213
Views
23
CrossRef citations to date
0
Altmetric
Review

Osteopontin and allergic disease: pathophysiology and implications for diagnostics and therapy

&
Pages 93-109 | Published online: 10 Jan 2014

References

  • Pirquet CV. Allergie. Münch Med. Wochenschr.30, 1457–1458 (1906).
  • Rajan TV. The Gell–Coombs classification of hypersensitivity reactions: a re-interpretation. Trends Immunol.24(7), 376–379 (2003).
  • Weck AD. A short history of allergological diseases and concepts. In: Allergy. Kay B (Ed). Blackwell, Oxford, UK, 3–22 (1997).
  • Gell P, Coombs RRA. The classification of allergic reactions underlying disease. In: Clinical Aspects of Immunology. Coombs RRA, Gell PGH (Eds). Blackwell Science, Oxford, UK (1963).
  • Descotes J, Choquet-Kastylevsky G. Gell and Coombs’s classification: is it still valid? Toxicology158(1–2), 43–49 (2001).
  • Akdis CA, Akdis M, Bieber T et al. Diagnosis and treatment of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL Consensus Report. J. Allergy Clin. Immunol.118(1), 152–169 (2006).
  • Frew AJ. Advances in environmental and occupational diseases 2004. J. Allergy Clin. Immunol.115(6), 1197–1202 (2005).
  • Karlberg AT, Bergstrom MA, Borje A, Luthman K, Nilsson JL. Allergic contact dermatitis – formation, structural requirements, and reactivity of skin sensitizers. Chem. Res. Toxicol.21(1), 53–69 (2008).
  • Traidl-Hoffmann C, Jakob T, Behrendt H. Determinants of allergenicity. J. Allergy Clin. Immunol.123(3), 558–566 (2009).
  • Weidinger S, Gieger C, Rodriguez E et al. Genome-wide scan on total serum IgE levels identifies FCER1A as novel susceptibility locus. PLoS Genet.4(8), e1000166 (2008).
  • Cavani A, Girolomoni G. Immune Mechanisms in Allergic Contact Dermatitis. RG Landies Company, Georgetown, TX, USA (2005).
  • Frosch PJ MT, Lepoittevin JP. Contact dermatitis (3rd Edition). Springer, Berlin, Germany (2007).
  • Ale IS, Maibacht HA. Diagnostic approach in allergic and irritant contact dermatitis. Expert Rev. Clin. Immunol.6(2), 291–310 (2010).
  • Fisher LW, Fedarko NS. Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect. Tissue Res.44(Suppl. 1), 33–40 (2003).
  • Fisher LW, Torchia DA, Fohr B, Young MF, Fedarko NS. Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem. Biophys. Res. Commun.280(2), 460–465 (2001).
  • Yamaguchi Y, Hanashima S, Yagi H et al. NMR characterization of intramolecular interaction of osteopontin, an intrinsically disordered protein with cryptic integrin-binding motifs. Biochem. Biophys. Res. Commun.393(3), 487–491 (2010).
  • Buback F, Renkl AC, Schulz G, Weiss JM. Osteopontin and the skin: multiple emerging roles in cutaneous biology and pathology. Exp. Dermatol.18(9), 750–759 (2009).
  • O’Regan A. The role of osteopontin in lung disease. Cytokine Growth Factor Rev.14(6), 479–488 (2003).
  • Sodek J, Batista Da Silva AP, Zohar R. Osteopontin and mucosal protection. J. Dent. Res.85(5), 404–415 (2006).
  • Wang KX, Denhardt DT. Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev.19(5–6), 333–345 (2008).
  • Cantor H, Shinohara ML. Regulation of T-helper-cell lineage development by osteopontin: the inside story. Nat. Rev. Immunol.9(2), 137–141 (2009).
  • Shinohara ML, Kim HJ, Kim JH, Garcia VA, Cantor H. Alternative translation of osteopontin generates intracellular and secreted isoforms that mediate distinct biological activities in dendritic cells. Proc. Natl Acad. Sci. USA105(20), 7235–7239 (2008).
  • Ashkar S, Weber GF, Panoutsakopoulou V et al. Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science287(5454), 860–864 (2000).
  • O’Regan AW, Nau GJ, Chupp GL, Berman JS. Osteopontin (Eta-1) in cell-mediated immunity: teaching an old dog new tricks. Immunol. Today21(10), 475–478 (2000).
  • Weiss JM, Renkl AC, Maier CS et al. Osteopontin is involved in the initiation of cutaneous contact hypersensitivity by inducing Langerhans and dendritic cell migration to lymph nodes. J. Exp. Med.194(9), 1219–1229 (2001).
  • Kohan M, Bader R, Puxeddu I, Levi-Schaffer F, Breuer R, Berkman N. Enhanced osteopontin expression in a murine model of allergen-induced airway remodelling. Clin. Exp. Allergy37(10), 1444–1454 (2007).
  • Lu X, Zhang XH, Wang H et al. Expression of osteopontin in chronic rhinosinusitis with and without nasal polyps. Allergy64(1), 104–111 (2009).
  • Xanthou G, Alissafi T, Semitekolou M et al. Osteopontin has a crucial role in allergic airway disease through regulation of dendritic cell subsets. Nat. Med.13(5), 570–578 (2007).
  • Fet V, Dickinson ME, Hogan BL. Localization of the mouse gene for secreted phosphoprotein 1 (Spp-1) (2ar, osteopontin, bone sialoprotein 1, 44-kDa bone phosphoprotein, tumor-secreted phosphoprotein) to chromosome 5, closely linked to Ric (Rickettsia resistance). Genomics5(2), 375–377 (1989).
  • Patarca R, Freeman GJ, Singh RP et al. Structural and functional studies of the early T lymphocyte activation 1 (Eta-1) gene. Definition of a novel T cell-dependent response associated with genetic resistance to bacterial infection. J. Exp. Med.170(1), 145–161 (1989).
  • Young MF, Kerr JM, Termine JD et al. cDNA cloning, mRNA distribution and heterogeneity, chromosomal location, and RFLP analysis of human osteopontin (OPN). Genomics7(4), 491–502 (1990).
  • Craig AM, Denhardt DT. The murine gene encoding secreted phosphoprotein 1 (osteopontin): promoter structure, activity, and induction in vivo by estrogen and progesterone. Gene100, 163–171 (1991).
  • Hijiya N, Setoguchi M, Matsuura K, Higuchi Y, Akizuki S, Yamamoto S. Cloning and characterization of the human osteopontin gene and its promoter. Biochem. J.303(Pt 1), 255–262 (1994).
  • Saitoh Y, Kuratsu J, Takeshima H, Yamamoto S, Ushio Y. Expression of osteopontin in human glioma. Its correlation with the malignancy. Lab. Invest.72(1), 55–63 (1995).
  • Tanaka K, Morimoto J, Kon S et al. Effect of osteopontin alleles on β-glucan-induced granuloma formation in the mouse liver. Am. J. Pathol.164(2), 567–575 (2004).
  • Oldberg A, Franzen A, Heinegard D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc. Natl Acad. Sci. USA83(23), 8819–8823 (1986).
  • Craig AM, Smith JH, Denhardt DT. Osteopontin, a transformation-associated cell adhesion phosphoprotein, is induced by 12-O-tetradecanoylphorbol 13-acetate in mouse epidermis. J. Biol. Chem.264(16), 9682–9689 (1989).
  • Kiefer MC, Bauer DM, Barr PJ. The cDNA and derived amino acid sequence for human osteopontin. Nucleic Acids Res.17(8), 3306 (1989).
  • Wrana JL, Zhang Q, Sodek J. Full length cDNA sequence of porcine secreted phosphoprotein-I (SPP-I, osteopontin). Nucleic Acids Res.17(23), 10119 (1989).
  • Tezuka K, Sato T, Kamioka H et al. Identification of osteopontin in isolated rabbit osteoclasts. Biochem. Biophys. Res. Commun.186(2), 911–917 (1992).
  • Kerr JM, Fisher LW, Termine JD, Young MF. The cDNA cloning and RNA distribution of bovine osteopontin. Gene108(2), 237–243 (1991).
  • Senger DR, Asch BB, Smith BD, Perruzzi CA, Dvorak HF. A secreted phosphoprotein marker for neoplastic transformation of both epithelial and fibroblastic cells. Nature302(5910), 714–715 (1983).
  • Franzen A, Heinegard D. Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochem. J.232(3), 715–724 (1985).
  • Smith JH, Denhardt DT. Molecular cloning of a tumor promoter-inducible mRNA found in JB6 mouse epidermal cells: induction is stable at high, but not at low, cell densities. J. Cell Biochem.34(1), 13–22 (1987).
  • Prince CW. Secondary structure predictions for rat osteopontin. Connect. Tissue Res.21(1–4), 15–20 (1989).
  • Sodek J, Ganss B, McKee MD. Osteopontin. Crit. Rev. Oral Biol. Med.11(3), 279–303 (2000).
  • Kazanecki CC, Uzwiak DJ, Denhardt DT. Control of osteopontin signaling and function by post-translational phosphorylation and protein folding. J. Cell Biochem.102(4), 912–924 (2007).
  • Yokosaki Y, Tanaka K, Higashikawa F, Yamashita K, Eboshida A. Distinct structural requirements for binding of the integrins αvβ6, αvβ3, αvβ5, α5β1 and α9β1 to osteopontin. Matrix Biol.24(6), 418–427 (2005).
  • Barry ST, Ludbrook SB, Murrison E, Horgan CM. Analysis of the α4β1 integrin–osteopontin interaction. Exp. Cell Res.258(2), 342–351 (2000).
  • Smith LL, Cheung HK, Ling LE et al. Osteopontin N-terminal domain contains a cryptic adhesive sequence recognized by α9β1 integrin. J. Biol. Chem.271(45), 28485–28491 (1996).
  • Grassinger J, Haylock DN, Storan MJ et al. Thrombin-cleaved osteopontin regulates hemopoietic stem and progenitor cell functions through interactions with α9β1 and α4β1 integrins. Blood114(1), 49–59 (2009).
  • Hasegawa M, Nakoshi Y, Iino T et al. Thrombin-cleaved osteopontin in synovial fluid of subjects with rheumatoid arthritis. J. Rheumatol.36(2), 240–245 (2009).
  • Khan SA, Cook AC, Kappil M et al. Enhanced cell surface CD44 variant (v6, v9) expression by osteopontin in breast cancer epithelial cells facilitates tumor cell migration: novel post-transcriptional, post-translational regulation. Clin. Exp. Metastasis22(8), 663–673 (2005).
  • Weber GF, Ashkar S, Glimcher MJ, Cantor H. Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science271(5248), 509–512 (1996).
  • Katagiri YU, Sleeman J, Fujii H et al. CD44 variants but not CD44s cooperate with β1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Res.59(1), 219–226 (1999).
  • Lin YH, Huang CJ, Chao JR et al. Coupling of osteopontin and its cell surface receptor CD44 to the cell survival response elicited by interleukin-3 or granulocyte-macrophage colony-stimulating factor. Mol. Cell Biol.20(8), 2734–2742 (2000).
  • Senger DR, Ledbetter SR, Claffey KP, Papadopoulos-Sergiou A, Peruzzi CA, Detmar M. Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the αvβ3 integrin, osteopontin, and thrombin. Am. J. Pathol.149(1), 293–305 (1996).
  • Denhardt DT, Noda M, O’Regan AW, Pavlin D, Berman JS. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J. Clin. Invest.107(9), 1055–1061 (2001).
  • Zohar R, Suzuki N, Suzuki K et al. Intracellular osteopontin is an integral component of the CD44-ERM complex involved in cell migration. J. Cell Physiol.184(1), 118–130 (2000).
  • Kon S, Ikesue M, Kimura C et al. Syndecan-4 protects against osteopontin-mediated acute hepatic injury by masking functional domains of osteopontin. J. Exp. Med.205(1), 25–33 (2008).
  • Keykhosravani M, Doherty-Kirby A, Zhang C et al. Comprehensive identification of post-translational modifications of rat bone osteopontin by mass spectrometry. Biochemistry44(18), 6990–7003 (2005).
  • Christensen B, Nielsen MS, Haselmann KF, Petersen TE, Sorensen ES. Post-translationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylation and five O-glycosylation sites and their biological implications. Biochem. J.390(Pt 1), 285–292 (2005).
  • Crawford HC, Matrisian LM, Liaw L. Distinct roles of osteopontin in host defense activity and tumor survival during squamous cell carcinoma progression in vivo. Cancer Res.58(22), 5206–5215 (1998).
  • Weber GF, Zawaideh S, Hikita S, Kumar VA, Cantor H, Ashkar S. Phosphorylation-dependent interaction of osteopontin with its receptors regulates macrophage migration and activation. J. Leukoc. Biol.72(4), 752–761 (2002).
  • Sorensen ES, Petersen TE. Phosphorylation, glycosylation, and transglutaminase sites in bovine osteopontin. Ann. NY Acad. Sci.760, 363–366 (1995).
  • Sorensen ES, Hojrup P, Petersen TE. Posttranslational modifications of bovine osteopontin: identification of twenty-eight phosphorylation and three O-glycosylation sites. Protein Sci.4(10), 2040–2049 (1995).
  • Shanmugam V, Chackalaparampil I, Kundu GC, Mukherjee AB, Mukherjee BB. Altered sialylation of osteopontin prevents its receptor-mediated binding on the surface of oncogenically transformed tsB77 cells. Biochemistry36(19), 5729–5738 (1997).
  • Kaartinen MT, Pirhonen A, Linnala-Kankkunen A, Maenpaa PH. Cross-linking of osteopontin by tissue transglutaminase increases its collagen binding properties. J. Biol. Chem.274(3), 1729–1735 (1999).
  • Higashikawa F, Eboshida A, Yokosaki Y. Enhanced biological activity of polymeric osteopontin. FEBS Lett.581(14), 2697–2701 (2007).
  • Lorand L, Graham RM. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat. Rev. Mol. Cell Biol.4(2), 140–156 (2003).
  • Beninati S, Senger DR, Cordella-Miele E et al. Osteopontin: its transglutaminase-catalyzed posttranslational modifications and crosslinking to fibronectin. J. Biochem.115(4), 675–682 (1994).
  • Coca AF, Cooke RA. On the classification of the phenomena of hypersensitiveness. J. Immunol.8, 163–182 (1923).
  • Allergy (2nd Edition). Holgate ST, Church MK, Lichtenstein LM (Eds). Mosby, London, UK (2001).
  • Girolomoni G, Gisondi P, Ottaviani C, Cavani A. Immunoregulation of allergic contact dermatitis. J. Dermatol.31(4), 264–270 (2004).
  • Martin SF, Jakob T. From innate to adaptive immune responses in contact hypersensitivity. Curr. Opin. Allergy Clin. Immunol.8(4), 289–293 (2008).
  • Ho IC, Glimcher LH. Transcription: tantalizing times for T cells. Cell109(Suppl.), S109–S120 (2002).
  • Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol.2(8), 675–680 (2001).
  • Manetti R, Parronchi P, Giudizi MG et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J. Exp. Med.177(4), 1199–1204 (1993).
  • Manetti R, Annunziato F, Gianno V et al. Th1 and Th2 cells in HIV infection. Chem. Immunol.63, 138–157 (1996).
  • Parronchi P, De Carli M, Manetti R et al. IL-4 and IFN (α and γ) exert opposite regulatory effects on the development of cytolytic potential by Th1 or Th2 human T cell clones. J. Immunol.149(9), 2977–2983 (1992).
  • Hochrein H, Shortman K, Vremec D, Scott B, Hertzog P, O’Keeffe M. Differential production of IL-12, IFN-α, and IFN-γ by mouse dendritic cell subsets. J. Immunol.166(9), 5448–5455 (2001).
  • He R, Geha RS. Thymic stromal lymphopoietin. Ann. NY Acad. Sci.1183, 13–24 (2010).
  • Grogan JL, Mohrs M, Harmon B, Lacy DA, Sedat JW, Locksley RM. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity14(3), 205–215 (2001).
  • Mullen AC, High FA, Hutchins AS et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science292(5523), 1907–1910 (2001).
  • Afkarian M, Sedy JR, Yang J et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol.3(6), 549–557 (2002).
  • Lighvani AA, Frucht DM, Jankovic D et al. T-bet is rapidly induced by interferon-γ in lymphoid and myeloid cells. Proc. Natl Acad. Sci. USA98(26), 15137–15142 (2001).
  • Amsen D, Blander JM, Lee GR, TanigakiK, Honjo T, Flavell RA. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell117(4), 515–526 (2004).
  • Amsen D, Antov A, Jankovic D et al. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity27(1), 89–99 (2007).
  • Liotta F, Frosali F, Querci V et al. Human immature myeloid dendritic cells trigger a TH2-polarizing program via Jagged-1/Notch interaction. J. Allergy Clin. Immunol.121(4), 1000–1005.e8 (2008).
  • Fallon PG, Ballantyne SJ, Mangan NE et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med.203(4), 1105–1116 (2006).
  • Schmitz J, Thiel A, Kuhn R et al. Induction of interleukin 4 (IL-4) expression in T helper (Th) cells is not dependent on IL-4 from non-Th cells. J. Exp. Med.179(4), 1349–1353 (1994).
  • Ouyang W, Lohning M, Gao Z et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity12(1), 27–37 (2000).
  • Zhu J, Yamane H, Cote-Sierra J, Guo L, Paul WE. GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Res.16(1), 3–10 (2006).
  • Bettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature441(7090), 235–238 (2006).
  • Ivanov, II, McKenzie BS, Zhou L et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell126(6), 1121–1133 (2006).
  • Louten J, Boniface K, de Waal Malefyt R. Development and function of TH17 cells in health and disease. J. Allergy Clin. Immunol.123(5), 1004–1011 (2009).
  • Fouser LA, Wright JF, Dunussi-Joannopoulos K, Collins M. Th17 cytokines and their emerging roles in inflammation and autoimmunity. Immunol. Rev.226, 87–102 (2008).
  • van Beelen AJ, Teunissen MB, Kapsenberg ML, de Jong EC. Interleukin-17 in inflammatory skin disorders. Curr. Opin. Allergy Clin. Immunol.7(5), 374–381 (2007).
  • He R, Kim HY, Yoon J et al. Exaggerated IL-17 response to epicutaneous sensitization mediates airway inflammation in the absence of IL-4 and IL-13. J. Allergy Clin. Immunol.124(4), 761.e1–770.e1 (2009).
  • Shinohara ML, Jansson M, Hwang ES, Werneck MB, Glimcher LH, Cantor H. T-bet-dependent expression of osteopontin contributes to T cell polarization. Proc. Natl Acad. Sci. USA102(47), 17101–17106 (2005).
  • Zohar R, Lee W, Arora P, Cheifetz S, McCulloch C, Sodek J. Single cell analysis of intracellular osteopontin in osteogenic cultures of fetal rat calvarial cells. J. Cell Physiol.170(1), 88–100 (1997).
  • Seier AM, Renkl AC, Schulz G et al. Antigen-specific induction of osteopontin contributes to the chronification of allergic contact dermatitis. Am. J. Pathol.176(1), 246–258 (2010).
  • Shinohara ML, Lu L, Bu J et al. Osteopontin expression is essential for interferon-α production by plasmacytoid dendritic cells. Nat. Immunol.7(5), 498–506 (2006).
  • Maeno Y, Nakazawa S, Yamamoto N et al. Osteopontin participates in Th1-mediated host resistance against nonlethal malaria parasite Plasmodium chabaudi chabaudi infection in mice. Infect. Immun.74(4), 2423–2427 (2006).
  • Shinohara ML, Kim JH, Garcia VA, Cantor H. Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin. Immunity29(1), 68–78 (2008).
  • Renkl AC, Wussler J, Ahrens T et al. Osteopontin functionally activates dendritic cells and induces their differentiation toward a Th1-polarizing phenotype. Blood106(3), 946–955 (2005).
  • Murugaiyan G, Mittal A, Weiner HL. Increased osteopontin expression in dendritic cells amplifies IL-17 production by CD4+ T cells in experimental autoimmune encephalomyelitis and in multiple sclerosis. J. Immunol.181(11), 7480–7488 (2008).
  • Schulz G, Renkl AC, Seier A, Liaw L, Weiss JM. Regulated osteopontin expression by dendritic cells decisively affects their migratory capacity. J. Invest. Dermatol.128(10), 2541–2544 (2008).
  • Alcorn JF, Crowe CR, Kolls JK. TH17 cells in asthma and COPD. Annu. Rev. Physiol.72, 495–516 (2010).
  • Metz M, Maurer M. Innate immunity and allergy in the skin. Curr. Opin. Immunol.21(6), 687–693 (2009).
  • Axtell RC, de Jong BA, Boniface K et al. T helper type 1 and 17 cells determine efficacy of interferon-β in multiple sclerosis and experimental encephalomyelitis. Nat. Med.16(4), 406–412 (2010).
  • Steinman L. Mixed results with modulation of TH-17 cells in human autoimmune diseases. Nat. Immunol.11(1), 41–44 (2010).
  • Leipe J, Grunke M, Dechant C et al. Th17 cells in autoimmune arthritis. Arthritis Rheum.62(10), 2876–2885 (2010).
  • Murugaiyan G, Mittal A, Weiner HL. Identification of an IL-27/osteopontin axis in dendritic cells and its modulation by IFN-γ limits IL-17-mediated autoimmune inflammation. Proc. Natl Acad. Sci. USA107(25), 11495–11500 (2010).
  • Yoshida H, Nakaya M, Miyazaki Y. Interleukin 27: a double-edged sword for offense and defense. J. Leukoc. Biol.86(6), 1295–1303 (2009).
  • Pennino D, Eyerich K, Scarponi C et al. IL-17 amplifies human contact hypersensitivity by licensing hapten nonspecific Th1 cells to kill autologous keratinocytes. J. Immunol.184(9), 4880–4888 (2010).
  • Eder W, Ege MJ, von Mutius E. The asthma epidemic. N. Engl. J. Med.355(21), 2226–2235 (2006).
  • Meltzer EO. The prevalence and medical and economic impact of allergic rhinitis in the United States. J. Allergy Clin. Immunol.99(6 Pt 2), S805–S828 (1997).
  • Pawankar R, Bunnag C, Chen Y et al. Allergic rhinitis and its impact on asthma update (ARIA 2008) – western and Asian–Pacific perspective. Asian Pac. J. Allergy Immunol.27(4), 237–243 (2009).
  • Greenberger PA. Interactions between rhinitis and asthma. Allergy Asthma Proc.25(2), 89–93 (2004).
  • Liu Y, Lu X, Yu HJ et al. The expression of osteopontin and its association with Clara cell 10 kDa protein in allergic rhinitis. Clin. Exp. Allergy40(11), 1632–1641 (2010).
  • Kurokawa M, Konno S, Matsukura S et al. Effects of corticosteroids on osteopontin expression in a murine model of allergic asthma. Int. Arch. Allergy Immunol.149(Suppl. 1), 7–13 (2009).
  • Takahashi A, Kurokawa M, Konno S et al. Osteopontin is involved in migration of eosinophils in asthma. Clin. Exp. Allergy39(8), 1152–1159 (2009).
  • Samitas K, Zervas E, Vittorakis S et al. Osteopontin expression and relation to disease severity in human asthma. Eur. Respir. J. DOI: 10.1183/09031936.00017810 (2010) (Epub ahead of print).
  • Uchio E, Matsuura N, Kadonosono K, Ohno S, Uede T. Tear osteopontin levels in patients with allergic conjunctival diseases. Graefes Arch. Clin. Exp. Ophthalmol.240(11), 924–928 (2002).
  • Chen LC, Zhang Z, Myers AC, Huang SK. Cutting edge: altered pulmonary eosinophilic inflammation in mice deficient for Clara cell secretory 10-kDa protein. J. Immunol.167(6), 3025–3028 (2001).
  • de Heer HJ, Hammad H, Soullie T et al. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J. Exp. Med.200(1), 89–98 (2004).
  • Kohl J, Baelder R, Lewkowich IP et al. A regulatory role for the C5a anaphylatoxin in type 2 immunity in asthma. J. Clin. Invest.116(3), 783–796 (2006).
  • Idzko M, Hammad H, van Nimwegen M et al. Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J. Clin. Invest.116(11), 2935–2944 (2006).
  • Ehrchen JM, Roebrock K, Foell D et al. Keratinocytes determine Th1 immunity during early experimental leishmaniasis. PLoS Pathog.6(4), e1000871 (2010).
  • Mellman I, Turley SJ, Steinman RM. Antigen processing for amateurs and professionals. Trends Cell. Biol.8(6), 231–237 (1998).
  • Steinman RM, Hemmi H. Dendritic cells: translating innate to adaptive immunity. Curr. Top. Microbiol. Immunol.311, 17–58 (2006).
  • Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol.8(3), 183–192 (2008).
  • Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM. Asthma. From bronchoconstriction to airways inflammation and remodeling. Am. J. Respir. Crit. Care Med.161(5), 1720–1745 (2000).
  • Cockcroft DW, Davis BE. Mechanisms of airway hyperresponsiveness. J. Allergy Clin. Immunol.118(3), 551–559; quiz 560–551 (2006).
  • Bergeron C, Al-Ramli W, Hamid Q. Remodeling in asthma. Proc. Am. Thorac. Soc.6(3), 301–305 (2009).
  • Homer RJ, Elias JA. Consequences of long-term inflammation. Airway remodeling. Clin. Chest Med.21(2), 331–343, ix (2000).
  • Shinagawa K, Kojima M. Mouse model of airway remodeling: strain differences. Am. J. Respir. Crit. Care Med.168(8), 959–967 (2003).
  • Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol.3(5), 349–363 (2002).
  • Puxeddu I, Alian A, Piliponsky AM, Ribatti D, Panet A, Levi-Schaffer F. Human peripheral blood eosinophils induce angiogenesis. Int. J. Biochem. Cell Biol.37(3), 628–636 (2005).
  • Berman JS, Serlin D, Li X et al. Altered bleomycin-induced lung fibrosis in osteopontin-deficient mice. Am. J. Physiol. Lung Cell Mol. Physiol.286(6), L1311–L1318 (2004).
  • Liaw L, Birk DE, Ballas CB, Whitsitt JS, Davidson JM, Hogan BL. Altered wound healing in mice lacking a functional osteopontin gene (spp1). J. Clin. Invest.101(7), 1468–1478 (1998).
  • Pardo A, Gibson K, Cisneros J et al. Up-regulation and profibrotic role of osteopontin in human idiopathic pulmonary fibrosis. PLoS Med.2(9), e251 (2005).
  • Kohan M, Breuer R, Berkman N. Osteopontin induces airway remodeling and lung fibroblast activation in a murine model of asthma. Am. J. Respir. Cell Mol. Biol.41(3), 290–296 (2009).
  • Rosenberg HF, Phipps S, Foster PS. Eosinophil trafficking in allergy and asthma. J. Allergy Clin. Immunol.119(6), 1303–1310; quiz 1311–1302 (2007).
  • Humbles AA, Lloyd CM, McMillan SJ et al. A critical role for eosinophils in allergic airways remodeling. Science305(5691), 1776–1779 (2004).
  • Puxeddu I, Berkman N, Ribatti D et al. Osteopontin is expressed and functional in human eosinophils. Allergy65(2), 168–174 (2010).
  • Wardlaw AJ, Walsh GM, Symon FA. Adhesion interactions involved in eosinophil migration through vascular endothelium. Ann. NY Acad. Sci.796, 124–137 (1996).
  • Wenzel SE, Schwartz LB, Langmack EL et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am. J. Respir. Crit. Care Med.160(3), 1001–1008 (1999).
  • Rothenberg ME, Hogan SP. The eosinophil. Annu. Rev. Immunol.24, 147–174 (2006).
  • Puxeddu I, Ribatti D, Crivellato E, Levi-Schaffer F. Mast cells and eosinophils: a novel link between inflammation and angiogenesis in allergic diseases. J. Allergy Clin. Immunol.116(3), 531–536 (2005).
  • Nagasaka A, Matsue H, Matsushima H et al. Osteopontin is produced by mast cells and affects IgE-mediated degranulation and migration of mast cells. Eur.J. Immunol.38(2), 489–499 (2008).
  • Flood-Page P, Menzies-Gow A, Phipps S et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J. Clin. Invest.112(7), 1029–1036 (2003).
  • Lee JJ, Dimina D, Macias MP et al. Defining a link with asthma in mice congenitally deficient in eosinophils. Science305(5691), 1773–1776 (2004).
  • Okayama Y, Kawakami T. Development, migration, and survival of mast cells. Immunol. Res.34(2), 97–115 (2006).
  • Stelekati E, Bahri R, D’Orlando O et al. Mast cell-mediated antigen presentation regulates CD8+ T cell effector functions. Immunity31(4), 665–676 (2009).
  • Ozdemir C. An immunological overview of allergen specific immunotherapy – subcutaneous and sublingual routes. Ther. Adv. Respir. Dis.3(5), 253–262 (2009).
  • Larche M, Akdis CA, Valenta R. Immunological mechanisms of allergen-specific immunotherapy. Nat. Rev. Immunol.6(10), 761–771 (2006).
  • Konno S, Golden DB, Schroeder J, Hamilton RG, Lichtenstein LM, Huang SK. Increased expression of osteopontin is associated with long-term bee venom immunotherapy. J. Allergy Clin. Immunol.115(5), 1063–1067 (2005).
  • Konno S, Hizawa N, Nishimura M, Huang SK. Osteopontin: a potential biomarker for successful bee venom immunotherapy and a potential molecule for inhibiting IgE-mediated allergic responses. Allergol. Int.55(4), 355–359 (2006).
  • Diepgen TL, Coenraads PJ. The epidemiology of occupational contact dermatitis. Int. Arch. Occup. Environ. Health72(8), 496–506 (1999).
  • Thyssen JP, Menne T, Schnuch A et al. Acceptable risk of contact allergy in the general population assessed by CE-DUR – a method to detect and categorize contact allergy epidemics based on patient data. Regul. Toxicol. Pharmacol.54(2), 183–187 (2009).
  • Thyssen JP, Linneberg A, Menne T, Johansen JD. The epidemiology of contact allergy in the general population – prevalence and main findings. Contact Derm.57(5), 287–299 (2007).
  • Thyssen JP, Johansen JD, Menne T. Contact allergy epidemics and their controls. Contact Derm.56(4), 185–195 (2007).
  • Thyssen JP, Johansen JD, Linneberg A, Menne T. The epidemiology of hand eczema in the general population – prevalence and main findings. Contact Derm.62(2), 75–87 (2010).
  • Saint-Mezard P, Berard F, Dubois B, Kaiserlian D, Nicolas JF. The role of CD4+ and CD8+ T cells in contact hypersensitivity and allergic contact dermatitis. Eur. J. Dermatol.14(3), 131–138 (2004).
  • Cavani A, De Pita O, Girolomoni G. New aspects of the molecular basis of contact allergy. Curr. Opin. Allergy Clin. Immunol.7(5), 404–408 (2007).
  • Kimber I, Dearman RJ. Allergic contact dermatitis: the cellular effectors. Contact Derm.46(1), 1–5 (2002).
  • Hogan DJ, Dannaker CJ, Maibach HI. The prognosis of contact dermatitis. J. Am. Acad. Dermatol.23(2 Pt 1), 300–307 (1990).
  • Saint-Mezard P, Rosieres A, Krasteva M et al. Allergic contact dermatitis. Eur. J. Dermatol.14(5), 284–295 (2004).
  • Cavani A, Albanesi C, Traidl C, Sebastiani S, Girolomoni G. Effector and regulatory T cells in allergic contact dermatitis. Trends Immunol.22(3), 118–120 (2001).
  • Pichler BJ, Kneilling M, Haubner R et al. Imaging of delayed-type hypersensitivity reaction by PET and 18F-galacto-RGD. J. Nucl. Med.46(1), 184–189 (2005).
  • Weiss JM, Renkl AC, Sleeman J et al. CD44 variant isoforms are essential for the function of epidermal Langerhans cells and dendritic cells. Cell. Adhes. Commun.6(2–3), 157–160 (1998).
  • Hur EM, Youssef S, Haws ME, Zhang SY, Sobel RA, Steinman L. Osteopontin-induced relapse and progression of autoimmune brain disease through enhanced survival of activated T cells. Nat. Immunol.8(1), 74–83 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.