154
Views
20
CrossRef citations to date
0
Altmetric
Review

Approaches for immunological tolerance induction to stem cell-derived cell replacement therapies

&
Pages 435-448 | Published online: 10 Jan 2014

References

  • Evans M, Kaufman M. Establishment in culture of pluripotential cells from mouse embryos. Nature292, 154–156 (1981).
  • Joshi C, Enver T. Molecular complexities of stem cells. Curr. Opin Hematol.10(3), 220–228 (2003).
  • Maltsev VA, Wobus AM, Rohwedel J, Bader M, Hescheler J. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ. Res.75(2), 233–244 (1994).
  • Klug MG, Soonpaa MH, Koh GY, Field LJ. Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J. Clin. Invest.98(1), 216–224 (1996).
  • Narita N, Bielinska M, Wilson DB. Cardiomyocyte differentiation by GATA-4-deficient embryonic stem cells. Development124(19), 3755–3764 (1997).
  • Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev.59(1), 89–102 (1996).
  • Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol.18(6), 675–679 (2000).
  • Li M, Pevny L, Lovell-Badge R, Smith A. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol.8(17), 971–974 (1998).
  • Choi D, Oh HJ, Chang UJ et al.In vivo differentiation of mouse embryonic stem cells into hepatocytes. Cell Transplant.11(4), 359–368 (2002).
  • Hamazaki T, Iiboshi Y, Oka M et al. Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett.497(1), 15–19 (2001).
  • Chinzei R, Tanaka Y, Shimizu-Saito K et al. Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology36(1), 22–29 (2002).
  • Drukker M, Katz G, Urbach A et al. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc. Natl Acad. Sci.99(15), 9864–9869 (2002).
  • Draper JS, Pigott C, Thomson JA, Andrews PW. Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J. Anat.200, 249–258 (2002).
  • Hori J, Ng TF, Shatos M et al. Neural progenitor cells lack immunogenicity and resist destruction as allografts. Stem Cells21(4), 405–416 (2003).
  • Wu DC, Boyd AS, Wood KJ. Embryonic stem cells and their differentiated derivatives have a fragile immune privilege but still represent novel targets of immune attack. Stem Cells26(8), 1939–1950 (2008).
  • Boyd AS, Wood KJ. Variation in MHC expression between undifferentiated mouse ES cells and ES cell-derived insulin-producing cell clusters. Transplantation87(9), 1300–1304 (2009).
  • Mammolenti M, Gajavelli S, Tsoulfas P, Levy R. Absence of major histocompatibility complex class I on neural stem cells does not permit natural killer cell killing and prevents recognition by alloreactive cytotoxic T lymphocytes in vitro. Stem Cells22(6), 1101–1110 (2004).
  • Boyd AS, Higashi Y, Wood KJ. Transplanting stem cells: potential targets for immune attack. Modulating the immune response against embryonic stem cell transplantation. Adv. Drug Deliv. Rev.57(13), 1944–1969 (2005).
  • Tian L, Catt J, O’Neill C et al. Expression of immunoglobulin superfamily cell adhesion molecules on murine embryonic stem cells. Biol. Reprod.57, 561–568 (1997).
  • Robertson NJ, Brook FA, Gardner RL et al. Embryonic stem cell-derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance. Proc. Natl Acad. Sci. USA104(52), 20920–20925 (2007).
  • Sprent J. Central tolerance of T cells. Int. Rev. Immunol.13(2), 95–105 (1995).
  • Kisielow P, von Boehmer H. Development and selection of T cells: facts and puzzles. Adv. Immunol.58, 87–209 (1995).
  • Grinnemo KH, Genead R, Kumagai-Braesch M et al. Costimulation blockade induces tolerance to HESC transplanted to the testis and induces regulatory T-cells to HESC transplanted into the heart. Stem Cells26(7), 1850–1857 (2008).
  • Gershon RK, Kondo K. Infectious immunological tolerance. Immunology21(6), 903–914 (1971).
  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol.155(3), 1151–1164 (1995).
  • Kemper C, Chan AC, Green JM et al. Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature421(6921), 388–392 (2003).
  • Groux H, O’Garra A, Bigler M et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature389(6652), 737–742 (1997).
  • Niederkorn JY. Emerging concepts in CD8+ T regulatory cells. Curr. Opin Immunol.20(3), 327–331 (2008).
  • Lu L, Cantor H. Generation and regulation of CD8+ regulatory T cells. Cell Mol. Immunol.5(6), 401–406 (2008).
  • Gilliet M, Liu YJ. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med.195(6), 695–704 (2002).
  • Faunce DE, Stein-Streilein J. NKT cell-derived RANTES recruits APCs and CD8+ T cells to the spleen during the generation of regulatory T cells in tolerance. J. Immunol.169(1), 31–38 (2002).
  • Hayday A, Tigelaar R. Immunoregulation in the tissues by γδ T cells. Nat. Rev. Immunol.3(3), 233–242 (2003).
  • Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med.188(2), 287–296 (1998).
  • Itoh M, Takahashi T, Sakaguchi N et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol.162(9), 5317–5326 (1999).
  • Takahashi T, Kuniyasu Y, Toda M et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol.10(12), 1969–1980 (1998).
  • Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25high regulatory cells in human peripheral blood. J. Immunol.167(3), 1245–1253 (2001).
  • Qin S, Cobbold SP, Pope H et al. ‘Infectious’ transplantation tolerance. Science259(5097), 974–977 (1993).
  • Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol.4(4), 330–336 (2003).
  • Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol.4(4), 337–342 (2003).
  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science299(5609), 1057–1061 (2003).
  • Gavin MA, Rasmussen JP, Fontenot JD et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature445(7129), 771–775 (2007).
  • Fontenot JD, Rasmussen JP, Williams LM et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity22(3), 329–341 (2005).
  • Godfrey VL, Wilkinson JE, Russell LB. X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am. J. Pathol.138(6), 1379–1387 (1991).
  • Bennett CL, Christie J, Ramsdell F et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet.27(1), 20–21 (2001).
  • Bennett CL, Brunkow ME, Ramsdell F et al. A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA→AAUGAA) leads to the IPEX syndrome. Immunogenetics53(6), 435–439 (2001).
  • Morgan ME, van Bilsen JH, Bakker AM et al. Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans. Hum. Immunol.66(1), 13–20 (2005).
  • North TE, de Bruijn MF, Stacy T et al. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity16(5), 661–672 (2002).
  • Yokomizo T, Ogawa M, Osato M et al. Requirement of Runx1/AML1/PEBP2aB for the generation of haematopoietic cells from endothelial cells. Genes Cells6(1), 13–23 (2001).
  • Kitoh A, Ono M, Naoe Y et al. Indispensable role of the Runx1-Cbfβ transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells. Immunity31(4), 609–620 (2009).
  • Ono M, Yaguchi H, Ohkura N et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature446(7136), 685–689 (2007).
  • Klunker S, Chong MMW, Mantel P-Y et al. Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cells. J. Exp. Med.206(12), 2701–2715 (2009).
  • Gurdon JB. Adult frogs derived from the nuclei of single somatic cells. Dev. Biol.4, 256–273 (1962).
  • Campbell KH, McWhir J, Ritchie WA, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature380(6569), 64–66 (1996).
  • Cibelli JB, Stice SL, Golueke PJ et al. Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat. Biotechnol.16(7), 642–646 (1998).
  • Wakayama T, Tabar V, Rodriguez I et al. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science292(5517), 740–743 (2001).
  • Rideout W, Hochedlinger K, Kyba M, Daley G, Jaenisch R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell109, 17–27 (2002).
  • Cibelli JB, Kiessling AA, Cunniff K et al. Somatic cell nuclear transfer in humans: pronuclear and early embryonic development. J. Regen. Med.2, 25–31 (2001).
  • St John JC, Lloyd REI, Bowles EJ, Thomas EC, El Shourbagy S. The consequences of nuclear transfer for mammalian foetal development and offspring survival. A mitochondrial DNA perspective. Reproduction127(6), 631–641 (2004).
  • Hanna J, Wernig M, Markoulaki S et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science318(5858), 1920–1923 (2007).
  • Aarli JA. The immune system and the nervous system. J. Neurol.229(3), 137–154 (1983).
  • Niederkorn JY. The immune privilege of corneal grafts. J. Leukoc. Biol.74(2), 167–171 (2003).
  • Paus R, Ito N, Takigawa M, Ito T. The hair follicle and immune privilege. J. Investig. Dermatol. Symp. Proc.8(2), 188–194 (2003).
  • Bellgrau D, Gold D, Selawry H et al. A role for CD95 ligand in preventing graft rejection. Nature377(6550), 630–632 (1995).
  • Pollack IF, Lund RD. The blood–brain barrier protects foreign antigens in the brain from immune attack. Exp. Neurol.108(2), 114–121 (1990).
  • Weetman AP. The immunology of pregnancy. Thyroid9(7), 643–646 (1999).
  • Wilbanks GA, Streilein JW. Fluids from immune privileged sites endow macrophages with the capacity to induce antigen-specific immune deviation via a mechanism involving transforming growth factor-β. Eur. J. Immunol.22(4), 1031–1036 (1992).
  • Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the foetus. Nat. Immunol.5(3), 266–271 (2004).
  • Munn DH, Zhou M, Attwood JT et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science281(5380), 1191–1193 (1998).
  • Mellor AL, Munn DH. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol. Today20(10), 469–473 (1999).
  • Munn DH, Sharma MD, Baban B et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity22(5), 633–642 (2005).
  • Cobbold SP, Adams E, Graca L et al. Immune privilege induced by regulatory T cells in transplantation tolerance. Immunol. Rev.213, 239–255 (2006).
  • Muller AJ, Scherle PA. Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat. Rev. Cancer6(8), 613–625 (2006).
  • Quan J, Tan PH, MacDonald A, Friend PJ. Manipulation of indoleamine 2,3-dioxygenase (IDO) for clinical transplantation: promises and challenges. Expert Opin Biol. Ther.8(11), 1705–1719 (2008).
  • Cobbold SP, Adams E, Farquhar CA et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc. Natl Acad. Sci. USA106(29), 12055–12060 (2009).
  • Norian LA, Rodriguez PC, O’Mara LA et al. Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via L-arginine metabolism. Cancer Res.69(7), 3086–3094 (2009).
  • Li L, Baroja ML, Majumdar A et al. Human embryonic stem cells possess immune-privileged properties. Stem Cells22(4), 448–456 (2004).
  • Magliocca JF, Held IK, Odorico JS. Undifferentiated murine embryonic stem cells cannot induce portal tolerance but may possess immune privilege secondary to reduced major histocompatibility complex antigen expression. Stem Cells Dev.15(5), 707–717 (2006).
  • Drukker M, Katchman H, Katz G et al. Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells24(2), 221–229 (2006).
  • Cody AK, Pedro G, Jeffrey LP. Immunosuppression by embryonic stem cells. Stem Cells26(1), 89–98 (2008).
  • Swijnenburg RJ, Schrepfer S, Govaert JA et al. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc. Natl Acad. Sci. USA105(35), 12991–12996 (2008).
  • Friedenstein AJ, Deriglasova UF, Kulagina NN et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp. Hematol.2(2), 83–92 (1974).
  • Friedenstein AJ. Precursor cells of mechanocytes. Int. Rev. Cytol.47, 327–359 (1976).
  • Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science284(5411), 143–147 (1999).
  • Bianco P, Robey PG. Marrow stromal stem cells. J. Clin. Invest.105(12), 1663–1668 (2000).
  • Kode JA, Mukherjee S, Joglekar MV, Hardikar AA. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy11(4), 377–391 (2009).
  • Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL. Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J. Hematother. Stem Cell Res.9(6), 841–848 (2000).
  • Zhao RC, Liao L, Han Q. Mechanisms of and perspectives on the mesenchymal stem cell in immunotherapy. J. Lab. Clin. Med.143(5), 284–291 (2004).
  • Kadereit S, Deeds LS, Haynesworth SE et al. Expansion of LTC-ICs and maintenance of p21 and BCL-2 expression in cord blood CD34+ CD38- early progenitors cultured over human MSCs as a feeder layer. Stem Cells20(6), 573–582 (2002).
  • Di Nicola M, Carlo-Stella C, Magni M et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood99(10), 3838–3843 (2002).
  • Bartholomew A, Sturgeon C, Siatskas M et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol.30(1), 42–48 (2002).
  • Aksu AE, Horibe E, Sacks J et al. Coinfusion of donor bone marrow with host mesenchymal stem cells treats GVHD and promotes vascularized skin allograft survival in rats. Clin. Immunol.127(3), 348–358 (2008).
  • Oh JY, Kim MK, Shin MS et al. The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem Cells26(4), 1047–1055 (2008).
  • Meisel R, Zibert A, Laryea M et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood103(12), 4619–4621 (2004).
  • Sato K, Ozaki K, Oh I et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood109(1), 228–234 (2007).
  • Chabannes D, Hill M, Merieau E et al. A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood110(10), 3691–3694 (2007).
  • Rafei M, Campeau PM, Aguilar-Mahecha A et al. Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J. Immunol.182(10), 5994–6002 (2009).
  • Lanza C, Morando S, Voci A et al. Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. J. Neurochem.110(5), 1674–1684 (2009).
  • Rafei M, Hsieh J, Fortier S et al. Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood112(13), 4991–4998 (2008).
  • Hayashi Y, Tsuji S, Tsujii M et al. Topical implantation of mesenchymal stem cells has beneficial effects on healing of experimental colitis in rats. J. Pharmacol. Exp. Ther.326(2), 523–531 (2008).
  • Tanaka F, Tominaga K, Ochi M et al. Exogenous administration of mesenchymal stem cells ameliorates dextran sulfate sodium-induced colitis via anti-inflammatory action in damaged tissue in rats. Life Sci.83(23–24), 771–779 (2008).
  • Zappia E, Casazza S, Pedemonte E et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood106(5), 1755–1761 (2005).
  • Ge W, Jiang J, Baroja ML et al. Infusion of mesenchymal stem cells and rapamycin synergize to attenuate alloimmune responses and promote cardiac allograft tolerance. Am. J. Transplant.9(8), 1760–1772 (2009).
  • Casiraghi F, Azzollini N, Cassis P et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J. Immunol.181(6), 3933–3946 (2008).
  • Le Blanc K, Rasmusson I, Sundberg B et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet363(9419), 1439–1441 (2004).
  • Bolanos-Meade J, Vogelsang GB. Novel strategies for steroid-refractory acute graft-versus-host disease. Curr. Opin. Hematol.12(1), 40–44 (2005).
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4), 663–676 (2006).
  • Nakagawa M, Koyanagi M, Tanabe K et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotech.26(1), 101–106 (2008).
  • Shi Y, Desponts C, Do JT et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell3(5), 568–574 (2008).
  • Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5), 861–872 (2007).
  • Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858), 1917–1920 (2007).
  • Aoi T, Yae K, Nakagawa M et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science321(5889), 699–702 (2008).
  • Stadtfeld M, Brennand K, Hochedlinger K. Reprogramming of pancreatic b cells into induced pluripotent stem cells. Curr. Biol.18(12), 890–894 (2008).
  • Hanna J, Markoulaki S, Schorderet P et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell133(2), 250–264 (2008).
  • Choi KD, Yu J, Smuga-Otto K et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells27(3), 559–567 (2009).
  • Eminli S, Foudi A, Stadtfeld M et al. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet.41, 968–976 (2009).
  • Aasen T, Raya A, Barrero MJ et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol.26(11), 1276–1284 (2008).
  • Ye Z, Zhan H, Mali P et al. Human induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood114(27), 5409–5410. (2009).
  • Yusa K, Rad R, Takeda J, Bradley A. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat. Methods6(5), 363–369 (2009).
  • Lyssiotis CA, Foreman RK, Staerk J et al. Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc. Natl Acad. Sci.106(22), 8912–8917 (2009).
  • Zhou H, Wu S, Joo JY et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell4(5), 381–384 (2009).
  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science322(5903), 949–953 (2008).
  • Woltjen K, Michael IP, Mohseni P et al. PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature458(7239), 766–770 (2009).
  • Park I-H, Arora N, Huo H et al. Disease-specific induced pluripotent stem cells. Cell134(5), 877–886 (2008).
  • Dimos JT, Rodolfa KT, Niakan KK et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science321(5893), 1218–1221 (2008).
  • Maehr R, Chen S, Snitow M et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc. Natl Acad. Sci. USA106(37), 15768–15773 (2009).
  • Raya A, Rodriguez-Piza I, Guenechea G et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature460(7251), 53–59 (2009).
  • Miura K, Okada Y, Aoi T et al. Variation in the safety of induced pluripotent stem cell lines. Nat. Biotech.27(8), 743–745 (2009).
  • Chin MH, Mason MJ, Xie W et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell5(1), 111–123 (2009).
  • Karumbayaram S, Novitch BG, Patterson M et al. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells27(4), 806–811 (2009).
  • Zhang J, Wilson GF, Soerens AG et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res.104(4), e30–e41 (2009).
  • Scherer M, Banas B, Mantouvalou K et al. Current concepts and perspectives of immunosuppression in organ transplantation. Langenbeck’s Arch. Surg.392(5), 511–523 (2007).
  • McEwan A, Petty LG. Oncogenicity of immunosuppressive drugs. Lancet1(7745), 326–327 (1972).
  • Dunn DL. Hazardous crossing: immunosuppression and nosocomial infections in solid organ transplant recipients. Surg. Infect. (Larchmt)2(2), 103–110; discussion 110–102 (2001).
  • Lechler R and Batchelor J. Immunogenicity of retransplanted rat kidney allografts. Effect of inducing chimerism in the first recipient and quantitative studies on immunosuppression of the second recipient. J. Exp. Med.156, 1835–1841 (1982).
  • Sharabi Y, Aksentijevich I, Sundt TM 3rd, Sachs DH, Sykes M. Specific tolerance induction across a xenogeneic barrier: production of mixed rat/mouse lymphohematopoietic chimeras using a nonlethal preparative regimen. J. Exp. Med.172(1), 195–202 (1990).
  • Gibbons C, Sykes M. Manipulating the immune system for anti-tumor responses and transplant tolerance via mixed hematopoietic chimerism. Immunol. Rev.223, 334–360 (2008).
  • Tosi P, Kraft R, Luzi P et al. Involution patterns of the human thymus. I. Size of the cortical area as a function of age. Clin. Exp. Immunol.47(2), 497–504 (1982).
  • Hale JS, Boursalian TE, Turk GL, Fink PJ. Thymic output in aged mice. Proc. Natl Acad. Sci. USA103(22), 8447–8452 (2006).
  • Cunningham CP, Kimpton WG, Holder JE, Cahill RN. Thymic export in aged sheep: a continuous role for the thymus throughout pre- and postnatal life. Eur. J. Immunol.31(3), 802–811 (2001).
  • Cowan DF. Involution and cystic transformation of the thymus in the bottlenose dolphin, Tursiops truncatus. Vet. Pathol.31(6), 648–653 (1994).
  • Steinmann GG. Changes in the human thymus during aging. Curr. Top. Pathol.75, 43–88 (1986).
  • Hickman SP, Turka LA. Homeostatic T cell proliferation as a barrier to T cell tolerance. Philos. Trans. R. Soc. Lond. B. Biol. Sci.360(1461), 1713–1721 (2005).
  • Long B, Wong CP, Wang Y, Tisch R. Lymphopenia-driven CD8+ T cells are resistant to antigen-induced tolerance in NOD.scid mice. Eur. J. Immunol.36(8), 2003–2012 (2006).
  • Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med.198(12), 1875–1886 (2003).
  • Peng Y, Laouar Y, Li MO, Green EA, Flavell RA. TGF-β regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc. Natl Acad. Sci. USA101(13), 4572–4577 (2004).
  • Mucida D, Park Y, Kim G et al. Reciprocal Th17 and regulatory T cell differentiation mediated by retinoic acid. Science317(5835), 256–260 (2007).
  • Elias KM, Laurence A, Davidson TS et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood111(3), 1013–1020 (2008).
  • Mucida D, Pino-Lagos K, Kim G et al. Retinoic acid can directly promote TGF-β-mediated Foxp3+ Treg cell conversion of naive T cells. Immunity30(4), 471–472 (2009).
  • Coombes JL, Siddiqui KRR, Arancibia-Carcamo CV et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid dependent mechanism. J. Exp. Med.204(8), 1757–1764 (2007).
  • Hill JA, Hall JA, Sun C-M et al. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi cells. Immunity29(5), 758–770 (2008).
  • Fairchild PJ, Waldmann H. Dendritic cells and the prospects for transplantation tolerance. Curr. Opin Immunol.12, 528 (2000).
  • Hackstein H, Morelli AE, Thomson AW. Designer dendritic cells for tolerance induction: guided not mis-guided missiles. Trends Immunol.22, 437 (2001).
  • Mahnke K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H. Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol. Cell Biol.80(5), 477–483 (2002).
  • Yates SF, Paterson AM, Nolan KF et al. Induction of regulatory T cells and dominant tolerance by dendritic cells incapable of full activation. J. Immunol.179(2), 967–976 (2007).
  • Albert ML, Jegathesan M, Darnell RB. Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nat. Immunol.2(11), 1010–1017 (2001).
  • Keir ME, Liang SC, Guleria I et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med.203(4), 883–895 (2006).
  • Yamazaki T, Akiba H, Iwai H et al. Expression of programmed death 1 ligands by murine T cells and APC. J. Immunol.169(10), 5538–5545 (2002).
  • Ishida M, Iwai Y, Tanaka Y et al. Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol. Lett.84(1), 57–62 (2002).
  • Fife BT, Pauken KE, Eagar TN et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat. Immunol.10(11), 1185–1192 (2009).
  • Chikuma S, Imboden JB, Bluestone JA. Negative regulation of T cell receptor-lipid raft interaction by cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med.197(1), 129–135 (2003).
  • Dustin ML, Bromley SK, Kan Z, Peterson DA, Unanue ER. Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc. Natl Acad. Sci. USA94(8), 3909–3913 (1997).
  • Fadok VA, Bratton DL, Konowal A et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest.101(4), 890–898 (1998).
  • Chen W, Frank ME, Jin W, Wahl SM. TGF-β released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity14(6), 715–725 (2001).
  • Kushwah R, Oliver JR, Zhang J, Siminovitch KA, Hu J. Apoptotic dendritic cells induce tolerance in mice through suppression of dendritic cell maturation and induction of antigen-specific regulatory T cells. J. Immunol.183(11), 7104–7118 (2009).
  • Penna G, Adorini L. 1 a,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J. Immunol.164(5), 2405–2411 (2000).
  • Fairchild PJ, Brook FA, Gardner RL et al. Directed differentiation of dendritic cells from mouse embryonic stem cells. Curr. Biol.10, 1515–1518 (2000).
  • Fairchild PJ, Nolan KF, Waldmann H. Genetic modification of dendritic cells through the directed differentiation of embryonic stem cells. Methods Mol. Biol.380, 59–72 (2007).
  • Fairchild PJ, Nolan KF, Cartland S, Waldmann H. Embryonic stem cells: a novel source of dendritic cells for clinical applications. Int. Immunopharmacol.5(1), 13–21 (2005).
  • Zhan X, Dravid G, Ye Z et al. Functional antigen-presenting leucocytes derived from human embryonic stem cells in vitro. Lancet364(9429), 163–171 (2004).
  • Slukvin, II, Vodyanik MA, Thomson JA, Gumenyuk ME, Choi KD. Directed differentiation of human embryonic stem cells into functional dendritic cells through the myeloid pathway. J. Immunol.176(5), 2924–2932 (2006).
  • Su Z, Frye C, Bae KM, Kelley V, Vieweg J. Differentiation of human embryonic stem cells into immunostimulatory dendritic cells under feeder-free culture conditions. Clin. Cancer Res.14(19), 6207–6217 (2008).
  • Senju S, Haruta M, Matsunaga Y et al. Characterization of dendritic cells and macrophages generated by directed differentiation from mouse induced pluripotent stem cells. Stem Cells27(5), 1021–1031 (2009).
  • Bandi S, Akkina R. Human embryonic stem cell (hES) derived dendritic cells are functionally normal and are susceptible to HIV-1 infection. AIDS Res. Ther.5, 1 (2008).
  • Senju S, Suemori H, Zembutsu H et al. Genetically manipulated human embryonic stem cell-derived dendritic cells with immune regulatory function. Stem Cells25(11), 2720–2729 (2007).
  • Tseng SY, Nishimoto KP, Silk KM et al. Generation of immunogenic dendritic cells from human embryonic stem cells without serum and feeder cells. Regen. Med.4(4), 513–526 (2009).
  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science322(5903), 945–949 (2008).
  • Kim JB, Sebastiano V, Wu G et al. Oct4-induced pluripotency in adult neural stem cells. Cell136(3), 411–419 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.