243
Views
21
CrossRef citations to date
0
Altmetric
Special Report

Recurrent miscarriage and autoimmunity

, , &
Pages 37-44 | Published online: 10 Jan 2014

References

  • Bansal AS. Joining the immunological dots of recurrent miscarriage. Am. J. Reprod. Immunol.64(5), 307–315 (2010).
  • Barjaktarevic I, Vukmanovic S. Paternal cell immunization raises autoantibodies and improves pregnancy success in mice. Am. J. Reprod. Immunol.60(6), 497–500 (2008).
  • Bussen S, Steck T. Thyroid autoantibodies in euthyroid non-pregnant women with recurrent spontaneous abortions. Hum. Reprod.10(11), 2938–2940 (1995).
  • Bussen SS, Steck T. Thyroid antibodies and their relation to antithrombin antibodies, anticardiolipin antibodies and lupus anticoagulant in women with recurrent spontaneous abortions (antithyroid, anticardiolipin and antithrombin autoantibodies and lupus anticoagulant in habitual aborters). Eur. J. Obstet. Gynecol. Reprod. Biol.74(2), 139–143 (1997).
  • Dendrinos S, Papasteriades C, Tarassi K, Christodoulakos G, Prasinos G, Creatsas G. Thyroid autoimmunity in patients with recurrent spontaneous miscarriages. Gynecol. Endocrinol.14(4), 270–274 (2000).
  • Iravani AT, Saeedi MM, Pakravesh J, Hamidi S, Abbasi M. Thyroid autoimmunity and recurrent spontaneous abortion in Iran: a case–control study. Endocr. Pract.14(4), 458–464 (2008).
  • Esplin MS, Branch DW, Silver R, Stagnaro-Green A. Thyroid autoantibodies are not associated with recurrent pregnancy loss. Am. J. Obstet. Gynecol.179(6 Pt 1), 1583–1586 (1998).
  • Shoenfeld Y, Carp HJ, Molina V et al. Autoantibodies and prediction of reproductive failure. Am. J. Reprod. Immunol.56(5–6), 337–344 (2006).
  • Bellver J, Soares SR, Alvarez C et al. The role of thrombophilia and thyroid autoimmunity in unexplained infertility, implantation failure and recurrent spontaneous abortion. Hum. Reprod.23(2), 278–284 (2008).
  • Toulis KA, Goulis DG, Venetis CA et al. Risk of spontaneous miscarriage in euthyroid women with thyroid autoimmunity undergoing IVF: a meta-analysis. Eur. J. Endocrinol.162(4), 643–652 (2010).
  • De Carolis C, Greco E, Guarino MD et al. Anti-thyroid antibodies and antiphospholipid syndrome: evidence of reduced fecundity and of poor pregnancy outcome in recurrent spontaneous aborters. Am. J. Reprod. Immunol.52(4), 263–266 (2004).
  • AJ, Harger JH, Dorman JS, Kuller LH, LaPorte RE, Gill TJ 3rd. Association between familial autoimmune diseases and recurrent spontaneous abortions. Am. J. Reprod. Immunol.32(2), 82–87 (1994).
  • Vaquero E, Lazzarin N, De Carolis C, Valensise H, Moretti C, Ramanini C. Mild thyroid abnormalities and recurrent spontaneous abortion: diagnostic and therapeutical approach. Am. J. Reprod. Immunol.43(4), 204–208 (2000).
  • Revelli A, Casano S, Piane LD et al. A retrospective study on IVF outcome in euthyroid patients with anti-thyroid antibodies: effects of levothyroxine, acetyl-salicylic acid and prednisolone adjuvant treatments. Reprod. Biol. Endocrinol.7, 137 (2009).
  • Kiprov DD, Nachtigall RD, Weaver RC, Jacobson A, Main EK, Garovoy MR. The use of intravenous immunoglobulin in recurrent pregnancy loss associated with combined alloimmune and autoimmune abnormalities. Am. J. Reprod. Immunol.36(4), 228–234 (1996).
  • Ticconi C, Rotondi F, Veglia M et al. Antinuclear autoantibodies in women with recurrent pregnancy loss. Am. J. Reprod. Immunol.64(6), 384–392 (2010).
  • Habara T, Nakatsuka M, Konishi H, Asagiri K, Noguchi S, Kudo T. Elevated blood flow resistance in uterine arteries of women with unexplained recurrent pregnancy loss. Hum. Reprod.17(1), 190–194 (2002).
  • Watson RM, Braunstein BL, Watson AJ, Hochberg MC, Provost TT. Fetal wastage in women with anti-Ro(SSA) antibody. J. Rheumatol.13(1), 90–94 (1986).
  • Mavragani CP, Dafni UG, Tzioufas AG, Moutsopoulos HM. Pregnancy outcome and anti-Ro/SSA in autoimmune diseases: a retrospective cohort study. Br. J. Rheumatol.37(7), 740–745 (1998).
  • Sekigawa I, Kaneda K, Kaneko H, Takasaki Y, Takamori K, Ogawa H. Detection of serum IgE class anti-SSA antibodies in mothers with fetal loss. Rheumatol. Int.28(7), 623–626 (2008).
  • Abrahams VM. Mechanisms of antiphospholipid antibody-associated pregnancy complications. Thromb. Res.124(5), 521–525 (2009).
  • Di Simone N, Meroni PL, de Papa N et al. Antiphospholipid antibodies affect trophoblast gonadotropin secretion and invasiveness by binding directly and through adhered β2-glycoprotein I. Arthritis Rheum.43(1), 140–150 (2000).
  • Meroni PL, Gerosa M, Raschi E, Scurati S, Grossi C, Borghi MO. Updating on the pathogenic mechanisms 5 of the antiphospholipid antibodies-associated pregnancy loss. Clin. Rev. Allergy Immunol.34(3), 332–337 (2008).
  • Avalos I, Tsokos GC. The role of complement in the antiphospholipid syndrome-associated pathology. Clin. Rev. Allergy Immunol.36(2–3), 141–144 (2009).
  • Girardi G. Guilty as charged: all available evidence implicates complement’s role in fetal demise. Am. J. Reprod. Immunol.59(3), 183–192 (2008).
  • Girardi G. Role of tissue factor in the maternal immunological attack of the embryo in the antiphospholipid syndrome. Clin. Rev. Allergy Immunol.39(3), 160–165 (2009).
  • Girardi G, Mackman N. Tissue factor in antiphospholipid antibody-induced pregnancy loss: a pro-inflammatory molecule. Lupus17(10), 931–936 (2008).
  • Redecha P, Franzke CW, Ruf W, Mackman N, Girardi G. Neutrophil activation by the tissue factor/Factor VIIa/PAR2 axis mediates fetal death in a mouse model of antiphospholipid syndrome. J. Clin. Invest.118(10), 3453–3461 (2008).
  • Chou AK, Hsieh SC, Su YN et al. Neonatal and pregnancy outcome in primary antiphospholipid syndrome: a 10-year experience in one medical center. Pediatr. Neonatol.50(4), 143–146 (2009).
  • Cervera R, Balasch J. Bidirectional effects on autoimmunity and reproduction. Hum. Reprod. Update.14(4), 359–366 (2008).
  • López-Pedrera C, Cuadrado MJ, Herández V et al. Proteomic analysis in monocytes of antiphospholipid syndrome patients: deregulation of proteins related to the development of thrombosis. Arthritis Rheum.58(9), 2835–2844 (2008).
  • Rand JH. Antiphospholipid antibody-mediated disruption of the annexin-V antithrombotic shield: a thrombogenic mechanism for the antiphospholipid syndrome. J. Autoimmun.15(2), 107–111 (2000).
  • Di Simone N, Di Nicuolo F, D’Ippolito S et al. Antiphospholipid antibodies affect human endometrial angiogenesis. Biol. Reprod.83(2), 212–219 (2010).
  • Mulla MJ, Brosens JJ, Chamley LW et al. Antiphospholipid antibodies induce a pro-inflammatory response in first trimester trophoblast via the TLR4/MyD88 pathway. Am. J. Reprod. Immunol.62(2), 96–111 (2009).
  • Mulla MJ, Myrtolli K, Brosens JJ et al. Antiphospholipid antibodies limit trophoblast migration by reducing IL-6 production and STAT3 activity. Am. J. Reprod. Immunol.63(5), 339–348 (2010).
  • Tebo AE, Jaskowski TD, Hill HR, Branch DW. Clinical relevance of multiple antibody specificity testing in antiphospholipid syndrome and recurrent pregnancy loss. Clin. Exp. Immunol.154(3), 332–338 (2008).
  • Alijotas-Reig J, Casellas-Caro M, Ferrer-Oliveras R et al. Are anti-β-glycoprotein-I antibodies markers for recurrent pregnancy loss in lupus anticoagulant/anticardiolipin seronegative women? Am. J. Reprod. Immunol.60(3), 229–237 (2008).
  • Bao SH, Wang XP, Lin QD, Di W, Xu L, Ding CW. The investigation on the value of repeat and combination test of ACA and anti-β2-GPI antibody in women with recurrent spontaneous abortion. Am. J. Reprod. Immunol.60(4), 372–378 (2008).
  • Jaslow CR, Carney JL, Kutteh WH. Diagnostic factors identified in 1020 women with two versus three or more recurrent pregnancy losses. Fertil. Steril.93(4), 1234–1243 (2010).
  • Jones DW, Gallimore MJ, Winter M. Antibodies to factor XII: a possible predictive marker for recurrent fetal loss. Immunobiology207(1), 43–46 (2003).
  • Perricone C, De Carolis C, Giacomelli R et al. High levels of NK cells in the peripheral blood of patients affected with antiphospholipid syndrome and recurrent spontaneous abortion: a potential new hypothesis. Rheumatology (Oxford)46(10), 1574–1578 (2007).
  • Krause I, Blank M, Levi Y, Koike T, Barak V, Shoenfeld Y. Anti-idiotype immunomodulation of experimental antiphospholipid syndrome via effect on Th1/Th2 expression. Clin. Exp. Immunol.117(1), 190–197 (1999).
  • Carbone J, Gallego A, Lanio N et al. Quantitative abnormalities of peripheral blood distinct T, B, and natural killer cell subsets and clinical findings in obstetric antiphospholipid syndrome. J. Rheumatol.36(6), 1217–1225 (2009).
  • Arnold J, Holmes Z, Pickering W, Farmer C, Regan L, Cohen H. Anti-β2 glycoprotein 1 and anti-annexin V antibodies in women with recurrent miscarriage. Br. J. Haematol.113(4), 911–914 (2001).
  • Makino T. Recurrent reproductive wastage and immunologic factors. Am. J. Reprod. Immunol.48(4), 266–268 (2002).
  • Bizzaro N, Tonutti E, Villalta D, Tampoia M, Tozzoli R. Prevalence and clinical correlation of antiphospholipid-binding protein antibodies in anticardiolipin-negative patients with systemic lupus erythematosus and women with unexplained recurrent miscarriages. Arch. Pathol. Lab. Med.129(1), 61–68 (2005).
  • Zammiti W, Mtiraoui N, Hidar S, Fekih M, Almawi WY, Mahjoub T. Antibodies to β2-glycoprotein I and annexin V in women with early and late idiopathic recurrent spontaneous abortions. Arch. Gynecol. Obstet.274(5), 261–265 (2006).
  • Bu C, Zhang C, Li Z, Gao L, Xie Z, Cai G. Autoantibodies to plasminogen and tissue plasminogen activator in women with recurrent pregnancy loss. Clin. Exp. Immunol.149(1), 31–39 (2007).
  • Bulla R, de Guarrini F, Pausa M et al. Inhibition of trophoblast adhesion to endothelial cells by the sera of women with recurrent spontaneous abortions. Am. J. Reprod. Immunol.42(2), 116–123 (1999).
  • Tedesco F, Pausa M, Nardon E et al. Prevalence and biological effects of anti-trophoblast and anti-endothelial cell antibodies in patients with recurrent spontaneous abortions. Am. J. Reprod. Immunol.38(3), 205–211 (1997).
  • Konova E, Aleksovska T, Atanasova M et al. Anti-elastin antibodies and elastin turnover in normal pregnancy and recurrent pregnancy loss. Am. J. Reprod. Immunol.61(2), 167–174 (2009).
  • Feuerer M, Hill JA, Mathis D, Benoist C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat. Immunol.10(7), 689–695 (2009).
  • O’Connor RA, Taams LS, Anderton SM. Translational mini-review series on Th17 cells: CD4 T helper cells: functional plasticity and differential sensitivity to regulatory T cell-mediated regulation. Clin. Exp. Immunol.159(2), 137–147 (2010).
  • Wang WJ, Hao CF, Yi-Lin et al. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J. Reprod. Immunol.84(2), 164–170 (2010).
  • Peck A, Mellins ED. Plasticity of T-cell phenotype and function: the T helper type 17 example. Immunology129, 147–153 (2010).
  • Afzali B, Mitchell P, Lechler RI, John S, Lombardi G. Translational mini-review series on Th17 cells: induction of interleukin-17 production by regulatory T cells. Clin. Exp. Immunol.159(2), 120–130 (2010).
  • Oukka M. Th17 cells in immunity and autoimmunity. Ann. Rheum. Dis.67(Suppl. 3), iii26–iii29 (2008).
  • Vacca P, Cantoni C, Vitale M et al. Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression. Proc. Natl Acad. Sci. USA107(26), 11918–11923 (2010).
  • Zenclussen AC, Gerlof K, Zenclussen ML et al. Regulatory T cells induce a privileged tolerant microenvironment at the fetal–maternal interface. Eur. J. Immunol.36(1), 82–94 (2006).
  • Sasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A, Saito S. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod.10(5), 347–353 (2004).
  • Tilburgs T, Roelen DL, van der Mast BJ et al. Differential distribution of CD4+CD25bright and CD8+CD28- T-cells in decidua and maternal blood during human pregnancy. Placenta27(Suppl A), S47–S53 (2006).
  • Schumacher A, Brachwitz N, Sohr S et al. Human chorionic gonadotropin attracts regulatory T cells into the fetal-maternal interface during early human pregnancy. J. Immunol.182(9), 5488–5497 (2009).
  • Heikkinen J, Möttönen M, Alanen A, Lassila O. Phenotypic characterization of regulatory T cells in the human decidua. Clin. Exp. Immunol.136(2), 373–378 (2004).
  • Jasper MJ, Tremellen KP, Robertson SA. Primary unexplained infertility is associated with reduced expression of the T-regulatory cell transcription factor Foxp3 in endometrial tissue. Mol. Hum. Reprod.12(5), 301–308 (2006).
  • Yang H, Qiu L, Chen G, Ye Z, Lü C, Lin Q. Proportional change of CD4+CD25+ regulatory T cells in decidua and peripheral blood in unexplained recurrent spontaneous abortion patients. Fertil. Steril.89(3), 656–661 (2008).
  • Xia XY, Yang B, Xiong T et al. [Evaluation of CD4+ CD25+ regulatory T cells in the peripheral blood of recurrent spontaneous abortion patients]. Zhonghua Nan Ke Xue.14(12), 1106–1108 (2008).
  • Jin LP, Chen QY, Zhang T, Guo PF, Li DJ. The CD4+CD25bright regulatory T cells and CTLA-4 expression in peripheral and decidual lymphocytes are down-regulated in human miscarriage. Clin. Immunol.133(3), 402–410 (2009).
  • Tilburgs T, Roelen DL, van der Mast BJ et al. Evidence for a selective migration of fetus-specific CD4+CD25bright regulatory T cells from the peripheral blood to the decidua in human pregnancy. J. Immunol.180(8), 5737–5745 (2008).
  • Bettini M, Vignali DA. Regulatory T cells and inhibitory cytokines in autoimmunity. Curr. Opin. Immunol.21(6), 612–618 (2009).
  • Kuhn A, Beissert S, Krammer PH. CD4+CD25+ regulatory T cells in human lupus erythematosus. Arch. Dermatol. Res.301(1), 71–81 (2009).
  • Crispín JC, Kyttaris VC, Terhorst C, Tsokos GC. T cells as therapeutic targets in SLE. Nat. Rev. Rheumatol.6(6), 317–325 (2010).
  • Iikuni N, Lourenço EV, Hahn BH, La Cava A. Cutting edge: regulatory T cells directly suppress B cells in systemic lupus erythematosus. J. Immunol.183(3), 1518–1522 (2009).
  • Ochs HD, Oukka M, Torgerson TR. TH17 cells and regulatory T cells in primary immunodeficiency diseases. J. Allergy Clin. Immunol.123(5), 977–983 (2009).
  • Guerin LR, Prins JR, Robertson SA. Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment? Hum. Reprod. Update.15(5), 517–535 (2009).
  • Serrano F, Nogueira I, Borges A, Branco J. Primary antiphospholipid syndrome: pregnancy outcome in a portuguese population. Acta. Reumatol. Port.34(3), 492–497 (2009).
  • Cohn DM, Goddijn M, Middeldorp S, Korevaar JC, Dawood F, Farquharson RG. Recurrent miscarriage and antiphospholipid antibodies: prognosis of subsequent pregnancy. J. Thromb. Haemost.8(10), 2208–2213 (2010).
  • Kaandorp SP, Goddijn M, van der Post JA et al. Aspirin plus heparin or aspirin alone in women with recurrent miscarriage. N. Engl. J. Med.362(17), 1586–1596 (2010).
  • Ziakas PD, Pavlou M, Voulgarelis M. Heparin treatment in antiphospholipid syndrome with recurrent pregnancy loss: a systematic review and meta-analysis. Obstet. Gynecol.115(6), 1256–1262 (2010).
  • Laskin CA, Spitzer KA, Clark CA et al. Low molecular weight heparin and aspirin for recurrent pregnancy loss: results from the randomized, controlled HepASA Trial. J. Rheumatol.36(2), 279–287 (2009).
  • Buckingham KL, Chamley LW. A critical assessment of the role of antiphospholipid antibodies in infertility. J. Reprod. Immunol.80(1–2), 132–145 (2009).
  • Di Simone N, Marana R, Castellani R et al. Decreased expression of heparin-binding epidermal growth factor-like growth factor as a newly identified pathogenic mechanism of antiphosphol ipid-mediated defective placentation. Arthritis Rheum.62(5), 1504–1512 (2010).
  • James AH, Brancazio LR, Price T. Aspirin and reproductive outcomes. Obstet. Gynecol. Surv.63(1), 49–57 (2008).
  • Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol.11(1), 7–13 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.