).
  • Emminger W, Zlabinger GJ, Fritsch G, Urbanek R. CD14dim/CD16bright monocytes in hemophagocytic lymphohistiocytosis. Eur. J. Immunol.31, 1716–1719 (2001).
  • Schaer DJ, Schleiffenbaum B, Kurrer M et al. Soluble hemoglobin–haptoglobin scavenger receptor CD163 as a lineage-specific marker in the reactive hemophagocytic syndrome. Eur. J. Hematol.74, 6–10 (2005).
  • Moller HJ, Moestrup SK, Weis N et al. Macrophage serum markers in pneumococcal bacteremia: prediction of survival by soluble CD163. Crit. Care Med.34(10), 2561–2566 (2006).
  • Bleesing J, Prada A, Siegel DM et al. The diagnostic significance of soluble CD163 and soluble interleukin-2 receptor α-chain in macrophage activation syndrome and unrelated new-onset systemic juvenile idiopathic arthritis. Arthritis Rheum.56(3), 965–971 (2007).
  • Moller HJ, Gronbaek H, Schiodt FV et al. Soluble CD163 from activated macrophages predicts mortality in acute liver failure. J. Hepatol.47(5), 671–676 (2007).
  • Ishii E, Ohga S, Imashuku S et al. Nationwide survey of hemophagocytic lymphohistiocytosis in Japan. Int. J. Hematol.86, 58–65 (2007).
  • Allen M, De Fusco C, Legrand F et al. Familial hemophagocytic lymphohistiocytosis: how late can the onset be? Haematologica86, 499–503 (2001).
  • Nagafuji K, Nonami A, Kumano T et al. Perforin gene mutations in adult-onset hemophagocytic lymphohistiocytosis. Haematologica92, 978–981 (2007).
  • Jordan MB, Filipovich AH. Hematopoietic cell transplantation for hemophagocytic lymphohistiocytosis: a journey of a thousand miles begins with a single (big) step. BMT42, 433–437 (2008).
  • Risdall RJ, McKenna RW, Nesbit ME et al. Virus-associated hemophagocytic syndrome: a benign histiocytic proliferation distinct from malignant histiocytosis. Cancer44(3), 993–1002 (1979).
  • Rouphael NG, Talati NJ, Vaughan C et al. Infections associated with haemophagocytic syndrome. Lancet Infect. Dis.7, 814–822 (2007).
  • Henter JI, Chow CB, Leung CW, Lau YL. Cytotoxic therapy for severe avian influenza A (H5N1) infection. Lancet367(9513), 870–873 (2006).
  • Kasahara Y, Yachie A. Cell type specific infection of Epstein–Barr virus (EBV) in EBV-associated hemophagocytic lymphohistiocytosis and chronic active EBV infection. Crit. Rev. Oncol. Hematol.44, 283–294 (2002).
  • Kasahara Y, Yachie A, Takei K et al. Differential cellular targets of Epstein–Barr virus (EBV) infection between acute EBV-associated hemophagocytic lymphohistiocytosis and chronic active EBV infection. Blood98, 1882–1888 (2001).
  • Imashuku S. Systemic type Epstein–Barr virus-related lymphoproliferative diseases in children and young adults: challenges for pediatric hemato-oncologists and infectious disease specialists. Pediatr. Hematol. Oncol.24, 563–568 (2007).
  • Chuang HC, Lay JD, Hsieh WC et al. Epstein–Barr virus LMP1 inhibits the expression of SAP gene and upregulates Th1 cytokines in the pathogenesis of hemophagocytic syndrome. Blood106(9), 3090–3096 (2005).
  • Wada T, Kurokawa T, Toma T et al. Immunophenotypic analysis of Epstein–Barr virus (EBV)-infected CD8+ T cells in a patient with EBV-associated hemophagocytic lymphohistiocytosis. Eur. J. Hematol.79, 72–75 (2007).
  • Beutel K, Janka GE, Schneider ME. EBV-associated hemophagocytic lymphohistiocytosis (HLH) in German children. Med. Pediatr. Oncol.38, 224 (2002).
  • Janka G, Imashuku S, Elinder G, Schneider M, Henter JI. Infection- and malignancy-associated hemophagocytic syndromes. Secondary hemophagocytic lymphohistiocytosis. Hematol. Oncol. Clin. North Am.12, 435–444 (1998).
  • O’Brien MM, Lee-Kim Y, George YI et al. Precursor B-cell acute lymphoblastic leukemia presenting with hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer50(2), 381–383 (2008).
  • Kuzmanovic M, Rasovic N, Micic D et al. Epstein–Barr virus associated hemophagocytic lymphohistiocytosis during maintenance treatment of acute lymphoblastic leukemia. Pediatr. Blood Cancer46(7), 832 (2006).
  • Sawhney S, Woo P, Murray KJ. Macrophage activation syndrome: a potentially fatal complication of rheumatic disorders. Arch. Dis. Child.85(5), 421–426 (2001).
  • Avcin T, Tse SM, Schneider R, Ngan B, Silverman ED. Macrophage activation syndrome as the presenting manifestation of rheumatic diseases in childhood. J. Pediatr.148(5), 683–686 (2006).
  • Ramanan AV, Schneider R. Macrophage activating syndrome following initiation of etanercept in a child with systemic onset juvenile rheumatoid arthritis. J. Rheumatol.30, 401–403 (2003).
  • Stephan JL, Kone-Paut I, Galambrun C et al. Reactive haemophagocytic syndrome in children with inflammatory disorders. A retrospective study of 24 patients. Rheumatology40, 1285–1292 (2001).
  • Grom AA. Macrophage activation syndrome and reactive hemophagocytic lymphohistiocytosis: the same entities? Curr. Opin. Rheumatol.15, 587–590 (2003).
  • Ramanan AV, Schneider R. Macrophage activation syndrome – what’s in a name! J. Rheumatol.30(12), 2513–2516 (2003).
  • Grom AA, Villanueva J, Lee S et al. Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. J. Pediatr.142, 292–296 (2003).
  • Villanueva J, Lee S, Giannini EH et al. Natural killer cell dysfunction is a distinguishing feature of systemic onset juvenile rheumatoid arthritis and macrophage activation syndrome. Arthritis. Res. Ther.7, R30–R37 (2005).
  • Behrens EM, Beukelman T, Paessler M, Cron RQ. Occult macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis. J. Rheumatol.34(5), 1133–1138 (2007).
  • Behrens EM. Macrophage activation syndrome in rheumatic disease: what is the role of the antigen presenting cell? Autoimmun. Rev.7, 305–308 (2008).
  • Ramanan AV, Grom AA. Does systemic-onset juvenile idiopathic arthritis belong under juvenile idiopathic arthritis? Rheumatology44, 1350–1353 (2005).
  • Donn R, Ellison S, Lamb R et al. Genetic loci contributing to hemophagocytic lymphohistiocytosis do not confer susceptibility to systemic-onset juvenile idiopathic arthritis. Arthritis Rheum.58(3), 869–874 (2008).
  • Hazen MM, Woodward AL, Hofmann I et al. Mutations of the hemophagocytic lymphohistiocytosis-associated gene UNC13D in a patient with systemic juvenile idiopathic arthritis. Arthritis Rheum.58(2), 567–570 (2008).
  • Ravelli A, Magni-Manzoni S, Pistorio A et al. Preliminary diagnostic guidelines for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. J. Pediatr.146, 598–604 (2005).
  • Kelly A, Ramanan AV. Recognition and management of macrophage activation syndrome in juvenile arthritis. Curr. Opin. Rheumatol.19, 477–481 (2007).
  • Henter JI. Biology and treatment of familial hemophagocytic lymphohistiocytosis: importance of perforin in lymphocyte-mediated cytotoxicity and triggering of apoptosis. Med. Pediatr. Oncol.38, 305–309 (2002).
  • Ambruso DR, Hays T, Zwartjes WJ, Tubergen DG, Favara BE. Successful treatment of lymphohistiocytic reticulosis with phagocytosis with epipodophyllotoxin VP 16–213. Cancer45, 2516–2520 (1980).
  • Fischer A, Virelizier J, Arenzana-Seisdedos F et al. Treatment of four patients with erythrophagocytic lymphohistiocytosis by a combination of epipodophphyllotoxin, steroids, intrathecal methotrexate and cranial irradiation. Pediatrics76, 263–268 (1985).
  • Stephan JL, Donadieu J, Le Deist F et al. Treatment of familial hemophagocytic lymphohistiocytosis with antithymocyte globulins, steroids and cyclosporin A. Blood82, 2319–2323 (1993).
  • Fischer A, Cerf-Bensussan N, Blanche S et al. Allogeneic bone marrow transplantation for erythrophagocytic lymphohistiocytosis. J. Pediatr.108(2), 267–270 (1986).
  • Caselli D, Aricò M; EBMT Paediatric Working Party. The role of BMT in childhood histiocytoses. Bone Marrow Transplant41, S8–S13 (2008).
  • Henter JI, Samuelsson-Horne A, Arico M et al. Treatment of hemophagocytic lymphohistiocytosis with HLH-94 immunochemotherapy and bone marrow transplantation. Blood100, 2367–2373 (2002).
  • Filipovich AH, Imashuku S, Henter JI, Sullivan KE. Healing hemophagocytosis. Clin. Immunol.117, 121–124 (2005).
  • Imashuku S, Kuriyama K, Sakai R et al. Treatment of Epstein–Barr virus-associated hemophagocytosis (EBV-HLH) in young adults: a report from the HLH study center. Med. Pediatr. Oncol.41(2), 103–109 (2003).
  • Mahlaoui N, Ouachee-Chardin M, de Saint Basile G et al. Immunotherapy of familial hemophagocytic lymphohistiocytosis with antithymoctye globulins: a single-center retrospective report of 38 patients. Pediatrics120(3), e622–e628 (2007).
  • Imashuku S. Etoposide-related secondary acute myeloid leukemia (t-AML) in hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer48, 121–123 (2007).
  • Imashuku S, Kuriyama K, Teramura T et al. Requirement for etoposide in the treatment of Epstein–Barr virus-associated hemophagocytic lymphohistiocytosis. J. Clin. Oncol.19(10), 2665–2673 (2001).
  • Trottestam H, Beutel K, Meeths M et al. Treatment of then X-linked lymphoproliferative, Griscelli and Chediak–Higashi syndromes by HLH directed therapy. Pediatr. Blood Cancer52(2), 268–272 (2009).
  • Imashuku S, Teramura T, Tauchi H et al. Longitudinal follow-up of patients with Epstein–Barr virus-associated hemophagocytic lymphohistiocytosis. Haematologica89, 183–188 (2004).
  • Baker KS, Filipovich AH, Gross TG et al. Unrelated donor hematopoietic cell transplantation for hemophagocytic lymphohistiocytosis. BMT42, 175–180 (2008).
  • Ouachee-Chardin M, Elie C, de Saint Basile G et al. Hematopoietic stem cell transplantation in hemophagocytic lymphohistiocytosis: a single-center report of 48 patients. Pediatrics117(4), e743–e750 (2006).
  • Satwani P, Cooper N, Rao K, Veys P, Amrolia P. Reduced intensity conditioning and allogeneic stem cell tranplantation in childhood malignant and nonmalignant disease. BMT41(2), 173–182 (2008).
  • Cooper N, Rao K, Gilmour K et al. Stem cell transplantation with reduced-intensity conditioning for hemophagocytic lymphohistiocytosis. Blood107(3), 1233–1236 (2006).
  • Chen R, Lin K, Lin D et al. Immunomodulation treatment for childhood virus-associated haemophagocytic lymphohistiocytosis. Br. J. Haematol.89, 282–290 (1995).
  • Imashuku S, Hibi S, Ohara T et al. Effective control of Epstein–Barr virus-related hemophagocytic lymphohistiocytosis with immunochemotherapy. Blood93, 1869–1874 (1999).
  • Imashuku S, Hibi S, Kuriyama K et al. Management of severe neutropenia with cyclosporin during initial treatment of Epstein–Barr virus-related hemophagocytic lymphohistiocytosis. Leuk. Lymphoma36(3–4), 339–346 (2000).
  • Perel Y, Alos N, Ansoborlo A, Carrere A, Guillard J-M. Dramatic efficacy of antithymocyte globulins in childhood EBV-associated haemophagocytic syndrome. Acta Paediatr.86, 911 (1997).
  • Balamuth NJ, Nichols KE, Paessler M, Teachey DT. Use of rituximab in conjunction with immunosuppressive chemotherapy as a novel therapy for Epstein–Barr virus-associated hemophagocytic lymphohistiocytosis. J. Pediatr. Hematol. Oncol.29, 569–573 (2007).
  • Ravelli A, De Benedetti F, Viola S, Martini A. Macrophage activating syndrome in systemic juvenile rheumatoid arthritis successfully treated with cyclosporine. J. Pediatr.128, 275–278 (1996).
  • Tristano AG, Casanova-Escalona L, Torres A, Rodriguez MA. Macrophage activation syndrome in a patient with systemic onset rheumatoid arthritis: rescue with intravenous immunoglobulin therapy. J. Clin. Rheumatol.9(4), 253–258 (2003).
  • Makay B, Yilmaz S, Turkyilmaz Z et al. Etanercept for therapy-resistant macrophage activation syndrome. Pediatr. Blood Cancer50, 419–421 (2008).
  • Prahalad S, Bove KE, Dickens D, Lovell DJ, Grom AA. Etanercept in the treatment of macrophage activation syndrome. J. Rheumatol.28(9), 2120–2124 (2001).
  • Sawar H, Espinoza RL, Gedalia A. Macrophage activation syndrome and etanercept in children with systemic juvenile rheumatoid arthritis. J. Rheumatol.31, 623 (2004).
  • Kelly A, Ramanan AV. A case of macrophage activation syndrome successfully treated with anakinra. Nat. Clin. Pract. Rheumatol.4, 615–620 (2008).
  • Sung L, Weitzman S, Petric M, King SM. The role of infections in primary hemophagocytic lymphohistiocytosis: a case series and review of the literature. Clin. Infect. Dis.33(10), 1644–1648 (2001).
  • Imashuku S, Teramura T, Morimoto A, Hibi S. Recent developments in the management of haemophagocytic lymphohistiocytosis. Expert Opin. Pharmacother.2, 1437–1448 (2001).
  • Henzan T, Nagafuji K, Tsukamoto H et al. Success with infliximab in treating refractory hemophagocytic lymphohistiocytosis. Am. J. Hematol.81, 59–61 (2006).
  • Olin RL, Nichols KE, Naghashpour M et al. Successful use of the anti-CD25 antibody daclizumab in an adult patient with hemophagocytic lymphohistiocytosis. Am. J. Hematol.83, 747–749 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.