40
Views
3
CrossRef citations to date
0
Altmetric
Review

Natural killer T cells regulate the development of asthma

, , &
Pages 251-260 | Published online: 10 Jan 2014

References

  • Wills-Karp M. Immunologic basis of antigen-induced airway hyperresponsiveness. Annu. Rev. Immunol.17, 255–281 (1999).
  • Busse WW, Lemanske RF Jr. Asthma. N. Engl. J. Med.344, 350–362 (2001).
  • Mannino DM, Homa DM, Akinbami LJ, Moorman JE, Gwynn C, Redd SC. Surveillance for asthma: United States, 1980–1999. MMWR Surveill. Summ.51, 1–13 (2002).
  • Umetsu DT, McIntire JJ, Akbari O, Macaubas C, DeKruyff RH. Asthma: an epidemic of dysregulated immunity. Nat. Immunol.3, 715–720 (2002).
  • Gold DR, Wright R. Population disparities in asthma. Annu. Rev. Public Health26, 89–113 (2005).
  • Kiley J, Smith R, Noel P. Asthma phenotypes. Curr. Opin. Pulm. Med.13, 19–23 (2007).
  • Umetsu DT, Dekruyff RH. Immune dysregulation in asthma. Curr. Opin. Immunol.18, 727–732 (2006).
  • Voehringer D, Reese TA, Huang X, Shinkai K, Locksley RM. Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J. Exp. Med.203, 1435–1446 (2006).
  • Gibson PG, Simpson JL, Saltos N. Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest119, 1329–1336 (2001).
  • Galli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature454, 445–454 (2008).
  • Miyahara N, Swanson BJ, K Takeda et al. Effector CD8+ T cells mediate inflammation and airway hyper-responsiveness. Nat. Med.10, 865–869 (2004).
  • Li N, Alam J, Venkatesan MI et al. Nrf2 is a key transcription factor that regulates antioxidant defense in macrophages and epithelial cells: protecting against the proinflammatory and oxidizing effects of diesel exhaust chemicals. J. Immunol.173, 3467–3481 (2004).
  • Brusasco V, Crimi E, Pellegrino R. Airway hyperresponsiveness in asthma: not just a matter of airway inflammation. Thorax53, 992–998 (1998).
  • Wills-Karp M, Luyimbazi J, Xu X et al. Interleukin-13: central mediator of allergic asthma. Science282, 2258–2261 (1998).
  • Gillis HL, Lutchen KR. Airway remodeling in asthma amplifies heterogeneities in smooth muscle shortening causing hyperresponsiveness. J. Appl. Physiol.86, 2001–2012 (1999).
  • James AL, Pare PD, Hogg JC. The mechanics of airway narrowing in asthma. Am. Rev. Respir. Dis.139, 242–246 (1989).
  • Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins: 1986. J. Immunol.175, 5–14 (2005).
  • Maggi E. The Th1/Th2 paradigm in allergy. Immunotechnology3, 233–244 (1998).
  • Romagnani S. Th1/Th2 cells. Inflamm. Bowel Dis.5, 285–294 (1999).
  • Robinson DS, Hamid Q, Ying S et al. Predominant Th2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med.326, 298–304 (1992).
  • Grunig G, Warnock M, Wakil AE et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science282, 2261–2263 (1998).
  • Romagnani S. Immunologic influences on allergy and the Th1/Th2 balance. J. Allergy Clin. Immunol.113, 395–400 (2004).
  • Gavett SH, Chen X, Finkelman F, Wills-Karp M. Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am. J. Respir. Cell. Mol. Biol.10, 587–593 (1994).
  • Wills-Karp M, Ewart SL. The genetics of allergen-induced airway hyperresponsiveness in mice. Am. J. Respir. Crit. Care Med.156, S89–96 (1997).
  • Martinez FD, Wright AL, Taussig LM et al. Asthma and wheezing in the first six years of life. N. Engl. J. Med.332, 133–138 (1995).
  • Cohn L, Elias JA, Chupp GL. Asthma: mechanisms of disease persistence and progression. Annu. Rev. Immunol.22, 789–815 (2004).
  • Anderson GP . Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet372, 1107–1119 (2008).
  • Cho SH, Stanciu LA, Holgate ST, Johnston SL. Increased interleukin-4, interleukin-5, and interferon-γ in airway CD4+ and CD8+ T cells in atopic asthma. Am. J. Respir. Crit. Care Med.171, 224–230 (2005).
  • Nakao F, Ihara K, Kusuhara K et al. Association of IFN-γ and IFN regulatory factor 1 polymorphisms with childhood atopic asthma. J. Allergy Clin. Immunol.107, 499–504 (2001).
  • Bullens DM, Truyen E, Coteur L et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx?. Respir. Res.7, 135 (2006).
  • Oboki K, Ohno T, Saito H, Nakae S. Th17 and allergy. Allergol. Int.57, 121–134 (2008).
  • Pichavant M, Goya S, Meyer EH et al. Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J. Exp. Med.205, 385–393 (2008).
  • Haldar P, Pavord ID. Noneosinophilic asthma: a distinct clinical and pathologic phenotype. J. Allergy Clin. Immunol.119, 1043–1052 (2007).
  • Kay AB. Inflammatory cells in bronchial asthma. J. Asthma26, 335–344 (1989).
  • Simpson JL, Grissell TV, Douwes J, Scott RJ, Boyle MJ, Gibson PG. Innate immune activation in neutrophilic asthma and bronchiectasis. Thorax62, 211–218 (2007).
  • Corren J. Allergic rhinitis and asthma: how important is the link?. J. Allergy Clin. Immunol.99, S781–786 (1997).
  • Leckie M, ten Brinke A, Khan J et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet356, 2144–2148 (2000).
  • Bryan S, O’Connor B, Matti S et al. Effects of recombinant human interleukin-12 on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet356, 2149–2153 (2000).
  • Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two Phase 2a studies. Lancet370, 1422–1431 (2007).
  • Flood-Page PT, Menzies-Gow AN, Kay AB, Robinson DS. Eosinophil’s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am. J. Respir. Crit. Care Med.167, 199–204 (2003).
  • Hart TK, Blackburn MN, Brigham-Burke M et al. Preclinical efficacy and safety of pascolizumab (SB 240683): a humanized anti-interleukin-4 antibody with therapeutic potential in asthma. Clin. Exp. Immunol.130, 93–100 (2002).
  • Holgate ST . Cytokine and anti-cytokine therapy for the treatment of asthma and allergic disease. Cytokine28, 152–157 (2004).
  • Stokes J, Casale TB. Rationale for new treatments aimed at IgE immunomodulation. Ann. Allergy Asthma Immunol.93, 212–217 (2004).
  • Holgate ST. Epithelial damage and response. Clin. Exp. Allergy30(Suppl. 1), 37–41 (2000).
  • Akbari O, Stock P, Meyer E et al. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat. Med.9, 582–588 (2003).
  • Kim EY, Battaile JT, Patel AC et al. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat. Med.14, 633–640 (2008).
  • Matsuda JL, Mallevaey T, Scott-Browne J, Gapin L. CD1d-restricted iNKT cells, the ‘Swiss-Army knife’ of the immune system. Curr. Opin. Immunol.20, 358–368 (2008).
  • Bendelac A, Rivera MN, Park SH, Roark JH. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol.15, 535–562 (1997).
  • Brossay L, Chioda M, Burdin N et al. CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med.188, 1521–1528 (1998).
  • Umetsu DT, DeKruyff RH. A role for natural killer T cells in asthma. Nat. Rev. Immunol.6, 953–958 (2006).
  • Hayakawa Y, Godfrey DI, Smyth MJ. α-galactosylceramide: potential immunomodulatory activity and future application. Curr. Med. Chem.11, 241–252 (2004).
  • Oki S, Miyake S. Invariant natural killer T (iNKT) cells in asthma: a novel insight into the pathogenesis of asthma and the therapeutic implication of glycolipid ligands for allergic diseases. Allergol. Int.56, 7–14 (2007).
  • Joetham A, Takeda K, Taube C et al. Airway hyperresponsiveness in the absence of CD4+ T cells after primary but not secondary challenge. Am. J. Respir. Cell. Mol. Biol.33, 89–96 (2005).
  • Lisbonne M, Diem S, de Castro Keller A et al. Cutting edge: invariant V α 14 NKT cells are required for allergen-induced airway inflammation and hyperreactivity in an experimental asthma model. J. Immunol.171, 1637–1641 (2003).
  • Korsgren M, Persson CG, Sundler F et al. Natural killer cells determine development of allergen-induced eosinophilic airway inflammation in mice. J. Exp. Med.189, 553–562 (1999).
  • Michel ML, Keller AC, Paget C et al. Identification of an IL-17-producing NK1.1- iNKT cell population involved in airway neutrophilia. J. Exp. Med.204, 995–1001 (2007).
  • Rachitskaya AV, Hansen AM, Horai R et al. Cutting edge: NKT cells constitutively express IL-23 receptor and RORγt and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. J. Immunol.180, 5167–5171 (2008).
  • Hamelin ME, Prince GA, Gomez AM, Kinkead R, Boivin G. Human metapneumovirus infection induces long-term pulmonary inflammation associated with airway obstruction and hyperresponsiveness in mice. J. Infect. Dis.193, 1634–1642 (2006).
  • Sigurs N, Gustafsson PM, Bjarnason R et al. Severe respiratory syncytial virus bronchiolitis in infancy and asthma and allergy at age 13. Am. J. Respir. Crit. Care Med.171, 137–141 (2005).
  • Djukanovic R, Gadola SD. Virus infection, asthma, and chronic obstructive pulmonary disease. N. Engl. J. Med.359, 2062–2064 (2008).
  • Meyer EH, Goya S, Akbari O et al. Glycolipid activation of invariant T cell receptor+ NK T cells is sufficient to induce airway hyperreactivity independent of conventional CD4+ T cells. Proc. Natl Acad. Sci. USA103, 2782–2787 (2006).
  • Kinjo Y, Wu D, Kim G et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature434, 520–525 (2005).
  • Kinjo Y, Tupin E, Wu D et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol.7, 978–986 (2006).
  • Mattner J, Debord KL, Ismail N et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature434, 525–529 (2005).
  • Agea E, Russano A, Bistoni O et al. Human CD1-restricted T cell recognition of lipids from pollens. J. Exp. Med.202, 295–308 (2005).
  • Spinozzi F, Porcelli SA. Recognition of lipids from pollens by CD1-restricted T cells. Immunol. Allergy Clin. North Am.27, 79–92 (2007).
  • Maeda M, Shadeo A, MacFadyen AM, Takei F. CD1d-independent NKT cells in β 2-microglobulin-deficient mice have hybrid phenotype and function of NK and T cells. J. Immunol.172, 6115–6122 (2004).
  • Zhang Y, Rogers KH, Lewis DB. β 2-microglobulin-dependent T cells are dispensable for allergen-induced T helper 2 responses. J. Exp. Med.184, 1507–1512 (1996).
  • Brown DR, Fowell DJ, Corry DB et al. β 2-microglobulin-dependent NK1.1+ T cells are not essential for T helper cell 2 immune responses. J. Exp. Med.184, 1295–1304 (1996).
  • Das J, Eynott P, Jupp R et al. Natural killer T cells and CD8+ T cells are dispensable for T cell-dependent allergic airway inflammation. Nat. Med.12, 1345–1346 (2006).
  • Balk SP, Burke S, Polischuk JE et al. β 2-microglobulin-independent MHC class Ib molecule expressed by human intestinal epithelium. Science265, 259–262 (1994).
  • Koh YI, Kim HY, Meyer EH et al. Activation of nonclassical CD1d-restricted NK T cells induces airway hyperreactivity in β2-microglobulin-deficient mice. J. Immunol.181, 4560–4569 (2008).
  • Shimamura M, Huang YY. Presence of a novel subset of NKT cells bearing an invariant V(α)19.1-J(α)26 TCR α chain. FEBS Lett.516, 97–100 (2002).
  • Brasier AR, Victor S, Boetticher G et al. Molecular phenotyping of severe asthma using pattern recognition of bronchoalveolar lavage-derived cytokines. J. Allergy Clin. Immunol.121, 30–37.e36 (2008).
  • Hellings PW, Kasran A, Liu Z et al. Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am. J. Respir. Cell. Mol. Biol.28, 42–50 (2003).
  • Barczyk A, Pierzchala W, Sozanska E. Interleukin-17 in sputum correlates with airway hyperresponsiveness to methacholine. Respir. Med.97, 726–733 (2003).
  • Pene J, Chevalier S, Preisser L et al. Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. J. Immunol.180, 7423–7430 (2008).
  • Schnyder-Candrian S, Togbe D, Couillin I et al. Interleukin-17 is a negative regulator of established allergic asthma. J. Exp. Med.203, 2715–2725 (2006).
  • McKinley L, Alcorn JF, Peterson A et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J. Immunol.181, 4089–4097 (2008).
  • Song C, Luo L, Lei Z et al. IL-17-producing alveolar macrophages mediate allergic lung inflammation related to asthma. J. Immunol.181, 6117–6124 (2008).
  • Angkasekwinai P, Park H, Wang YH et al. Interleukin 25 promotes the initiation of proallergic type 2 responses. J. Exp. Med.204, 1509–1517 (2007).
  • Tamachi T, Maezawa Y, Ikeda K et al. IL-25 enhances allergic airway inflammation by amplifying a Th2 cell-dependent pathway in mice. J. Allergy Clin. Immunol.118, 606–614 (2006).
  • Terashima A, Watarai H, Inoue S et al. A novel subset of mouse NKT cells bearing the IL-17 receptor β responds to IL-25 and contributes to airway hyperreactivity. J. Exp. Med.205(12), 2727–2733 (2008).
  • Bogiatzi SI, Fernandez I, Bichet JC et al. Cutting edge: Proinflammatory and Th2 cytokines synergize to induce thymic stromal lymphopoietin production by human skin keratinocytes. J. Immunol.178, 3373–3377 (2007).
  • Lee HC, Ziegler SF. Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFκB. Proc. Natl Acad. Sci. USA104, 914–919 (2007).
  • Liu YJ. Thymic stromal lymphopoietin: master switch for allergic inflammation. J. Exp. Med.203, 269–273 (2006).
  • Rochman Y, Leonard WJ. Thymic stromal lymphopoietin: a new cytokine in asthma. Curr. Opin. Pharmacol.8, 249–254 (2008).
  • Nagata Y, Kamijuku H, Taniguchi M, Ziegler S, Seino K. Differential role of thymic stromal lymphopoietin in the induction of airway hyperreactivity and Th2 immune response in antigen-induced asthma with respect to natural killer T cell function. Int. Arch. Allergy Immunol.144, 305–314 (2007).
  • Kondo Y, Yoshimoto T, Yasuda K et al. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int. Immunol.20, 791–800 (2008).
  • Fang L, Adkins B, Deyev V, Podack ER. Essential role of TNF receptor superfamily 25 (TNFRSF25) in the development of allergic lung inflammation. J. Exp. Med.205, 1037–1048 (2008).
  • Akbari O, Faul JL, Hoyte EG et al. CD4+ invariant T-cell-receptor+ natural killer T cells in bronchial asthma. N. Engl. J. Med.354, 1117–1129 (2006).
  • Sen Y, Yongyi B, Yuling H et al. V α 24-invariant NKT cells from patients with allergic asthma express CCR9 at high frequency and induce Th2 bias of CD3+ T cells upon CD226 engagement. J. Immunol.175, 4914–4926 (2005).
  • Pham-Thi N, de Blic J, Le Bourgeois M, Dy M, Scheinmann P, Leite-de-Moraes MC. Enhanced frequency of immunoregulatory invariant natural killer T cells in the airways of children with asthma. J. Allergy Clin. Immunol.117, 217–218 (2006).
  • Pham-Thi N, de Blic J, Leite-de-Moraes MC. Invariant natural killer T cells in bronchial asthma. N. Engl. J. Med.354, 2613–2616; author reply 2613–2616 (2006).
  • Russano AM, Agea E, Casciari C, de Benedictis FM, Spinozzi F. Complementary roles for lipid and protein allergens in triggering innate and adaptive immune systems. Allergy63, 1428–1437 (2008).
  • Fujiki R, Yokoyama T, Watson RM, Gauvreau G, O’Byrne PM. NKT cells in sputum and peripheral blood from subjects with allergen-induced late asthmatic responses. J. Resp. Crit. Care Med.175 (2007) (Abstract A680).
  • Hamzaoui A, Rouhou SC, Grairi H et al. NKT cells in the induced sputum of severe asthmatics. Mediators Inflamm.2006(2), 1–6 (2006).
  • Yamamoto H, Okamoto Y, Horiguchi S, Kunii N, Yonekura S, Nakayama T. Detection of natural killer T cells in the sinus mucosa from asthmatics with chronic sinusitis. Allergy62, 1451–1455 (2007).
  • Vijayanand P, Seumois G, Pickard C et al. Invariant natural killer T cells in asthma and chronic obstructive pulmonary disease. N. Engl. J. Med.356, 1410–1422 (2007).
  • Thomas SY, Lilly CM, Luster AD. Invariant natural killer T cells in bronchial asthma. N. Engl. J. Med.354, 2613–2616; author reply 2613–2616 (2006).
  • Thomas SY, Banerji A, Medoff BD, Lilly CM, Luster AD. Multiple chemokine receptors, including CCR6 and CXCR3, regulate antigen-induced T cell homing to the human asthmatic airway. J. Immunol.179, 1901–1912 (2007).
  • Bratke K, Julius P, Virchow JC. Invariant natural killer T cells in obstructive pulmonary diseases. N. Engl. J. Med.357, 194; author reply 194–195 (2007).
  • Mutalithas K, Croudace J, Guillen C et al. Bronchoalveolar lavage invariant natural killer T cells are not increased in asthma. J. Allergy Clin. Immunol.119, 1274–1276 (2007).
  • Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID. Mast-cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med.346, 1699–1705 (2002).
  • Matangkasombut P, Pichavant M, Yasumi T et al. Direct activation of natural killer T cells induces airway hyperreactivity in nonhuman primates. J. Allergy Clin. Immunol.121, 1287–1289 (2008).
  • Coffman RL, Hessel EM. Nonhuman primate models of asthma. J. Exp. Med.201, 1875–1879 (2005).
  • Ito K, Chung KF, Adcock IM. Update on glucocorticoid action and resistance. J. Allergy Clin. Immunol.117, 522–543 (2006).
  • Hachem P, Lisbonne M, Michel ML et al. α-galactosylceramide-induced iNKT cells suppress experimental allergic asthma in sensitized mice: role of IFN-γ. Eur. J. Immunol.35, 2793–2802 (2005).
  • Matsuda H, Suda T, Sato J et al. α-galactosylceramide, a ligand of natural killer T cells, inhibits allergic airway inflammation. Am. J. Respir. Cell. Mol. Biol.33, 22–31 (2005).
  • Morishima Y, Ishii Y, Kimura T et al. Suppression of eosinophilic airway inflammation by treatment with α-galactosylceramide. Eur. J. Immunol.35, 2803–2814 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.