281
Views
23
CrossRef citations to date
0
Altmetric
Review

CD4+CD25+ regulatory T cells in systemic sclerosis and other rheumatic diseases

, &
Pages 499-514 | Published online: 10 Jan 2014

References

  • Gershon RK, Cohen P, Hencin R, Liebhaber SA. Suppressor T cells. J. Immunol.108, 586–590 (1972).
  • Gershon RK, Kondo K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology18, 723–737 (1970).
  • Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J. Exp. Med.161, 72–82 (1985).
  • Sakaguchi S, Sakaguchi N. Thymus and autoimmunity: capacity of the normal thymus to produce pathogenic self-reactive T cells and conditions required for their induction of autoimmune disease. J. Exp. Med.172, 537–545 (1990).
  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol.155, 1151–1164 (1995).
  • Jordan MS, Boesteanu A, Reed AJ et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol.2, 301–306 (2001).
  • Horwitz DA, Zheng SG, Gray JD. Natural and TGF-[β]-induced FOXP3+CD4+ CD25+ regulatory T cells are not mirror images of each other. Trends Immunol.29, 429–435 (2008).
  • Zheng SG, Gray JD, Ohtsuka K, Yamagiwa S, Horwitz DA. Generation ex vivo of TGF-{β}-producing regulatory T cells from CD4+CD25- precursors. J. Immunol.169, 4183–4189 (2002).
  • Davidson TS, DiPaolo RJ, Andersson J, Shevach EM. Cutting edge: IL-2 is essential for TGF-β-mediated induction of FOXP3+ T regulatory cells. J. Immunol.178, 4022–4026 (2007).
  • Vukmanovic-Stejic M, Zhang Y, Cook JE et al. Human CD4+ CD25hi FOXP3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J. Clin. Invest.116, 2423–2433 (2006).
  • Akbar AN, Vukmanovic-Stejic M, Taams LS, Macallan DC. The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nat. Rev. Immunol.7, 231–237 (2007).
  • Brusko TM, Putnam AL, Bluestone JA. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol. Reviews223, 371–390 (2008).
  • Vignali DAA, Collison LW, Workman CJ. How regulatory T cells work. Nat. Rev. Immunol.8, 523–532 (2008).
  • Waterhouse P, Penninger JM, Timms E et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science270, 985–988 (1995).
  • Brunkow ME, Jeffery EW, Hjerrild KA et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet.27, 68–73 (2001).
  • Bennett CL, Christie J, Ramsdell F et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet.27, 20–21 (2001).
  • Wildin R, Ramsdell F, Peake J et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet.27, 18–20 (2001).
  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor FOXP3. Science299, 1057–1061 (2003).
  • Khattri R, Cox T, Yasayko S-A, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol.4, 337–342 (2003).
  • Fontenot JD, Gavin MA, Rudensky AY. FOXP3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol.4, 330–336 (2003).
  • Bacchetta R, Passerini L, Gambineri E et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations J. Clin. Invest.116, 1713–1722 (2006).
  • Gavin MA, Torgerson TR, Houston E et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl Acad. Sci. USA103, 6659–6664 (2006).
  • Fuchizawa T, Adachi Y, Ito Y et al. Developmental changes of FOXP3-expressing CD4+CD25+ regulatory T cells and their impairment in patients with FOXP3 gene mutations. Clin. Immunol.125, 237–246 (2007).
  • Thornton AM, Korty PE, Tran DQ et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced FOXP3+ T regulatory cells. J. Immunol.184, 3433–3441 (2010).
  • Zheng Y, Rudensky AY. FOXP3 in control of the regulatory T cell lineage. Nat. Immunol.8(5), 457–462 (2007).
  • Stephens GL, Andersson J, Shevach EM. Distinct subsets of FOXP3+ regulatory T cells participate in the control of immune responses. J. Immunol.178, 6901–6911 (2007).
  • Walker MR, Kasprowicz DJ, Gersuk VH et al. Induction of FOXP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J. Clin. Invest.112, 1437–1443 (2003).
  • Morgan ME, van Bilsen JHM, Bakker AM et al. Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans. Hum. Immunol.66, 13–20 (2005).
  • Wing K, Onishi Y, Prieto-Martin P et al. CTLA-4 control over FOXP3+ regulatory T cell function. Science322, 271–275 (2008).
  • Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med.192, 295–302 (2000).
  • Takahashi T, Tagami T, Yamazaki S et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med.192, 303–309 (2000).
  • Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat. Immunol.3, 135–142 (2002).
  • McHugh RS, Whitters MJ, Piccirillo CA et al. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity16, 311–323 (2002).
  • Huang C-T, Workman CJ, Flies D et al. Role of LAG-3 in regulatory T cells. Immunity21, 503–513 (2004).
  • Piconese S, Valzasina B, Colombo MP. OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J. Exp. Med.205, 825–839 (2008).
  • Gavin MA, Clarke SR, Negrou E, Gallegos A, Rudensky A. Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nat. Immunol.3, 33–41 (2002).
  • Ruprecht CR, Gattorno M, Ferlito F et al. Coexpression of CD25 and CD27 identifies FOXP3+ regulatory T cells in inflamed synovia. J. Exp. Med.201, 1793–1803 (2005).
  • Koenen HJPM, Fasse E, Joosten I. CD27/CFSE-based ex vivo selection of highly suppressive alloantigen-specific human regulatory T cells. J. Immunol.174, 7573–7583 (2005).
  • Deaglio S, Dwyer KM, Gao W et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med.204, 1257–1265 (2007).
  • Borsellino G, Kleinewietfeld M, Di Mitri D et al. Expression of ectonucleotidase CD39 by FOXP3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood110, 1225–1232 (2007).
  • Seddiki N, Santner-Nanan B, Martinson J et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med.203, 1693–1700 (2006).
  • Liu W, Putnam AL, Xu-yu Z et al. CD127 expression inversely correlates with FOXP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med.203, 1701–1711 (2006).
  • Miyara M, Yoshioka Y, Kitoh A et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FOXP3 transcription factor. Immunity30, 899–911 (2009).
  • Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol.10, 490–500 (2010).
  • Koenen HJPM, Smeets RL, Vink PM, Rijssen Ev, Boots AMH, Joosten I. Human CD25highFOXP3pos regulatory T-cells differentiate into IL-17 producing cells. Blood112, 2340–2352 (2008).
  • Ayyoub M, Deknuydt F, Raimbaud I et al. Human memory FOXP3+ Tregs secrete IL-17 ex vivo and constitutively express the TH17 lineage-specific transcription factor ROR{γ}t. Proc. Natl Acad. Sci. USA106, 8635–8640 (2009).
  • Beriou G, Costantino CM, Ashley CW et al. IL-17 producing human peripheral regulatory T cells retain suppressive function. Blood113(18), 4240–4249 (2009).
  • Afzali B, Mitchell P, Lechler RI, John S, Lombardi G. Translational Mini-Review Series on Th17 Cells: induction of interleukin-17 production by regulatory T cells. Clin. Exp. Immunol.159, 120–130 (2010).
  • Taams L, Palmer D, Akbar A, Robinson D, Brown Z, Hawrylowicz CM. Regulatory T cells in human disease and their potential for therapeutic manipulation. Immunology118, 1–9 (2006).
  • Baecher-Allan C, Hafler DA. Human regulatory T cells and their role in autoimmune disease. Immunol. Reviews212, 203–216 (2006).
  • Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25high regulatory T cells in human peripheral blood. J. Immunol.167, 1245–1253 (2001).
  • Walker LSK, Chodos A, Eggena M, Dooms H, Abbas AK. Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo. J. Exp. Med.198, 249–258 (2003).
  • Takahashi T, Kuniyasu Y, Toda M et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol.10, 1969–1980 (1998).
  • Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med.188, 287–296 (1998).
  • Thornton AM, Shevach EM. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol.164, 183–190 (2000).
  • Taams LS, Smith J, Rustin MH, Salmon M, Poulter LW, Akbar AN. Human anergic/suppressive CD4+CD25+ T cells: a highly differentiated and apoptosis-prone population. Eur. J. Immunol.31, 1122–1131 (2001).
  • Stephens LA, Mottet C, Mason D, Powrie F. Human CD4(+)CD25(+) thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur. J. Immunol.31, 1247–1254 (2001).
  • Piccirillo CA, Shevach EM. Control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J. Immunol.167, 1137–1140 (2001).
  • O’Connor RA, Taams LS, Anderton SM. Translational mini-review series on Th17 Cells: CD4+ T helper cells: functional plasticity and differential sensitivity to regulatory T cell-mediated regulation. Clin. Exp. Immunol.159, 137–147 (2010).
  • Ghiringhelli F, Menard C, Terme M et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-{β}-dependent manner. J. Exp. Med.202, 1075–1085 (2005).
  • Cederbom L, Hall H, Ivars F. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur. J. Immunol.30, 1538–1543 (2000).
  • Misra N, Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J. Immunol.172, 4676–4680 (2004).
  • Tiemessen MM, Jagger AJ, Evans HG, van Herwijnen MJC, John S, Taams L. CD4+CD25+FOXP3+ regulatory T cells induce alternative activation of human monocytes/macrophages Proc. Natl Acad. Sci. USA104, 19446–19451 (2007).
  • Taams LS, van Amelsfort JMR, Tiemessen MM et al. Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells. Hum. Immunol.66, 222–230 (2005).
  • Shevach EM. Mechanisms of FOXP3+ T regulatory cell-mediated suppression. Immunity30, 636–645 (2009).
  • Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T. Regulatory T cells: how do they suppress immune responses? Int. Immunol.21, 1105–1111 (2009).
  • Cao D, Malmstrom V, Baecher-Allan C, Hafler D, Klareskog L, Trollmo C. Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur. J. Immunol.33, 215–223 (2003).
  • Cao D, van Vollenhoven R, Klareskog L, Trollmo C, Malmström V. CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res. Ther.6, R335–R346 (2004).
  • Mottonen M, Heikkinen J, Mustonen L, Isomaki P, Luukkainen R, Lassila O. CD4+ CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin. Exp. Immunol.140, 360–367 (2005).
  • Liu M-F, Wang C-R, Fung L-L, Lin L-H, Tsai C-N. The presence of cytokine-suppressive CD4+CD25+ T cells in the peripheral blood and synovial fluid of patients with rheumatoid arthritis. Scand. J. Immunol.62, 312–317 (2005).
  • Ehrenstein MR, Evans JG, Singh A et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNF{α} therapy. J. Exp. Med.200, 277–285 (2004).
  • Lawson CA, Brown AK, Bejarano V et al. Early rheumatoid arthritis is associated with a deficit in the CD4+CD25high regulatory T cell population in peripheral blood. Rheumatology45, 1210–1217 (2006).
  • Jiao Z, Wang W, Jia R et al. Accumulation of FOXP3-expressing CD4+CD25+ T cells with distinct chemokine receptors in synovial fluid of patients with active rheumatoid arthritis. Scand. J. Rheumatol.36, 428–433 (2007).
  • van Amelsfort JMR, Jacobs KMG, Bijlsma JWJ, Lafeber FPJG, Taams LS. CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in presence, phenotype and function between peripheral blood and synovial fluid. Arthritis Rheum.50, 2775–2785 (2004).
  • Dombrecht E, Aerts N, Schuerwegh A et al. Influence of anti-tumor necrosis factor therapy (adalimumab) on regulatory T cells and dendritic cells in rheumatoid arthritis. Clin. Exp. Rheumatol.24, 31–37 (2006).
  • Han GM, O’Neil-Andersen NJ, Zurier RB, Lawrence DA. CD4+CD25high T cell numbers are enriched in the peripheral blood of patients with rheumatoid arthritis. Cell. Immunol.253, 92–101 (2008).
  • Benito-Miguel M, Garcia-Carmona Y, Balsa A et al. A dual action of rheumatoid arthritis synovial fibroblast IL-15 expression on the equilibrium between CD4+CD25+ regulatory T cells and CD4+CD25- responder T cells. J. Immunol.183, 8268–8279 (2009).
  • Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE. TNF down-modulates the function of human CD4+CD25hi T regulatory cells. Blood108, 253–261 (2006).
  • Flores-Borja F, Jury EC, Mauri C, Ehrenstein MR. Defects in CTLA-4 are associated with abnormal regulatory T cell function in rheumatoid arthritis. Proc. Natl Acad. Sci. USA105, 19396–19401 (2008).
  • Nadkarni S, Mauri C, Ehrenstein MR. Anti-TNF-{α} therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-{β}. J. Exp. Med.204, 33–39 (2007).
  • Wang J, van Dongen H, Scherer HU, Huizinga TWJ, Toes REM. Suppressor activity among CD4+,CD25++ T cells is discriminated by membrane-bound tumor necrosis factor α. Arthritis Rheum,58, 1609–1618 (2008).
  • Toubi E, Kessel A, Mahmudov Z, Hallas K, Rozenbaum M, Rosner I. Increased spontaneous apoptosis of CD4+CD25+ T cells in patients with active rheumatoid arthritis is reduced by infliximab. Ann. NY Acad. Sci.1051(1), 506–514 (2005).
  • Vigna-Perez M, Abud-Mendoza C, Portillo-Salazar H et al. Immune effects of therapy with Adalimumab in patients with rheumatoid arthritis. Clin. Exp. Immunol.141, 372–380 (2005).
  • Cao D, Börjesson O, Larsson P et al. FOXP3 identifies regulatory CD25brightCD4+ T cells in rheumatic joints. Scand. J. Immunol.63, 444–452 (2006).
  • Fehervari Z, Sakaguchi S. Control of FOXP3+ CD25+CD4+ regulatory cell activation and function by dendritic cells. Int. Immunol.16, 1769–1780 (2004).
  • Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science299, 1033–1036 (2003).
  • Zheng Y, Manzotti CN, Liu M, Burke F, Mead KI, Sansom DM. CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells. J. Immunol.172, 2778–2784 (2004).
  • van Amelsfort JMR, van Roon JAG, Noordegraaf M et al. Proinflammatory mediator-induced reversal of CD4+,CD25+ regulatory T cell-mediated suppression in rheumatoid arthritis. Arthritis Rheum.56, 732–742 (2007).
  • de Kleer IM, Wedderburn LR, Taams LS et al. CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J. Immunol.172, 6435–6443 (2004).
  • Lawson JM, Tremble J, Dayan C et al. Increased resistance to CD4+CD25hi regulatory T cell-mediated suppression in patients with Type 1 diabetes. Clin. Exp. Immunol.154, 353–359 (2008).
  • Schneider A, Rieck M, Sanda S, Pihoker C, Greenbaum C, Buckner JH. The effector T cells of diabetic subjects are resistant to regulation via CD4+FOXP3+ regulatory T cells. J. Immunol.181, 7350–7355 (2008).
  • Miyara M, Amoura Z, Parizot C et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J. Immunol.175, 8392–8400 (2005).
  • Alvarado-Sánchez B, Hernández-Castro B, Portales-Pérez D et al. Regulatory T cells in patients with systemic lupus erythematosus. J. Autoimmunity27, 110–118 (2006).
  • Mesquita D, de Melo Cruvinel W, Araujo J et al. Systemic lupus erythematosus exhibits a dynamic and continuum spectrum of effector/regulatory T cells. Scand. J. Rheumatol.40, 41–50 (2011).
  • Ma J, Yu J, Tao X, Cai L, Wang J, Zheng S. The imbalance between regulatory and IL-17-secreting CD4+ T cells in lupus patients. Clin. Rheumatol.29, 1251–1258 (2010).
  • Liu M-F, Wang C-R, Fung L-L, Wu C-R. Decreased CD4+CD25+ T cells in peripheral blood of patients with systemic lupus erythematosus. Scand. J. Immunol.59, 198–202 (2004).
  • Banica L, Besliu A, Pistol G et al. Quantification and molecular characterization of regulatory T cells in connective tissue diseases. Autoimmunity42, 41–49 (2009).
  • Lin S-C, Chen KH, Lin CH, Kuo CC, Ling QD, Chan CH. The quantitative analysis of peripheral blood FOXP3-expressing T cells in systemic lupus erythematosus and rheumatoid arthritis patients. Eur. J. Clin. Invest.37, 987–996 (2007).
  • Valencia X, Yarboro C, Illei G, Lipsky PE. Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J. Immunol.178, 2579–2588 (2007).
  • Liu MF, Lin LH, Weng CT, Weng MY. Decreased CD4+CD25+bright T cells in peripheral blood of patients with primary Sjogren’s syndrome. Lupus17, 34–39 (2008).
  • Li X, Li X, Qian L et al. T regulatory cells are markedly diminished in diseased salivary glands of patients with primary Sjögren’s syndrome. J. Rheumatol.34, 2438–2445 (2007).
  • Szodoray P, Papp G, Horvath IF et al. Cells with regulatory function of the innate and adaptive immune system in primary Sjögren’s syndrome. Clin. Exp. Immunol.157, 343–349 (2009).
  • Christodoulou MI, Kapsogeorgou EK, Moutsopoulos NM, Moutsopoulos HM. FOXP3+ T-regulatory cells in Sjogren’s Syndrome: correlation with the grade of the autoimmune lesion and certain adverse prognostic factors. Am. J. Pathol.173, 1389–1396 (2008).
  • Sarigul M, Yazisiz V, Bassorgun C et al. The numbers of FOXP3+ Treg cells are positively correlated with higher grade of infiltration at the salivary glands in primary Sjogren’s syndrome. Lupus19, 138–145 (2010).
  • Gottenberg J-E, Lavie F, Abbed K et al. CD4 CD25high regulatory T cells are not impaired in patients with primary Sjogren’s syndrome. J. Autoimmunity24, 235–242 (2005).
  • Radstake TRDJ, van Bon L, Broen J et al. The pronounced Th17 profile in systemic sclerosis (SSc) together with intracellular expression of TGFβ and IFNγ distinguishes SSc phenotypes. PLoS ONE4, e5903 (2009).
  • Roumm AD, Whiteside TL, Medsger TAJ, Rodnan GP. Lymphocytes in the skin of patients with progressive systemic sclerosis. Quantification, subtyping, and clinical correlations. Arthritis Rheum.27, 645–653 (1984).
  • Luzina IG, Atamas SP, Wise R et al. Occurrence of an activated, profibrotic pattern of gene expression in lung CD8+ T cells from scleroderma patients. Arthritis Rheum.48, 2262–2274 (2003).
  • White B, Yurovsky VV. Oligoclonal expansion of Vδ 1+ γδ T-cells in systemic sclerosis patients. Ann. N.Y. Acad. Sci.756, 382–391 (1995).
  • Kahaleh MB, LeRoy EC. Interleukin-2 in scleroderma: correlation of serum level with extent of skin involvement and disease duration. Ann. Intern. Med.110, 446–450 (1989).
  • Kräling BM, Maul GG, Jimenez SA. Mononuclear cellular infiltrates in clinically involved skin from patients with systemic sclerosis of recent onset predominantly consist of monocytes/macrophages. Pathobiology63, 48–56 (1995).
  • Gustafsson R, Fredens K, Nettelbladt O, Hällgren R. Eosinophil activation in systemic sclerosis. Arthritis Rheum.34, 414 (1991).
  • Radstake TRDJ, van Bon L, Broen J et al. Increased frequency and compromised function of T regulatory cells in systemic sclerosis (SSc) is related to a diminished CD69 and TGFβ expression. PLoS ONE4, e5981 (2009).
  • Slobodin G, Ahmad MS, Rosner I et al. Regulatory T cells (CD4+CD25brightFOXP3+) expansion in systemic sclerosis correlates with disease activity and severity. Cell. Immunol.261, 77–80 (2010).
  • Giovannetti A, Rosato E, Renzi C et al. Analyses of T cell phenotype and function reveal an altered T cell homeostasis in systemic sclerosis: correlations with disease severity and phenotypes. Clin. Immunol.137, 122–133 (2010).
  • Antiga E, Quaglino P, Bellandi S et al. Regulatory T cells in the skin lesions and blood of patients with systemic sclerosis and morphoea. Brit. J. Dermatol.162, 1056–1063 (2010).
  • Klein S, Kretz CC, Ruland V et al. Reduction of regulatory T cells in skin lesions but not in peripheral blood of patients with systemic scleroderma. Ann. Rheum. Dis. DOI:10.1136/ard.2009.116525 (2010) (Epub ahead of print).
  • Filaci G, Fravega M, Fenoglio D et al. Non-antigen specific CD8+ T suppressor lymphocytes. Clin. Exp. Med.4, 86–92 (2004).
  • Austin ED, Rock MT, Mosse CA et al. T lymphocyte subset abnormalities in the blood and lung in pulmonary arterial hypertension. Respir. Med.104, 454–462 (2010).
  • Ulrich S, Nicolls MR, Taraseviciene L, Speich R, Voelkel N. Increased regulatory and decreased CD8+ cytotoxic T cells in the blood of patients with idiopathic pulmonary arterial hypertension. Respiration75, 272–280 (2008).
  • Jelaska A, Arakawa M, Broketa G, Korn JH. Heterogeneity of collagen synthesis in normal and systemic sclerosis skin fibroblasts. Increased proportion of high collagen-producing cells in systemic sclerosis fibroblasts. Arthritis Rheum.39, 1338–1346 (1996).
  • Sonnylal S, Denton CP, Zheng B et al. Postnatal induction of transforming growth factor β signaling in fibroblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma. Arthritis Rheum.56, 334–344 (2007).
  • Oi M, Yamamoto T, Nishioka K. Increased expression of TGF-β1 in the sclerotic skin in bleomycin-’susceptible’ mouse strains. J. Med. Dent. Sci.51, 7–17 (2004).
  • Ihn H, Yamane K, Kubo M, Tamaki K. Blockade of endogenous transforming growth factor β signaling prevents up-regulated collagen synthesis in scleroderma fibroblasts: Association with increased expression of transforming growth factor β receptors. Arthritis Rheum.44, 474–480 (2001).
  • Needleman BW, Choi J, Burrows-Mezu A, Fontana JA. Secretion and binding of transforming growth factor β by scleroderma and normal dermal fibroblasts. Arthritis Rheum.33, 650–656 (1990).
  • Yamane K, Ihn H, Kubo M, Tamaki K. Increased transcriptional activities of transforming growth factor β receptors in scleroderma fibroblasts. Arthritis Rheum.46, 2421–2428 (2002).
  • Kubo M, Ihn H, Yamane K, Tamaki K. Upregulated expression of transforming growth factor-β receptors in dermal fibroblasts of skin sections from patients with systemic sclerosis. J. Rheumatol.29, 2558–2564 (2002).
  • Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K. Impaired Smad7–Smurf-mediated negative regulation of TGF-β signaling in scleroderma fibroblasts. J. Clin. Invest.113, 253–264 (2004).
  • Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF. Cutting Edge: TGF-{β} induces a regulatory phenotype in CD4+CD25- T cells through FOXP3 induction and down-regulation of Smad7. J. Immunol.172, 5149–5153 (2004).
  • Wan YY, Flavell RA. Identifying FOXP3-expressing suppressor T cells with a bicistronic reporter. Proc. Natl Acad. Sci. USA102, 5126–5131 (2005).
  • Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor FOXP3. Immunity22, 329–341 (2005).
  • Chen M-L, Pittet MJ, Gorelik L et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-{β} signals in vivo. Proc. Natl Acad. Sci. USA102, 419–424 (2005).
  • Fahlen L, Read S, Gorelik L et al. T cells that cannot respond to TGF-{β} escape control by CD4+CD25+ regulatory T cells. J. Exp. Med.201(5), 737–746 (2005).
  • Nakamura K, Kitani A, Fuss I et al. TGF-{β}1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J. Immunol.172, 834–842 (2004).
  • Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor β. J. Exp. Med.194, 629–644 (2001).
  • Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGF-β in the context of an inflammatory cytokine milieu supports differentiation of IL-17-producing T cells. Immunity25, 179–189 (2006).
  • Bettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells. Nature441, 235–238 (2006).
  • Mangan PR, Harrington LE, O’Quinn DB et al. Transforming growth factor β induces development of the T(H)17 lineage. Nature,441, 231–234 (2006).
  • Manel N, Unutmaz D, Littman DR. The differentiation of human TH-17 cells requires transforming growth factor-[β] and induction of the nuclear receptor ROR[γ]t. Nat. Immunol.9, 641–649 (2008).
  • Gullick NJ, Evans HG, Church LD et al. Linking power Doppler ultrasound to the presence of Th17 cells in the rheumatoid arthritis joint. PLoS ONE5, e12516 (2010).
  • Leipe J, Grunke M, Dechant C et al. Role of Th17 cells in human autoimmune arthritis. Arthritis Rheum.62, 2876–2885 (2010).
  • Agarwal S, Misra R, Aggarwal A. Interleukin 17 levels are increased in juvenile idiopathic arthritis synovial fluid and induce synovial fibroblasts to produce proinflammatory cytokines and matrix metalloproteinases. J. Rheumatol.35, 515–519 (2008).
  • Chabaud M, Fossiez F, Taupin J-L, Miossec P. Enhancing effect of IL-17 on IL-1-induced IL-6 and Leukemia Inhibitory Factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J. Immunol.161, 409–414 (1998).
  • Jovanovic DV, Di Battista JA, Martel-Pelletier J et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-{β} and TNF-{α}, by human macrophages. J. Immunol.160, 3513–3521 (1998).
  • van Hamburg JP, Asmawidjaja PS, Davelaar N et al. Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum.63, 73–83 (2011).
  • Pene J, Chevalier S, Preisser L et al. Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. J. Immunol.180, 7423–7430 (2008).
  • Zheng Y, Danilenko DM, Valdez P et al. Interleukin-22, a Th17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature,445, 648–651 (2007).
  • Wilson NJ, Boniface K, Chan JR et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat. Immunol.8, 950–957 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.