256
Views
60
CrossRef citations to date
0
Altmetric
Perspective

Complementary and alternative medicine for the treatment of multiple sclerosis

, &
Pages 381-395 | Published online: 10 Jan 2014

References

  • Noseworthy J, Lucchinetti C, Rodriguez M, Weinshenker B. Multiple sclerosis. N. Engl. J. Med.343, 938–952 (2000).
  • Bjartmar C, Wujek JR, Trapp BD. Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J. Neurol. Sci.206, 165–171 (2003).
  • Prat A, Al-Asmi A, Duquette P, Antel JP. Lymphocyte migration and multiple sclerosis: relation with disease course and therapy. Ann. Neurol.46, 253–256 (1999).
  • Martino G, Hartung HP. Immunopathogenesis of multiple sclerosis: the role of T cells. Curr. Opin. Neurol.12, 309–321 (1999).
  • Dietrich J, Menne C, Lauritsen JP et al. Ligand-induced TCR down-regulation is not dependent on constitutive TCR cycling. J. Immunol.168, 5434–5440 (2002).
  • Rieckmann P, Altenhofen B, Riegel A, Kallmann B, Felgenhauer K. Correlation of soluble adhesion molecules in blood and cerebrospinal fluid with magnetic resonance imaging activity in patients with multiple sclerosis. Mult. Scler.4, 178–182 (1998).
  • Khoury SJ, Orav EJ, Guttmann CR, Kikinis R, Jolesz FA, Weiner HL. Changes in serum levels of ICAM and TNF-R correlate with disease activity in multiple sclerosis. Neurology53, 758–764 (1999).
  • Giovannoni G, Miller DH, Losseff NA et al. Serum inflammatory markers and clinical/MRI markers of disease progression in multiple sclerosis. J. Neurol.248, 487–495 (2001).
  • Liuzzi GM, Trojano M, Fanelli M et al. Intrathecal synthesis of matrix metalloproteinase-9 in patients with multiple sclerosis: implication for pathogenesis. Mult. Scler.8, 222–228 (2002).
  • Leppert D, Lindberg RL, Kappos L, Leib SL. Matrix metalloproteinases: multifunctional effectors of inflammation in multiple sclerosis and bacterial meningitis. Brain Res. Brain Res. Rev.36, 249–257 (2001).
  • Hartung HP, Kieseier BC. The role of matrix metalloproteinases in autoimmune damage to the central and peripheral nervous system. J. Neuroimmunol.107, 140–147 (2002).
  • Cuzner ML, Opdenakker G. Plasminogen activators and matrix metalloproteases, mediators of extracellular proteolysis in inflammatory demyelination of the central nervous system. J. Neuroimmunol.94, 1–14 (1999).
  • Madri JA, Graesser D. Cell migration in the immune system: the evolving inter-related roles of adhesion molecules and proteinases. Dev. Immunol.7, 103–116 (2000).
  • Trojano M, Avolio C, Liuzzi GM et al. Changes of serum sICAM-1 and MMP-9 induced by rIFNβ-1b treatment in relapsing-remitting MS. Neurology53, 1402–1408 (1999).
  • Waubant E, Goodkin DE, Gee L et al. Serum MMP-9 and TIMP-1 levels are related to MRI activity in relapsing multiple sclerosis. Neurology53, 1397–1401 (1999).
  • Bar-Or A, Nuttall RK, Duddy M et al. Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain126, 2738–2749 (2003).
  • Leppert D, Ford J, Stabler G et al. Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during relapses and stable phases of multiple sclerosis. Brain121(Pt 12), 2327–2334 (1998).
  • Misu T, Fujihara K, Itoyama Y. [Chemokines and chemokine receptors in multiple sclerosis]. Nippon Rinsho61, 1422–1427 (2003).
  • Hartung HP, Archelos JJ, Zielaset J et al. Circulating adhesion molecules and inflammatory mediators in demyelination: a review. Neurology45, S22–S32 (1995).
  • Rudick RA, Ransohoff RM. Cytokine secretion by multiple sclerosis monocytes. Relationship to disease activity. Arch. Neurol.49, 265–270 (1992).
  • Sharief MK, Hentges R. Association between tumor necrosis factor-a and disease progression in patients with multiple sclerosis. N. Engl. J. Med.325, 467–472 (1991).
  • Hauser SL, Doolittle TH, Lincoln R, Brown RH, Dinarello CA. Cytokine accumulations in CSF of multiple sclerosis patients: frequent detection of interleukin-1 and tumor necrosis factor but not interleukin-6. Neurology40, 1735–1739 (1990).
  • Trotter JL, Collins KG, van der Veen RC. Serum cytokine levels in chronic progressive multiple sclerosis: interleukin-2 levels parallel tumor necrosis factor-α levels. J. Neuroimmunol.33, 29–36 (1991).
  • Hofman FM, Hinton DR, Johnson K, Merrill JE. Tumor necrosis factor identified in multiple sclerosis brain. J. Exp. Med.170, 607–612 (1989).
  • Duda PW, Schmied MC, Cook SL, Krieger JI, Hafler DA. Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J. Clin. Invest.105, 967–976 (2000).
  • Miller A, Shapiro S, Gershtein R et al. Treatment of multiple sclerosis with copolymer-1 (Copaxone): implicating mechanisms of Th1 to Th2/Th3 immune-deviation. J. Neuroimmunol.92, 113–121 (1998).
  • Neuhaus O, Farina C, Yassouridis A et al. Multiple sclerosis: comparison of copolymer-1-reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc. Natl Acad. Sci. USA97, 7452–7457 (2000).
  • Yong VW, Krekoski CA, Forsyth PA, Bell R, Edwards DR. Matrix metalloproteinases and diseases of the CNS. Trends Neurosci.21, 75–80 (1998).
  • Leppert D, Waubant E, Burk MR, Oksenberg JR, Hauser SL. Interferon β-1b inhibits gelatinase secretion and in vitro migration of human T cells: a possible mechanism for treatment efficacy in multiple sclerosis. Ann. Neurol.40, 846–852 (1996).
  • Stuve O, Dooley NP, Uhm JH et al. Interferon β-1b decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9. Ann. Neurol.40, 853–863 (1996).
  • Berkman C, Pignotti M, Cavallo P, Holland N. Use of alternative treatments by people with multiple sclerosis. Neurorehabil. Neural Repair13, 243–254 (1999).
  • Leong EM, Semple SJ, Angley M, Siebert W, Petkov J, McKinnon RA. Complementary and alternative medicines and dietary interventions in multiple sclerosis: what is being used in South Australia and why? Complement. Ther. Med.17, 216–223 (2009).
  • Marrie RA, Hadjimichael O, Vollmer T. Predictors of alternative medicine use by multiple sclerosis patients. Mult. Scler.9, 461–466 (2003).
  • Nayak S, Matheis RJ, Schoenberger NE, Shiflett SC. Use of unconventional therapies by individuals with multiple sclerosis. Clin. Rehabil.17, 181–191 (2003).
  • Page SA, Verhoef MJ, Stebbins RA, Metz LM, Levy JC. The use of complementary and alternative therapies by people with multiple sclerosis. Chronic Dis. Can.24, 75–79 (2003).
  • Schwartz CE, Laitin E, Brotman S, LaRocca N. Utilization of unconventional treatments by persons with MS: is it alternative or complementary? Neurology52, 626–629 (1999).
  • Schwarz S, Knorr C, Geiger H, Flachenecker P. Complementary and alternative medicine for multiple sclerosis. Mult. Scler.14, 1113–1119 (2008).
  • Stuifbergen AK, Harrison TC. Complementary and alternative therapy use in persons with multiple sclerosis. Rehabil. Nurs.28, 141–147, 158 (2003).
  • Yadav V, Shinto L, Morris C, Senders A, Baldauf-Wagner S, Bourdette D. Use and self reported benefit of complementary and alternative medicine (CAM) among multiple sclerosis patients. Int. J. MS Care8, 5–10 (2006).
  • Shinto L, Yadav V, Morris C, Lapidus JA, Senders A, Bourdette D. Demographic and health-related factors associated with complementary and alternative medicine (CAM) use in multiple sclerosis. Mult. Scler.12, 94–100 (2006).
  • Shinto L, Yadav V, Morris C, Lapidus JA, Senders A, Bourdette D. The perceived benefit and satisfaction from conventional and complementary and alternative medicine (CAM) in people with multiple sclerosis. Complement. Ther. Med.13, 264–272 (2005).
  • Fetterman JW Jr, Zdanowicz MM. Therapeutic potential of n-3 polyunsaturated fatty acids in disease. Am. J. Health Syst. Pharm.66, 1169–1179 (2009).
  • Arterburn LM, Hall EB, Oken H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am. J. Clin. Nutr.83, 1467S–1476S (2006).
  • Lim SY, Suzuki H. Effect of dietary docosahexaenoic acid and phosphatidylcholine on maze behavior and fatty acid composition of plasma and brain lipids in mice. Int. J. Vitam. Nutr. Res.70, 251–259 (2000).
  • Tinoco J. Dietary requirements and functions of α-linolenic acid in animals. Prog. Lipid Res.21, 1–45 (1982).
  • Calder PC. Dietary modification of inflammation with lipids. Proc. Nutr. Soc.61, 345–358 (2002).
  • Gallai V, Sarchielli P, Trequattrini A et al. Cytokine secretion and eicosanoid production in the peripheral blood mononuclear cells of MS patients undergoing dietary supplementation with n-3 polyunsaturated fatty acids. J. Neuroimmunol.56, 143–153 (1995).
  • Shinto L, Marracci G, Baldauf-Wagner S et al. Omega-3 fatty acid supplementation decreases matrix metalloproteinase-9 production in relapsing-remitting multiple sclerosis. Prostaglandins Leukot. Essent. Fatty Acids80, 131–136 (2009).
  • St-Pierre Y, Van Themsche C, Esteve PO. Emerging features in the regulation of MMP-9 gene expression for the development of novel molecular targets and therapeutic strategies. Curr. Drug Targets Inflamm. Allergy2, 206–215 (2003).
  • Zhao G, Etherton TD, Martin KR et al. Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells. Biochem. Biophys. Res. Commun.336, 909–917 (2005).
  • Zhao Y, Chen LH. Eicosapentaenoic acid prevents lipopolysaccharide-stimulated DNA binding of activator protein-1 and c-Jun N-terminal kinase activity. J. Nutr. Biochem.16, 78–84 (2005).
  • Bates D, Cartlidge N, French JM et al. A double-blind controlled trial of long chain n-3 polyunsaturated fatty acids in the treatment of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry52, 18–22 (1989).
  • Shinto L, Calabrese C, Morris C et al. A randomized pilot study of naturopathic medicine in multiple sclerosis. J. Altern. Complement. Med.14, 489–496 (2008).
  • PDR for Nutritional Supplements (First Edition). Hendler SS, Rorvik D (Eds). Thomson Healthcare, NJ, USA (2001).
  • Peter G, Borbe HO. Absorption of [7,8–14C]rac-a-lipoic acid from in situ ligated segments of the gastrointestinal tract of the rat. Arzneimittelforschung45, 293–299 (1985).
  • Harrison EH, McCormick DB. The metabolism of dl-(1,6–14C) lipoic acid in the rat. Arch. Biochem. Biophys.160, 514–522 (1974).
  • Packer L, Roy S, Sen CK. a-lipoic acid: a metabolic antioxidant and potential redox modulator of transcription. Adv. Pharmacol.38, 79–101 (1997).
  • Biewenga GP, Dorstijn MA, Verhagen JV, Haenen GR, Bast A. Reduction of lipoic acid by lipoamide dehydrogenase. Biochem. Pharmacol.51, 233–238 (1996).
  • Biewenga GP, Haenen GR, Bast A. The pharmacology of the antioxidant lipoic acid. Gen. Pharmacol.29, 315–331 (1997).
  • Arner ES, Nordberg J, Holmgren A. Efficient reduction of lipoamide and lipoic acid by mammalian thioredoxin reductase. Biochem. Biophys. Res. Commun.225, 268–274 (1996).
  • Pick U, Haramaki N, Constantinescu A, Handelman GJ, Tritschler HJ, Packer L. Glutathione reductase and lipoamide dehydrogenase have opposite stereospecificities for α-lipoic acid enantiomers. Biochem. Biophys. Res. Commun.206, 724–730 (1995).
  • Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature356, 63–66 (1992).
  • Tubridy N, Behan PO, Capildeo R et al. The effect of anti-α4 integrin antibody on brain lesion activity in MS. The UK Antegren Study Group. Neurology53, 466–472 (1999).
  • Marracci GH, Jones RE, McKeon GP, Bourdette DN. α lipoic acid inhibits T cell migration into the spinal cord and suppresses and treats experimental autoimmune encephalomyelitis. J. Neuroimmunol.131, 104–114 (2002).
  • Morini M, Roccatagliata L, Dell’Eva R et al. α-lipoic acid is effective in prevention and treatment of experimental autoimmune encephalomyelitis. J. Neuroimmunol.148, 146–153 (2004).
  • Schreibelt G, Musters RJ, Reijerkerk A et al. Lipoic acid affects cellular migration into the central nervous system and stabilizes blood–brain barrier integrity. J. Immunol.177, 2630–2637 (2006).
  • Marracci GH, McKeon GP, Marquardt WE, Winter RW, Riscoe MK, Bourdette DN. α lipoic acid inhibits human T-cell migration: implications for multiple sclerosis. J. Neurosci. Res.78, 362–370 (2004).
  • Schillace RV, Pisenti N, Pattamanuch N et al. Lipoic acid stimulates cAMP production in T lymphocytes and NK cells. Biochem. Biophys. Res. Commun.354, 259–264 (2007).
  • Salinthone S, Schillace RV, Marracci GH, Bourdette DN, Carr DW. Lipoic acid stimulates cAMP production via the EP2 and EP4 prostanoid receptors and inhibits IFN γ synthesis and cellular cytotoxicity in NK cells. J. Neuroimmunol.199, 46–55 (2008).
  • Yadav V, Marracci G, Lovera J et al. Lipoic acid in multiple sclerosis: a pilot study. Mult. Scler.11, 159–165 (2005).
  • Ziegler D, Hanefeld M, Ruhnau K et al. Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant α-lipoic acid. A 3-week multicentre randomized controlled trial (ALADIN Study). Diabetologia38, 1425–1433 (1995).
  • Reljanovic M, Reichel G, Rett K et al. Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (α-lipoic acid): a two year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Alpha Lipoic Acid in Diabetic Neuropathy. Free Radic. Res.31, 171–179 (1999).
  • Ziegler D, Hanefeld M, Ruhnau K et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant α-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy. Diabetes Care22, 1296–1301 (1999).
  • Ziegler D, Schatz H, Conrad F, Gries F, Ulrich H, Reichel G. Effects of treatment with the antioxidant α-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. A 4-month randomized controlled multicenter trial (DEKAN Study). Deutsche Kardiale Autonome Neuropathie. Diabetes Care20, 369–373 (1997).
  • Ruhnau K, Meissner H, Finn J et al. Effects of 3-week oral treatment with the antioxidant thioctic acid (α-lipoic acid) in symptomatic diabetic polyneuropathy. Diabet. Med.16, 1040–1043 (1999).
  • Ametov AS, Barinov A, Dyck PJ et al. The sensory symptoms of diabetic polyneuropathy are improved with α-lipoic acid: the SYDNEY trial. Diabetes Care26, 770–776 (2003).
  • Ziegler D, Reljanovic M, Mehnert H, Gries FA. α-lipoic acid in the treatment of diabetic polyneuropathy in Germany: current evidence from clinical trials. Exp. Clin. Endocrinol. Diabetes107, 421–430 (1999).
  • van Beek TA, Montoro P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J. Chromatogr. A1216, 2002–2032 (2009).
  • Rao SM, Leo GJ, Bernardin L, Unverzagt F. Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology41, 685–691 (1991).
  • Amato MP, Ponziani G, Siracusa G, Sorbi S. Cognitive dysfunction in early-onset multiple sclerosis: a reappraisal after 10 years. Arch. Neurol.58, 1602–1606 (2001).
  • Napryeyenko O, Sonnik G, Tartakovsky I. Efficacy and tolerability of Ginkgo biloba extract EGb 761 by type of dementia: analyses of a randomised controlled trial. J. Neurol. Sci.283, 224–229 (2009).
  • Mazza M, Capuano A, Bria P, Mazza S. Ginkgo biloba and donepezil: a comparison in the treatment of Alzheimer’s dementia in a randomized placebo-controlled double-blind study. Eur. J. Neurol.13, 981–985 (2006).
  • Kanowski S, Hoerr R. Ginkgo biloba extract EGb 761 in dementia: intent-to-treat analyses of a 24-week, multi-center, double-blind, placebo-controlled, randomized trial. Pharmacopsychiatry36, 297–303 (2003).
  • Le Bars PL, Kieser M, Itil KZ. A 26-week analysis of a double-blind, placebo-controlled trial of the ginkgo biloba extract EGb 761 in dementia. Dement. Geriatr. Cogn. Disord.11, 230–237 (2000).
  • Hofferberth B. The efficacy of EGb 761 in patients with senile dementia of the Alzheimer type, a double-blind, placebo-controlled study on different levels of investigation. Hum. Psychopharmacol.9, 215–222 (1994).
  • Le Bars PL, Katz MM, Berman N, Itil TM, Freedman AM, Schatzberg AF. A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. North American EGb Study Group. JAMA278, 1327–1332 (1997).
  • DeKosky ST, Williamson JD, Fitzpatrick AL et al. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA300, 2253–2262 (2008).
  • Schneider LS, DeKosky ST, Farlow MR, Tariot PN, Hoerr R, Kieser M. A randomized, double-blind, placebo-controlled trial of two doses of Ginkgo biloba extract in dementia of the Alzheimer’s type. Curr. Alzheimer Res.2, 541–551 (2005).
  • van Dongen M, van Rossum E, Kessels A, Sielhorst H, Knipschild P. Ginkgo for elderly people with dementia and age-associated memory impairment: a randomized clinical trial. J. Clin. Epidemiol.56, 367–376 (2003).
  • van Dongen MC, van Rossum E, Kessels AG, Sielhorst HJ, Knipschild PG. The efficacy of ginkgo for elderly people with dementia and age-associated memory impairment: new results of a randomized clinical trial. J. Am. Geriatr. Soc.48, 1183–1194 (2000).
  • Birks J, Grimley Evans J. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst. Rev.2, CD003120 (2007).
  • Birks J, Grimley Evans J. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst. Rev.1, CD003120 (2009).
  • Birks J, Grimley EV, Van Dongen M. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst. Rev.4, CD003120 (2002).
  • Lovera J, Bagert B, Smoot K et al. Ginkgo biloba for the improvement of cognitive performance in multiple sclerosis: a randomized, placebo-controlled trial. Mult. Scler.13, 376–385 (2007).
  • Fisk JD, Pontefract A, Ritvo PG, Archibald CJ, Murray TJ. The impact of fatigue on patients with multiple sclerosis. Can. J. Neurol. Sci.21, 9–14 (1994).
  • Freal JE, Kraft GH, Coryell JK. Symptomatic fatigue in multiple sclerosis. Arch. Phys. Med. Rehabil.65, 135–138 (1984).
  • Lee J, Zhao YLiand X-J. Current evaluation of the milliennium phytomedicine – Ginseng (II): collected chemical entities, modern pharmacology, and clinical applications emanated from traditional Chinese medicine. Curr. Med. Chem.16, 2924–2942 (2009).
  • Blumenthal M. Asian ginseng: potential therapeutic uses. Adv. Nurse Pract.9, 26–28 (2001).
  • Chan TW, But PP, Cheng SW, Kwok IM, Lau FW, Xu HX. Differentiation and authentication of Panax ginseng, Panax quinquefolius, and ginseng products by using HPLC/MS. Anal. Chem.72, 1281–1287 (2000).
  • Fuzzati N, Gabetta B, Jayakar K et al. Determination of ginsenosides in Panax ginseng roots by liquid chromatography with evaporative light-scattering detection. J. AOAC Int.83, 820–829 (2000).
  • Wang X, Sakuma T, Asafu-Adjaye E, Shiu GK. Determination of ginsenosides in plant extracts from Panax ginseng and Panax quinquefolius L. by LC/MS/MS. Anal. Chem.71, 1579–1584 (1999).
  • Washida D, Kitanaka S. Determination of polyacetylenes and ginsenosides in Panax species using high performance liquid chromatography. Chem. Pharm. Bull. (Tokyo)51, 1314–1317 (2003).
  • Block KI, Mead MN. Immune system effects of echinacea, ginseng, and astragalus: a review. Integr. Cancer Ther.2, 247–267 (2003).
  • Fulder SJ. Ginseng and the hypothalamic–pituitary control of stress. Am. J. Chin. Med.9, 112–118 (1981).
  • Fushimi H, Komatsu K, Isobe M, Namba T. 18S ribosomal RNA gene sequences of three Panax species and the corresponding ginseng drugs. Biol. Pharm. Bull.19, 1530–1532 (1996).
  • Hiai S, Yokoyama H, Oura H, Yano S. Stimulation of pituitary–adrenocortical system by ginseng saponin. Endocrinol. Jpn26, 661–665 (1979).
  • Kennedy DO, Scholey AB. Ginseng: potential for the enhancement of cognitive performance and mood. Pharmacol. Biochem. Behav.75, 687–700 (2003).
  • Kim SH, Park KS. Effects of Panax ginseng extract on lipid metabolism in humans. Pharmacol. Res.48, 511–513 (2003).
  • Maresco A. Double-blind study of multivitamin complex supplemented with ginseng extract. Drugs Exp. Clin. Res.22, 323–329 (1996).
  • Wiklund IK, Mattsson LA, Lindgren R, Limoni C. Effects of a standardized ginseng extract on quality of life and physiological parameters in symptomatic postmenopausal women: a double-blind, placebo-controlled trial. Swedish Alternative Medicine Group. Int. J. Clin. Pharmacol. Res.19, 89–99 (1999).
  • Kim E, Lovera J, Schaben L, Bourdette D, Whitham R. A single center, randomized, double-blind, placebo-controlled crossover pilot study of the effects of American ginseng on multiple sclerosis fatigue. Neurology255, A225 (2009).
  • Siegel RK. Ginseng abuse syndrome. Problems with the panacea. JAMA241, 1614–1615 (1979).
  • Chan PC, Peckham JC, Bishop JB et al. National Toxicology Program technical report on toxicology and carcinogenesis studies of ginseng in F344/N rats and B6C3F1 mice. National Institutes of Health Publication No. 10-5909 (2009).
  • Yang F, de Villiers WJ, McClain CJ, Varilek GW. Green tea polyphenols block endotoxin-induced tumor necrosis factor-production and lethality in a murine model. J. Nutr.128, 2334–2340 (1998).
  • Koh SH, Lee SM, Kim HY et al. The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci. Lett.395, 103–107 (2006).
  • Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J. Neurochem.78, 1073–1082 (2001).
  • Choi YB, Kim YI, Lee KS, Kim BS, Kim DJ. Protective effect of epigallocatechin gallate on brain damage after transient middle cerebral artery occlusion in rats. Brain Res.1019, 47–54 (2004).
  • Aktas O, Prozorovski T, Smorodchenko A et al. Green tea epigallocatechin-3-gallate mediates T cellular NF-κ B inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J. Immunol.173, 5794–5800 (2004).
  • McLarty J, Bigelow RL, Smith M, Elmajian D, Ankem M, Cardelli JA. Tea polyphenols decrease serum levels of prostate-specific antigen, hepatocyte growth factor, and vascular endothelial growth factor in prostate cancer patients and inhibit production of hepatocyte growth factor and vascular endothelial growth factor in vitro. Cancer Prev. Res.2, 673–682 (2009).
  • Shanafelt TD, Call TG, Zent CS et al. Phase I trial of daily oral polyphenon E in patients with asymptomatic Rai stage 0 to II chronic lymphocytic leukemia. J. Clin. Oncol.27, 3808–3814 (2009).
  • Brown AL, Lane J, Coverly J et al. Effects of dietary supplementation with the green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors: randomized controlled trial. Br. J. Nutr.101, 886–894 (2009).
  • Hsu CH, Tsai TH, Kao YH, Hwang KC, Tseng TY, Chou P. Effect of green tea extract on obese women: a randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr.27, 363–370 (2008).
  • Gloro R, Hourmand-Ollivier I, Mosquet B et al. Fulminant hepatitis during self-medication with hydroalcoholic extract of green tea. Eur. J. Gastroenterol. Hepatol.17, 1135–1137 (2005).
  • Pedros C, Cereza G, Garcia N, Laporte JR. [Liver toxicity of Camellia sinensis dried etanolic extract]. Med. Clin. (Barc.)121, 598–599 (2003).
  • Vial T, Bernard G, Lewden B, Dumortier J, Descotes J. [Acute hepatitis due to Exolise, a Camellia sinensis-derived drug]. Gastroenterol. Clin. Biol.27, 1166–1167 (2003).
  • Holick MF. Environmental factors that influence the cutaneous production of vitamin D. Am. J. Clin. Nutr.61, 638S–645S (1995).
  • Holick MF, Schnoes HK, DeLuca HF. Identification of 1,25-dihydroxycholecalciferol, a form of vitamin D3 metabolically active in the intestine. Proc. Natl Acad. Sci. USA68, 803–804 (1971).
  • Tanaka Y, DeLuca HF, Omdahl J, Holick MF. Mechanism of action of 1,25-dihydroxycholecalciferol on intestinal calcium transport. Proc. Natl Acad. Sci. USA68, 1286–1288 (1971).
  • Cranney A, Horsley T, O’Donnell S et al. Effectiveness and safety of vitamin D in relation to bone health. Evid. Rep. Technol. Assess. (Full Rep.)1–235 (2007).
  • van den Berg H. Bioavailability of vitamin D. Eur. J. Clin. Nutr.51(Suppl. 1), S76–S79 (1997).
  • Adams JS, Liu PT, Chun R, Modlin RL, Hewison M. Vitamin D in defense of the human immune response. Ann. NY Acad. Sci.1117, 94–105 (2007).
  • Szodoray P, Nakken B, Gaal J et al. The complex role of vitamin D in autoimmune diseases. Scand. J. Immunol.68, 261–269 (2008).
  • Correale J, Ysrraelit MC, Gaitan MI. Immunomodulatory effects of vitamin D in multiple sclerosis. Brain132, 1146–1160 (2009).
  • Smolders J, Damoiseaux J, Menheere P, Hupperts R. Vitamin D as an immune modulator in multiple sclerosis: a review. J. Neuroimmunol.194, 7–17 (2008).
  • Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA296, 2832–2838 (2006).
  • Munger KL, Zhang SM, O’Reilly E et al. Vitamin D intake and incidence of multiple sclerosis. Neurology62, 60–65 (2004).
  • Barnes MS, Bonham MP, Robson PJ et al. Assessment of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D3 concentrations in male and female multiple sclerosis patients and control volunteers. Mult. Scler.13, 670–672 (2007).
  • van der Mei IA, Ponsonby AL, Dwyer T et al. Vitamin D levels in people with multiple sclerosis and community controls in Tasmania, Australia. J. Neurol.254, 581–590 (2007).
  • Soilu-Hanninen M, Airas L, Mononen I, Heikkila A, Viljanen M, Hanninen A. 25-hydroxyvitamin D levels in serum at the onset of multiple sclerosis. Mult. Scler.11, 266–271 (2005).
  • Hiremath GS, Cettomai D, Baynes M et al. Vitamin D status and effect of low-dose cholecalciferol and high-dose ergocalciferol supplementation in multiple sclerosis. Mult. Scler.15, 735–740 (2009).
  • Wingerchuk DM, Lesaux J, Rice GP, Kremenchutzky M, Ebers GC. A pilot study of oral calcitriol (1,25-dihydroxyvitamin D3) for relapsing–remitting multiple sclerosis. J. Neurol. Neurosurg. Psychiatry76, 1294–1296 (2005).
  • Kragt J, van Amerongen B, Killestein J et al. Higher levels of 25-hydroxyvitamin D are associated with a lower incidence of multiple sclerosis only in women. Mult. Scler.15, 9–15 (2009).
  • Ramagopalan SV, Maugeri NJ, Handunnetthi L et al. Expression of the multiple sclerosis-associated MHC class II allele HLA-DRB1*1501 is regulated by vitamin D. PLoS Genet.5, e1000369 (2009).
  • Lemire JM, Archer DC. 1,25-dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J. Clin. Invest.87, 1103–1107 (1991).
  • Cantorna MT, Humpal-Winter J, DeLuca HF. Dietary calcium is a major factor in 1,25-dihydroxycholecalciferol suppression of experimental autoimmune encephalomyelitis in mice. J. Nutr.129, 1966–1971 (2009).
  • Nashold FE, Miller DJ, Hayes CE. 1,25-dihydroxyvitamin D3 treatment decreases macrophage accumulation in the CNS of mice with experimental autoimmune encephalomyelitis. J. Neuroimmunol.103, 171–179 (2000).
  • Smolders J, Thewissen M, Peelen E et al. Vitamin D status is positively correlated with regulatory T cell function in patients with multiple sclerosis. PLoS One4, e6635 (2009).
  • Correa F, Docagne F, Mestre L et al. Cannabinoid system and neuroinflammation: implications for multiple sclerosis. Neuroimmunomodulation14, 182–187 (2007).
  • Lakhan SE, Rowland M. Whole plant cannabis extracts in the treatment of spasticity in multiple sclerosis: a systematic review. BMC Neurol.9, 59 (2009).
  • Killestein J, Hoogervorst EL, Reif M et al. Safety, tolerability, and efficacy of orally administered cannabinoids in MS. Neurology58, 1404–1407 (2002).
  • Wade DT, Robson P, House H, Makela P, Aram J. A preliminary controlled study to determine whether whole-plant cannabis extracts can improve intractable neurogenic symptoms. Clin. Rehabil.17, 21–29 (2003).
  • Zajicek J, Fox P, Sanders H et al. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet362, 1517–1526 (2003).
  • Wade DT, Makela P, Robson P, House H, Bateman C. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult. Scler.10, 434–441 (2004).
  • Vaney C, Heinzel-Gutenbrunner M, Jobin P et al. Efficacy, safety and tolerability of an orally administered cannabis extract in the treatment of spasticity in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled, crossover study. Mult. Scler.10, 417–424 (2004).
  • Collin C, Davies P, Mutiboko IK, Ratcliffe S. Randomized controlled trial of cannabis-based medicine in spasticity caused by multiple sclerosis. Eur. J. Neurol.14, 290–296 (2007).
  • Swank RL, Dugan BB. The Mutliple Sclerosis Diet Book: A Low Fat Diet for the Treatment of MS. Doubleday, NY, USA (1987).
  • Swank RL. Treatment of multiple sclerosis with low-fat diet. AMA Arch. Neurol. Psychiatry69, 91–103 (1953).
  • Swank RL. Multiple sclerosis: twenty years on low fat diet. Arch. Neurol.23, 460–474 (1970).
  • Swank RL, Dugan BB. Effect of low saturated fat diet in early and late cases of multiple sclerosis. Lancet336, 37–39 (1990).
  • Swank RL, Goodwin J. Review of MS patient survival on a Swank low saturated fat diet. Nutrition19, 161–162 (2003).
  • Swank RL, Grimsgaard A. Multiple sclerosis: the lipid relationship. Am. J. Clin. Nutr.48, 1387–1393 (1988).
  • Das UN. Is there a role for saturated and long-chain fatty acids in multiple sclerosis? Nutrition19, 163–166 (2003).
  • Weinstock-Guttman B, Baier M, Park Y et al. Low fat dietary intervention with omega-3 fatty acid supplementation in multiple sclerosis patients. Prostaglandins Leukot. Essent. Fatty Acids73, 397–404 (2005).
  • Nordvik I, Myhr KM, Nyland H, Bjerve KS. Effect of dietary advice and n-3 supplementation in newly diagnosed MS patients. Acta Neurol. Scand.102, 143–149 (2000).
  • Ghadirian P, Jain M, Ducic S, Shatenstein B, Morisset R. Nutritional factors in the aetiology of multiple sclerosis: a case–control study in Montreal, Canada. Int. J. Epidemiol.27, 845–852 (1998).
  • Payne A. Nutrition and diet in the clinical management of multiple sclerosis. J. Hum. Nutr. Diet14, 349–357 (2001).
  • Schwarz S, Leweling H. Multiple sclerosis and nutrition. Mult. Scler.11, 24–32 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.