206
Views
17
CrossRef citations to date
0
Altmetric
Review

Novel insights on the role of the innate immune system in systemic sclerosis

Pages 481-489 | Published online: 10 Jan 2014

References

  • Razonable RR, Henault M, Paya CV. Stimulation of Toll-like receptor 2 with bleomycin results in cellular activation and secretion of pro-inflammatory cytokines and chemokines. Toxicol. Appl. Pharmacol.210(3), 181–189 (2006).
  • Baechler EC, Batliwalla FM, Karypis G et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA100(5), 2610–2615 (2003).
  • Bennett L, Palucka AK, Arce E et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med.197(6), 711–723 (2003).
  • Crow MK, Kirou KA, Wohlgemuth J. Microarray analysis of interferon-regulated genes in SLE. Autoimmunity36(8), 481–490 (2003).
  • Kirou KA, Lee C, George S et al. Coordinate overexpression of interferon-alpha-induced genes in systemic lupus erythematosus. Arthritis Rheum.50(12), 3958–3967 (2004).
  • Kozyrev SV, Alarcon-Riquelme ME. The genetics and biology of Irf5-mediated signaling in lupus. Autoimmunity40(8), 591–601 (2007).
  • Kwok SK, Lee JY, Park SH et al. Dysfunctional interferon-alpha production by peripheral plasmacytoid dendritic cells upon Toll-like receptor-9 stimulation in patients with systemic lupus erythematosus. Arthritis Res. Ther.10(2), R29 (2008).
  • Nikpour M, Dempsey AA, Urowitz MB, Gladman DD, Barnes DA. Association of a gene expression profile from whole blood with disease activity in systemic lupus erythaematosus. Ann. Rheum. Dis.67(8), 1069–1075 (2008).
  • Bos CL, van Baarsen LG, Timmer TC et al. Molecular subtypes of systemic sclerosis in association with anti-centromere antibodies and digital ulcers. Genes Immun.10(3), 210–218 (2009).
  • Tan FK, Zhou X, Mayes MD et al. Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology (Oxford)45(6), 694–702 (2006).
  • York MR, Nagai T, Mangini AJ, Lemaire R, van Seventer JM, Lafyatis R. A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and Toll-like receptor agonists. Arthritis Rheum.56(3), 1010–1020 (2007).
  • Kim D, Peck A, Santer D et al. Induction of interferon-alpha by scleroderma sera containing autoantibodies to topoisomerase I: association of higher interferon-α activity with lung fibrosis. Arthritis Rheum.58(7), 2163–2173 (2008).
  • Barchet W, Cella M, Odermatt B, Asselin-Paturel C, Colonna M, Kalinke U. Virus-induced interferon α production by a dendritic cell subset in the absence of feedback signaling in vivo. J. Exp. Med.195(4), 507–516 (2002).
  • Fleming JN, Nash RA, McLeod DO et al. Capillary regeneration in scleroderma: stem cell therapy reverses phenotype? PLoS ONE3(1), e1452 (2008).
  • Dieude P, Wipff J, Guedj M et al. BANK1 is a genetic risk factor for diffuse cutaneous systemic sclerosis and has additive effects with IRF5 and STAT4. Arthritis Rheum.60(11), 3447–3454 (2009).
  • Dieude P, Guedj M, Wipff J et al. Association between the IRF5 rs2004640 functional polymorphism and systemic sclerosis: a new perspective for pulmonary fibrosis. Arthritis Rheum.60(1), 225–233 (2009).
  • Dieude P, Dawidowicz K, Guedj M et al. Phenotype-haplotype correlation of IRF5 in systemic sclerosis: role of 2 haplotypes in disease severity. J. Rheumatol.37(5), 987–992 (2010).
  • Radstake TR, Gorlova O, Rueda B et al. Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat. Genet.42(5), 426–429 (2010).
  • Lewis MJ, Botto M. Complement deficiencies in humans and animals: links to autoimmunity. Autoimmunity39(5), 367–378 (2006).
  • Ratnoff WD. Inherited deficiencies of complement in rheumatic diseases. Rheum. Dis. Clin. North Am.22(1), 75–94 (1996).
  • Welch TR, Blystone LW. Renal disease associated with inherited disorders of the complement system. Pediatr. Nephrol.24(8), 1439–1444 (2008).
  • Gold LS, Ward MH, Dosemeci M, De Roos AJ. Systemic autoimmune disease mortality and occupational exposures. Arthritis Rheum.56(10), 3189–3201 (2007).
  • Hornung V, Bauernfeind F, Halle A et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol.9(8), 847–856 (2008).
  • Ahmed SS, Tan FK, Arnett FC, Jin L, Geng YJ. Induction of apoptosis and fibrillin 1 expression in human dermal endothelial cells by scleroderma sera containing anti-endothelial cell antibodies. Arthritis Rheum.54(7), 2250–2262 (2006).
  • Jun JB, Kuechle M, Harlan JM, Elkon KB. Fibroblast and endothelial apoptosis in systemic sclerosis. Curr. Opin. Rheumatol.15(6), 756–760 (2003).
  • Sgonc R, Gruschwitz MS, Dietrich H, Recheis H, Gershwin ME, Wick G. Endothelial cell apoptosis is a primary pathogenetic event underlying skin lesions in avian and human scleroderma. J. Clin. Invest.98(3), 785–792 (1996).
  • Sgonc R, Gruschwitz MS, Boeck G, Sepp N, Gruber J, Wick G. Endothelial cell apoptosis in systemic sclerosis is induced by antibody-dependent cell-mediated cytotoxicity via CD95. Arthritis Rheum.43(11), 2550–2562 (2000).
  • Cai P, Khan MF, Kaphalia BS, Ansari GA. Immunotoxic response of oleic acid anilide and its hydrolysis products in female MRL+/+ mice. J. Immunotoxicol.2(4), 231–236 (2005).
  • Patterson R , Germolec D. Review article toxic oil syndrome: review of immune aspects of the disease. J. Immunotoxicol.2(1), 51–58 (2005).
  • Cárdaba B, del Pozo V, Gallardo S, Palomino P, Posada M, Lahoz C. Genetic approaches in the understanding of toxic oil syndrome. Toxicol. Lett.161(1), 83–88 (2006).
  • Gallardo S, Cardaba B, Posada M et al. Toxic oil syndrome: genetic restriction and immunomodulatory effects due to adulterated oils in a model of HLA transgenic mice. Toxicol. Lett.159(2), 173–181 (2005).
  • Koller LD, Stang BV, Hall JA, Posada de la PM, Ruiz Mendez MV. Immunoglobulin and autoantibody responses in MRL/lpr mice treated with ‘toxic oils’. Toxicology178(2), 119–133 (2002).
  • Rao T, Richardson B. Environmentally induced autoimmune diseases: potential mechanisms. Environ. Health Perspect.107(Suppl. 5), 737–742 (1999).
  • Loos T, Dekeyzer L, Struyf S et al. TLR ligands and cytokines induce CXCR3 ligands in endothelial cells: enhanced CXCL9 in autoimmune arthritis. Lab. Invest.86(9), 902–916 (2006).
  • Ospelt C, Brentano F, Rengel Y et al. Overexpression of Toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: Toll-like receptor expression in early and longstanding arthritis. Arthritis Rheum.58(12), 3684–3692 (2008).
  • Abdollahi-Roodsaz S, Joosten LA, Roelofs MF et al. Inhibition of Toll-like receptor 4 breaks the inflammatory loop in autoimmune destructive arthritis. Arthritis Rheum.56(9), 2957–2967 (2007).
  • Brentano F, Schorr O, Gay RE, Gay S, Kyburz D. RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3. Arthritis Rheum.52(9), 2656–2665 (2005).
  • Farina G, York M, Collins C, Lafyatis R. dsRNA activation of endothelin-1 and markers of vascular activation in endothelial cells and fibroblasts. Ann. Rheum. Dis.70(3), 544–550 (2011).
  • Farina GA, York MR, Di MM et al. Poly(I:C) drives type I IFN- and TGFβ-mediated inflammation and dermal fibrosis simulating altered gene expression in systemic sclerosis. J. Invest. Dermatol.130(11), 2583–2593 (2010).
  • Agarwal SK, Wu M, Livingston CK et al. Toll-like receptor 3 upregulation by type I interferon in healthy and scleroderma dermal fibroblasts. Arthritis Res. Ther.13(1), R3 (2011).
  • Kleinman ME, Yamada K, Takeda A et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature452(7187), 591–597 (2008).
  • Choi J, Walker J, Boichuk S et al. Human endothelial cells enhance human immunodeficiency virus type 1 replication in CD4+ T cells in a Nef-dependent manner in vitro and in vivo. J. Virol.79(1), 264–276 (2005).
  • Robitaille G, Henault J, Christin MS, Senecal JL, Raymond Y. The nuclear autoantigen CENP-B displays cytokine-like activities toward vascular smooth muscle cells. Arthritis Rheum.56(11), 3814–3826 (2007).
  • Henault J, Tremblay M, Clement I, Raymond Y, Senecal JL. Direct binding of anti-DNA topoisomerase I autoantibodies to the cell surface of fibroblasts in patients with systemic sclerosis. Arthritis Rheum.50(10), 3265–3274 (2004).
  • Henault J, Robitaille G, Senecal JL, Raymond Y. DNA topoisomerase I binding to fibroblasts induces monocyte adhesion and activation in the presence of anti-topoisomerase I autoantibodies from systemic sclerosis patients. Arthritis Rheum.54(3), 963–973 (2006).
  • Montgomery H, O’Leary PA, Ragsdale WE Jr. Dermatohistopathology of various types of scleroderma. AMA. Arch. Derm.75(1), 78–87 (1957).
  • Marshall JS, McCurdy JD, Olynych T. Toll-like receptor-mediated activation of mast cells: implications for allergic disease? Int. Arch. Allergy Immunol.132(2), 87–97 (2003).
  • Matsushima H, Yamada N, Matsue H, Shimada S. TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J. Immunol.173(1), 531–541 (2004).
  • Mrabet-Dahbi S, Metz M, Dudeck A, Zuberbier T, Maurer M. Murine mast cells secrete a unique profile of cytokines and prostaglandins in response to distinct TLR2 ligands. Exp. Dermatol.18(5), 437–444 (2009).
  • Clements PJ, Furst DE. Systemic Sclerosis. Lipincott Williams & Wilkins, PA, USA (2004).
  • Gruber BL. Mast cells in the pathogenesis of fibrosis. Curr. Rheumatol. Rep.5(2), 147–153 (2003).
  • Hugle T, Hogan V, White KE, van Laar JM. Mast cells are a source of transforming growth factor-β in systemic sclerosis. Arthritis & Rheumatism63(3), 795–799 (2011).
  • Gelbmann CM, Mestermann S, Gross V, Kollinger M, Scholmerich J, Falk W. Strictures in Crohn’s disease are characterised by an accumulation of mast cells colocalised with laminin but not with fibronectin or vitronectin. Gut45(2), 210–217 (1999).
  • Atkins SR, Matteson EL, Myers JL, Ryu JH, Bongartz T. Morphological and quantitative assessment of mast cells in rheumatoid arthritis associated non-specific interstitial pneumonia and usual interstitial pneumonia. Ann. Rheum. Dis.65(5), 677–680 (2006).
  • Akgul A. Can cardiac fibrosis be prevented? Mast cell inhibition versus anti-chymase activity. Eur. J. Cardiothorac. Surg.35(3), 553–554 (2009).
  • Seibold JR, Giorno RC, Claman HN. Dermal mast cell degranulation in systemic sclerosis. Arthritis Rheum.33(11), 1702–1709 (1990).
  • Yamamoto T, Takahashi Y, Takagawa S, Katayama I, Nishioka K. Animal model of sclerotic skin. II. Bleomycin induced scleroderma in genetically mast cell deficient WBB6F1-W/W(V) mice. J. Rheumatol.26(12), 2628–2634 (1999).
  • Mori H, Kawada K, Zhang P, Uesugi Y, Sakamoto O, Koda A. Bleomycin-induced pulmonary fibrosis in genetically mast cell-deficient WBB6F1-W/Wv mice and mechanism of the suppressive effect of tranilast, an antiallergic drug inhibiting mediator release from mast cells, on fibrosis. Int. Arch. Allergy Appl. Immunol.95(2–3), 195–201 (1991).
  • Tomimori Y, Muto T, Saito K et al. Involvement of mast cell chymase in bleomycin-induced pulmonary fibrosis in mice. Eur. J. Pharmacol.478(2–3), 179–185 (2003).
  • Marshall JS, Leal-Berumen I, Nielsen L, Glibetic M, Jordana M. Interleukin (IL)-10 inhibits long-term IL-6 production but not preformed mediator release from rat peritoneal mast cells. J. Clin. Invest.97(4), 1122–1128 (1996).
  • Marshall JS, McCurdy JD, Olynych T. Toll-like receptor-mediated activation of mast cells: implications for allergic disease? Int. Arch. Allergy Immunol.132(2), 87–97 (2003).
  • McCurdy JD, Olynych TJ, Maher LH, Marshall JS. Cutting edge: distinct Toll-like receptor 2 activators selectively induce different classes of mediator production from human mast cells. J. Immunol.170(4), 1625–1629 (2003).
  • Supajatura V, Ushio H, Nakao A et al. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J. Clin. Invest.109(10), 1351–1359 (2002).
  • Fisher ER, Rodnan GP. Pathologic observations concerning the cutaneous lesion of progressive systemic sclerosis: an electron microscopic histochemical and immunohistochemical study. Arthritis Rheum.3, 536–545 (1960).
  • Biesen R, Demir C, Barkhudarova F et al. Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum.58(4), 1136–1145 (2008).
  • Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol.22(11), 633–640 (2001).
  • Deniz G, Erten G, Kucuksezer UC et al. Regulatory NK cells suppress antigen-specific T cell responses. J. Immunol.180(2), 850–857 (2008).
  • Horikawa M, Hasegawa M, Komura K et al. Abnormal natural killer cell function in systemic sclerosis: altered cytokine production and defective killing activity. J. Invest. Dermatol.125(4), 731–737 (2005).
  • Grazia CM, Giacomelli R, Famularo G et al. Natural killer activity and antibody-dependent cellular cytotoxicity in progressive systemic sclerosis. Clin. Exp. Immunol.80(3), 360–365 (1990).
  • Kantor TV, Whiteside TL, Friberg D, Buckingham RB, Medsger TA Jr. Lymphokine-activated killer cell and natural killer cell activities in patients with systemic sclerosis. Arthritis Rheum.35(6), 694–699 (1992).
  • Wanchu A, Singh VK, Yadav VS, Biswas S, Misra R, Agarwal SS. Lack of natural killer cell augmentation in vitro by human interferon gamma in a subset of patients with systemic sclerosis. Pathobiology63(5), 288–292 (1995).
  • Wright JK, Hughes P, Rowell NR. Spontaneous lymphocyte-mediated (NK cell) cytotoxicity in systemic sclerosis: a comparison with antibody-dependent lymphocyte (K cell) cytotoxicity. Ann. Rheum. Dis.41(4), 409–413 (1982).
  • Jin O, Kavikondala S, Sun L et al. Systemic lupus erythematosus patients have increased number of circulating plasmacytoid dendritic cells, but decreased myeloid dendritic cells with deficient CD83 expression. Lupus17(7), 654–662 (2008).
  • Krug A. Nucleic acid recognition receptors in autoimmunity. Handb. Exp. Pharmacol.183, 129–151 (2008).
  • Marshak-Rothstein A, Busconi L, Rifkin IR, Viglianti GA. The stimulation of Toll-like receptors by nuclear antigens: a link between apoptosis and autoimmunity. Rheum. Dis. Clin. North Am.30(3), 559–574, ix (2004).
  • Marshak-Rothstein A, Rifkin IR. Immunologically active autoantigens: the role of Toll-like receptors in the development of chronic inflammatory disease. Annu. Rev. Immunol.25, 419–441 (2007).
  • Monrad S, Kaplan MJ. Dendritic cells and the immunopathogenesis of systemic lupus erythematosus. Immunol. Res.37(2), 135–145 (2007).
  • Pisetsky DS. The role of innate immunity in the induction of autoimmunity. Autoimmun. Rev.8(1), 69–72 (2008).
  • Ronnblom L, Pascual V. The innate immune system in SLE: type I interferons and dendritic cells. Lupus17(5), 394–399 (2008).
  • Ziegler-Heitbrock L, Ancuta P, Crowe S et al. Nomenclature of monocytes and dendritic cells in blood. Blood116(16), e74–e80 (2010).
  • Andrews BS, Friou GJ, Barr RJ et al. Loss of epidermal Langerhans’ cells and endothelial cell HLA-DR antigens in the skin in progressive systemic sclerosis. J. Rheumatol.13(2), 341–348 (1986).
  • Goobar JP, Fang M, Weisman MH, Zvaifler N, Gigli I. Langerhans cells in connective tissue diseases. Scand. J. Rheumatol.16(4), 273–279 (1987).
  • Bobr A, Olvera-Gomez I, Igyarto BZ, Haley KM, Hogquist KA, Kaplan DH. Acute ablation of Langerhans cells enhances skin immune responses. J. Immunol.185(8), 4724–4728 (2010).
  • Guilliams M, Henri S, Tamoutounour S et al. From skin dendritic cells to a simplified classification of human and mouse dendritic cell subsets. Eur. J. Immunol.40(8), 2089–2094 (2010).
  • Kautz-Neu K, Noordegraaf M, Dinges S et al. Langerhans cells are negative regulators of the anti-Leishmania response. J. Exp. Med.208(5), 885–891 (2011).
  • van Lieshout AW, Vonk MC, Bredie SJ et al. Enhanced interleukin-10 production by dendritic cells upon stimulation with Toll-like receptor 4 agonists in systemic sclerosis that is possibly implicated in CCL18 secretion. Scand. J. Rheumatol.38(4), 282–290 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.