412
Views
21
CrossRef citations to date
0
Altmetric
Review

Determining EBV load: current best practice and future requirements

&
Pages 139-151 | Published online: 10 Jan 2014

References

  • Babcock GJ, Decker LL, Volk M, Thorley-Lawson DA. EBV persistence in memory B cells in vivo. Immunity 9(3), 395–404 (1998).
  • Cohen JI. Epstein–Barr virus infection. N. Engl. J. Med. 343(7), 481–492 (2000).
  • Hsu JL, Glaser SL. Epstein–Barr virus-associated malignancies: epidemiologic patterns and etiologic implications. Crit. Rev. Oncol. Hematol. 34(1), 27–53 (2000).
  • Kimura H, Ito Y, Suzuki R, Nishiyama Y. Measuring Epstein–Barr virus (EBV) load: the significance and application for each EBV-associated disease. Rev. Med. Virol. 18(5), 305–319 (2008).
  • Gulley ML, Tang W. Using Epstein–Barr viral load assays to diagnose, monitor, and prevent posttransplant lymphoproliferative disorder. Clin. Microbiol. Rev. 23(2), 350–366 (2010).
  • Fryer JF, Heath AB, Wilkinson DE, Minor PD. Collaborative study to evaluate the proposed 1st WHO International Standard for Epstein–Barr virus (EBV) for nucleic acid amplification (NAT)-based assays. WHO ECBS Report. (2011).
  • Ryan JL, Fan H, Glaser SL, Schichman SA, Raab-Traub N, Gulley ML. Epstein–Barr virus quantitation by real-time PCR targeting multiple gene segments: a novel approach to screen for the virus in paraffin-embedded tissue and plasma. J. Mol. Diagn. 6(4), 378–385 (2004).
  • Tsai DE, Douglas L, Andreadis C et al. EBV PCR in the diagnosis and monitoring of posttransplant lymphoproliferative disorder: results of a two-arm prospective trial. Am. J. Transplant. 8(5), 1016–1024 (2008).
  • Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 6(10), 986–994 (1996).
  • Kimura H, Morita M, Yabuta Y et al. Quantitative analysis of Epstein–Barr virus load by using a real-time PCR assay. J. Clin. Microbiol. 37(1), 132–136 (1999).
  • Espy MJ, Uhl JR, Sloan LM et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin. Microbiol. Rev. 19(1), 165–256 (2006).
  • Stevens SJ, Verkuijlen SA, Hariwiyanto B et al. Noninvasive diagnosis of nasopharyngeal carcinoma: nasopharyngeal brushings reveal high Epstein–Barr virus DNA load and carcinoma-specific viral BARF1 mRNA. Int. J. Cancer 119(3), 608–614 (2006).
  • Hayden RT, Hokanson KM, Pounds SB et al.; U.S. EBV Working Group. Multicenter comparison of different real-time PCR assays for quantitative detection of Epstein–Barr virus. J. Clin. Microbiol. 46(1), 157–163 (2008).
  • Preiksaitis JK, Pang XL, Fox JD, Fenton JM, Caliendo AM, Miller GG; American Society of Transplantation Infectious Diseases Community of Practice. Interlaboratory comparison of Epstein–Barr virus viral load assays. Am. J. Transplant. 9(2), 269–279 (2009).
  • Le QT, Jones CD, Yau TK et al. A comparison study of different PCR assays in measuring circulating plasma Epstein–Barr virus DNA levels in patients with nasopharyngeal carcinoma. Clin. Cancer Res. 11(16), 5700–5707 (2005).
  • Ishii H, Ogino T, Berger C et al. Clinical usefulness of serum EBV DNA levels of BamHI W and LMP1 for nasal NK/T-cell lymphoma. J. Med. Virol. 79(5), 562–572 (2007).
  • Thorley-Lawson DA, Gross A. Persistence of the Epstein–Barr virus and the origins of associated lymphomas. N. Engl. J. Med. 350(13), 1328–1337 (2004).
  • Rowe M, Niedobitek G, Young LS. Epstein–Barr virus gene expression in post-transplant lymphoproliferative disorders. Springer Semin. Immunopathol. 20(3–4), 389–403 (1998).
  • Roughan JE, Torgbor C, Thorley-Lawson DA. Germinal center B cells latently infected with Epstein–Barr virus proliferate extensively but do not increase in number. J. Virol. 84(2), 1158–1168 (2010).
  • Babcock GJ, Decker LL, Freeman RB, Thorley-Lawson DA. Epstein–Barr virus-infected resting memory B cells, not proliferating lymphoblasts, accumulate in the peripheral blood of immunosuppressed patients. J. Exp. Med. 190(4), 567–576 (1999).
  • Ambinder RF, Lin L. Mononucleosis in the laboratory. J. Infect. Dis. 192(9), 1503–1504 (2005).
  • Yamamoto M, Kimura H, Hironaka T et al. Detection and quantification of virus DNA in plasma of patients with Epstein–Barr virus-associated diseases. J. Clin. Microbiol. 33(7), 1765–1768 (1995).
  • Fafi-Kremer S, Morand P, Brion JP et al. Long-term shedding of infectious Epstein–Barr virus after infectious mononucleosis. J. Infect. Dis. 191(6), 985–989 (2005).
  • Bauer CC, Aberle SW, Popow-Kraupp T, Kapitan M, Hofmann H, Puchhammer‑Stöckl E. Serum Epstein–Barr virus DNA load in primary Epstein–Barr virus infection. J. Med. Virol. 75(1), 54–58 (2005).
  • Wagner HJ, Wessel M, Jabs W et al. Patients at risk for development of posttransplant lymphoproliferative disorder: plasma versus peripheral blood mononuclear cells as material for quantification of Epstein–Barr viral load by using real-time quantitative polymerase chain reaction. Transplantation 72(6), 1012–1019 (2001).
  • Berger C, Day P, Meier G, Zingg W, Bossart W, Nadal D. Dynamics of Epstein–Barr virus DNA levels in serum during EBV-associated disease. J. Med. Virol. 64(4), 505–512 (2001).
  • Brengel-Pesce K, Morand P, Schmuck A et al. Routine use of real-time quantitative PCR for laboratory diagnosis of Epstein–Barr virus infections. J. Med. Virol. 66(3), 360–369 (2002).
  • Ryan JL, Fan H, Swinnen LJ et al. Epstein–Barr Virus (EBV) DNA in plasma is not encapsidated in patients with EBV-related malignancies. Diagn. Mol. Pathol. 13(2), 61–68 (2004).
  • Berth M, Vanheule G, Depuydt C, Benoy I. Serum Epstein–Barr virus (EBV) viral load can be a complementary sensitive test in primary Epstein–Barr virus infection. J. Clin. Virol. 50(2), 184–185 (2011).
  • Meerbach A, Gruhn B, Egerer R, Reischl U, Zintl F, Wutzler P. Semiquantitative PCR analysis of Epstein–Barr virus DNA in clinical samples of patients with EBV-associated diseases. J. Med. Virol. 65(2), 348–357 (2001).
  • Maurmann S, Fricke L, Wagner HJ et al. Molecular parameters for precise diagnosis of asymptomatic Epstein–Barr virus reactivation in healthy carriers. J. Clin. Microbiol. 41(12), 5419–5428 (2003).
  • Balfour HH Jr, Holman CJ, Hokanson KM et al. A prospective clinical study of Epstein–Barr virus and host interactions during acute infectious mononucleosis. J. Infect. Dis. 192(9), 1505–1512 (2005).
  • Jordan MB, Allen CE, Weitzman S, Filipovich AH, McClain KL. How I treat hemophagocytic lymphohistiocytosis. Blood 118(15), 4041–4052 (2011).
  • Kimura H, Nishikawa K, Hoshino Y, Sofue A, Nishiyama Y, Morishima T. Monitoring of cell-free viral DNA in primary Epstein–Barr virus infection. Med. Microbiol. Immunol. 188(4), 197–202 (2000).
  • Beutel K, Gross-Wieltsch U, Wiesel T, Stadt UZ, Janka G, Wagner HJ. Infection of T lymphocytes in Epstein–Barr virus-associated hemophagocytic lymphohistiocytosis in children of non-Asian origin. Pediatr. Blood Cancer 53(2), 184–190 (2009).
  • Teramura T, Tabata Y, Yagi T, Morimoto A, Hibi S, Imashuku S. Quantitative analysis of cell-free Epstein–Barr virus genome copy number in patients with EBV-associated hemophagocytic lymphohistiocytosis. Leuk. Lymphoma 43(1), 173–179 (2002).
  • Ohshima K, Kimura H, Yoshino T et al.; CAEBV Study Group. Proposed categorization of pathological states of EBV-associated T/natural killer-cell lymphoproliferative disorder (LPD) in children and young adults: overlap with chronic active EBV infection and infantile fulminant EBV T-LPD. Pathol. Int. 58(4), 209–217 (2008).
  • Kimura H, Hoshino Y, Kanegane H et al. Clinical and virologic characteristics of chronic active Epstein–Barr virus infection. Blood 98(2), 280–286 (2001).
  • Kanegane H, Wakiguchi H, Kanegane C, Kurashige T, Miyawaki T, Tosato G. Increased cell-free viral DNA in fatal cases of chronic active Epstein–Barr virus infection. Clin. Infect. Dis. 28(4), 906–909 (1999).
  • Gotoh K, Ito Y, Shibata-Watanabe Y et al. Clinical and virological characteristics of 15 patients with chronic active Epstein–Barr virus infection treated with hematopoietic stem cell transplantation. Clin. Infect. Dis. 46(10), 1525–1534 (2008).
  • Chan KC, Zhang J, Chan AT et al. Molecular characterization of circulating EBV DNA in the plasma of nasopharyngeal carcinoma and lymphoma patients. Cancer Res. 63(9), 2028–2032 (2003).
  • To EW, Chan KC, Leung SF et al. Rapid clearance of plasma Epstein–Barr virus DNA after surgical treatment of nasopharyngeal carcinoma. Clin. Cancer Res. 9(9), 3254–3259 (2003).
  • Lo YM, Chan AT, Chan LY et al. Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein–Barr virus DNA. Cancer Res. 60(24), 6878–6881 (2000).
  • Lin JC, Wang WY, Chen KY et al. Quantification of plasma Epstein–Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N. Engl. J. Med. 350(24), 2461–2470 (2004).
  • Chan AT, Lo YM, Zee B et al. Plasma Epstein–Barr virus DNA and residual disease after radiotherapy for undifferentiated nasopharyngeal carcinoma. J. Natl. Cancer Inst. 94(21), 1614–1619 (2002).
  • Lo YM, Chan LY, Chan AT et al. Quantitative and temporal correlation between circulating cell-free Epstein–Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Cancer Res. 59(21), 5452–5455 (1999).
  • Au WY, Pang A, Choy C, Chim CS, Kwong YL. Quantification of circulating Epstein–Barr virus (EBV) DNA in the diagnosis and monitoring of natural killer cell and EBV-positive lymphomas in immunocompetent patients. Blood 104(1), 243–249 (2004).
  • Lei KI, Chan LY, Chan WY, Johnson PJ, Lo YM. Diagnostic and prognostic implications of circulating cell-free Epstein–Barr virus DNA in natural killer/T-cell lymphoma. Clin. Cancer Res. 8(1), 29–34 (2002).
  • Suzuki R, Yamaguchi M, Izutsu K et al.; NK-cell Tumor Study Group. Prospective measurement of Epstein–Barr virus-DNA in plasma and peripheral blood mononuclear cells of extranodal NK/T-cell lymphoma, nasal type. Blood 118(23), 6018–6022 (2011).
  • Kim HS, Kim KH, Kim KH et al. Whole blood Epstein–Barr virus DNA load as a diagnostic and prognostic surrogate: extranodal natural killer/T-cell lymphoma. Leuk. Lymphoma 50(5), 757–763 (2009).
  • Kwong YL, Anderson BO, Advani R, Kim WS, Levine AM, Lim ST; Asian Oncology Summit. Management of T-cell and natural-killer-cell neoplasms in Asia: consensus statement from the Asian Oncology Summit 2009. Lancet Oncol. 10(11), 1093–1101 (2009).
  • Dearden CE, Johnson R, Pettengell R et al. Guidelines for the management of mature T-cell and NK-cell neoplasms (excluding cutaneous T-cell lymphoma). Br. J. Haematol. 153(4), 451–485 (2011).
  • Gärtner B, Preiksaitis JK. EBV viral load detection in clinical virology. J. Clin. Virol. 48(2), 82–90 (2010).
  • Gandhi MK, Lambley E, Burrows J et al. Plasma Epstein–Barr virus (EBV) DNA is a biomarker for EBV-positive Hodgkin’s lymphoma. Clin. Cancer Res. 12(2), 460–464 (2006).
  • Lei KI, Chan LY, Chan WY, Johnson PJ, Lo YM. Quantitative analysis of circulating cell-free Epstein–Barr virus (EBV) DNA levels in patients with EBV-associated lymphoid malignancies. Br. J. Haematol. 111(1), 239–246 (2000).
  • Gallagher A, Armstrong AA, MacKenzie J et al. Detection of Epstein–Barr virus (EBV) genomes in the serum of patients with EBV-associated Hodgkin’s disease. Int. J. Cancer 84(4), 442–448 (1999).
  • Spacek M, Hubacek P, Markova J et al. Plasma EBV-DNA monitoring in Epstein–Barr virus-positive Hodgkin lymphoma patients. APMIS 119(1), 10–16 (2011).
  • Wagner HJ, Schläger F, Claviez A, Bucsky P. Detection of Epstein–Barr virus DNA in peripheral blood of paediatric patients with Hodgkin’s disease by real-time polymerase chain reaction. Eur. J. Cancer 37(15), 1853–1857 (2001).
  • Solassol J, Kreuzer KA, Lass U, Schmidt CA. Epstein–Barr virus DNA quantitation assessed by a real-time polymerase chain reaction in a case of Burkitt’s lymphoma. Leuk. Lymphoma 41(5–6), 669–673 (2001).
  • Machado AS, Da Silva Robaina MC, Magalhães De Rezende LM et al. Circulating cell-free and Epstein–Barr virus DNA in pediatric B-non-Hodgkin lymphomas. Leuk. Lymphoma 51(6), 1020–1027 (2010).
  • Jo SA, Hwang SH, Kim SY et al. Quantitation of whole blood Epstein–Barr virus DNA is useful for assessing treatment response in patients with non-Hodgkin’s lymphoma. Int. J. Lab. Hematol. 32(1 Pt 1), e106–e113 (2010).
  • Ma SD, Hegde S, Young KH et al. A new model of Epstein–Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J. Virol. 85(1), 165–177 (2011).
  • Kitai R, Matsuda K, Adachi E et al. Epstein–Barr virus-associated primary central nervous system lymphoma in the Japanese population. Neurol. Med. Chir. (Tokyo) 50(2), 114–118 (2010).
  • Sugita Y, Terasaki M, Niino D et al. Epstein–Barr virus-associated primary central nervous system lymphomas in immunocompetent elderly patients: analysis for latent membrane protein-1 oncogene deletion and EBNA-2 strain typing. J. Neurooncol. 100(2), 271–279 (2010).
  • Chen JN, He D, Tang F, Shao CK. Epstein–Barr virus-associated gastric carcinoma: a newly defined entity. J. Clin. Gastroenterol. 46(4), 262–271 (2012).
  • Lo YM, Chan WY, Ng EK et al. Circulating Epstein–Barr virus DNA in the serum of patients with gastric carcinoma. Clin. Cancer Res. 7(7), 1856–1859 (2001).
  • Chen MR. Epstein–Barr virus, the immune system, and associated diseases. Front. Microbiol. 2, 5 (2011).
  • Hon GM, Hassan MS, van Rensburg SJ, Erasmus RT, Matsha TE. Assessment of Epstein–Barr virus in blood from patients with multiple sclerosis. Metab. Brain Dis. 27(3), 311–318 (2012).
  • Curtis RE, Travis LB, Rowlings PA et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood 94(7), 2208–2216 (1999).
  • Parker A, Bowles K, Bradley JA et al.; Haemato-oncology Task Force of the British Committee for Standards in Haematology and British Transplantation Society. Management of post-transplant lymphoproliferative disorder in adult solid organ transplant recipients – BCSH and BTS Guidelines. Br. J. Haematol. 149(5), 693–705 (2010).
  • Styczynski J, Reusser P, Einsele H et al.; Second European Conference on Infections in Leukemia. Management of HSV, VZV and EBV infections in patients with hematological malignancies and after SCT: guidelines from the Second European Conference on Infections in Leukemia. Bone Marrow Transplant. 43(10), 757–770 (2009).
  • Allen U, Preiksaitis J and the AST Infectious Diseases Community of Practice. Epstein–Barr virus and posttransplant lymphoproliferative disorder in solid organ transplant recipients. Am. J. Transplant. 9(Suppl. 4), S87–96 (2009).
  • Ahya VN, Douglas LP, Andreadis C et al. Association between elevated whole blood Epstein–Barr virus (EBV)-encoded RNA EBV polymerase chain reaction and reduced incidence of acute lung allograft rejection. J. Heart Lung Transplant. 26(8), 839–844 (2007).
  • Doesch AO, Konstandin M, Celik S et al. Epstein–Barr virus load in whole blood is associated with immunosuppression, but not with post-transplant lymphoproliferative disease in stable adult heart transplant patients. Transpl. Int. 21(10), 963–971 (2008).
  • Bakker NA, Verschuuren EA, Veeger NJ et al. Quantification of Epstein–Barr virus-DNA load in lung transplant recipients: a comparison of plasma versus whole blood. J. Heart Lung Transplant. 27(1), 7–10 (2008).
  • Green M, Cacciarelli TV, Mazariegos GV et al. Serial measurement of Epstein–Barr viral load in peripheral blood in pediatric liver transplant recipients during treatment for posttransplant lymphoproliferative disease. Transplantation 66(12), 1641–1644 (1998).
  • Jabs WJ, Maurmann S, Wagner HJ, Müller-Steinhardt M, Steinhoff J, Fricke L. Time course and frequency of Epstein–Barr virus reactivation after kidney transplantation: linkage to renal allograft rejection. J. Infect. Dis. 190(9), 1600–1604 (2004).
  • Wagner HJ, Fischer L, Jabs WJ, Holbe M, Pethig K, Bucsky P. Longitudinal analysis of Epstein–Barr viral load in plasma and peripheral blood mononuclear cells of transplanted patients by real-time polymerase chain reaction. Transplantation 74(5), 656–664 (2002).
  • van Esser JW, van der Holt B, Meijer E et al. Epstein–Barr virus (EBV) reactivation is a frequent event after allogeneic stem cell transplantation (SCT) and quantitatively predicts EBV-lymphoproliferative disease following T-cell–depleted SCT. Blood 98(4), 972–978 (2001).
  • Yang J, Tao Q, Flinn IW et al. Characterization of Epstein–Barr virus-infected B cells in patients with posttransplantation lymphoproliferative disease: disappearance after rituximab therapy does not predict clinical response. Blood 96(13), 4055–4063 (2000).
  • Wagner HJ, Cheng YC, Huls MH et al. Prompt versus preemptive intervention for EBV lymphoproliferative disease. Blood 103(10), 3979–3981 (2004).
  • Ahmad I, Cau NV, Kwan J et al. Preemptive management of Epstein–Barr virus reactivation after hematopoietic stem-cell transplantation. Transplantation 87(8), 1240–1245 (2009).
  • Coppoletta S, Tedone E, Galano B et al. Rituximab treatment for Epstein–Barr virus DNAemia after alternative-donor hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 17(6), 901–907 (2011).
  • Oertel S, Trappe RU, Zeidler K et al. Epstein–Barr viral load in whole blood of adults with posttransplant lymphoproliferative disorder after solid organ transplantation does not correlate with clinical course. Ann. Hematol. 85(7), 478–484 (2006).
  • Comoli P, Basso S, Zecca M et al. Preemptive therapy of EBV-related lymphoproliferative disease after pediatric haploidentical stem cell transplantation. Am. J. Transplant. 7(6), 1648–1655 (2007).
  • Rooney CM, Smith CA, Ng CY et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92(5), 1549–1555 (1998).
  • Savoldo B, Goss JA, Hammer MM et al. Treatment of solid organ transplant recipients with autologous Epstein Barr virus-specific cytotoxic T lymphocytes (CTLs). Blood 108(9), 2942–2949 (2006).
  • Haque T, Wilkie GM, Jones MM et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a Phase 2 multicenter clinical trial. Blood 110(4), 1123–1131 (2007).
  • Ambinder RF. Hiding in plain sight. Blood 108(9), 2891 (2006).
  • Bingler MA, Feingold B, Miller SA et al. Chronic high Epstein–Barr viral load state and risk for late-onset posttransplant lymphoproliferative disease/lymphoma in children. Am. J. Transplant. 8(2), 442–445 (2008).
  • Green M, Soltys K, Rowe DT, Webber SA, Mazareigos G. Chronic high Epstein–Barr viral load carriage in pediatric liver transplant recipients. Pediatr. Transplant. 13(3), 319–323 (2009).
  • Lau AH, Soltys K, Sindhi RK, Bond G, Mazariegos GV, Green M. Chronic high Epstein–Barr viral load carriage in pediatric small bowel transplant recipients. Pediatr. Transplant. 14(4), 549–553 (2010).
  • Tanaka E, Sato T, Ishihara M et al. Asymptomatic high Epstein–Barr viral load carriage in pediatric renal transplant recipients. Pediatr. Transplant. 15(3), 306–313 (2011).
  • Ruf S, Behnke-Hall K, Gruhn B et al. Comparison of six different specimen types for Epstein–Barr viral load quantification in peripheral blood of pediatric patients after heart transplantation or after allogeneic hematopoietic stem cell transplantation. J. Clin. Virol. 53(3), 186–194 (2012).
  • Kullberg-Lindh C, Olofsson S, Brune M, Lindh M. Comparison of serum and whole blood levels of cytomegalovirus and Epstein–Barr virus DNA. Transpl. Infect. Dis. 10(5), 308–315 (2008).
  • Ishihara M, Tanaka E, Sato T et al. Epstein–Barr virus load for early detection of lymphoproliferative disorder in pediatric renal transplant recipients. Clin. Nephrol. 76(1), 40–48 (2011).
  • Hakim H, Gibson C, Pan J et al. Comparison of various blood compartments and reporting units for the detection and quantification of Epstein–Barr virus in peripheral blood. J. Clin. Microbiol. 45(7), 2151–2155 (2007).
  • Kinch A, Oberg G, Arvidson J, Falk KI, Linde A, Pauksens K. Post-transplant lymphoproliferative disease and other Epstein–Barr virus diseases in allogeneic haematopoietic stem cell transplantation after introduction of monitoring of viral load by polymerase chain reaction. Scand. J. Infect. Dis. 39(3), 235–244 (2007).
  • Stevens SJ, Pronk I, Middeldorp JM. Toward standardization of Epstein–Barr virus DNA load monitoring: unfractionated whole blood as preferred clinical specimen. J. Clin. Microbiol. 39(4), 1211–1216 (2001).
  • Hong GK, Gulley ML, Feng WH, Delecluse HJ, Holley-Guthrie E, Kenney SC. Epstein–Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model. J. Virol. 79(22), 13993–14003 (2005).
  • Smets F, Latinne D, Bazin H et al. Ratio between Epstein–Barr viral load and anti-Epstein–Barr virus specific T-cell response as a predictive marker of posttransplant lymphoproliferative disease. Transplantation 73(10), 1603–1610 (2002).
  • Meij P, van Esser JW, Niesters HG et al. Impaired recovery of Epstein–Barr virus (EBV)-specific CD8+ T lymphocytes after partially T-depleted allogeneic stem cell transplantation may identify patients at very high risk for progressive EBV reactivation and lymphoproliferative disease. Blood 101(11), 4290–4297 (2003).
  • Clave E, Agbalika F, Bajzik V et al. Epstein–Barr virus (EBV) reactivation in allogeneic stem-cell transplantation: relationship between viral load, EBV-specific T-cell reconstitution and rituximab therapy. Transplantation 77(1), 76–84 (2004).
  • Sebelin-Wulf K, Nguyen TD, Oertel S et al. Quantitative analysis of EBV-specific CD4/CD8 T cell numbers, absolute CD4/CD8 T cell numbers and EBV load in solid organ transplant recipients with PLTD. Transpl. Immunol. 17(3), 203–210 (2007).
  • Sato T, Fujieda M, Maeda A et al. Monitoring of Epstein–Barr virus load and killer T cells in pediatric renal transplant recipients. Clin. Nephrol. 70(5), 393–403 (2008).
  • D’Aveni M, Aïssi-Rothé L, Venard V et al. The clinical value of concomitant Epstein Barr virus (EBV)-DNA load and specific immune reconstitution monitoring after allogeneic hematopoietic stem cell transplantation. Transpl. Immunol. 24(4), 224–232 (2011).
  • Worth A, Conyers R, Cohen J et al. Pre-emptive rituximab based on viraemia and T cell reconstitution: a highly effective strategy for the prevention of Epstein–Barr virus-associated lymphoproliferative disease following stem cell transplantation. Br. J. Haematol. 155(3), 377–385 (2011).
  • Macedo C, Webber SA, Donnenberg AD et al. EBV-specific CD8+ T cells from asymptomatic pediatric thoracic transplant patients carrying chronic high EBV loads display contrasting features: activated phenotype and exhausted function. J. Immunol. 186(10), 5854–5862 (2011).
  • Gotoh K, Ito Y, Ohta R et al. Immunologic and virologic analyses in pediatric liver transplant recipients with chronic high Epstein–Barr virus loads. J. Infect. Dis. 202(3), 461–469 (2010).
  • Moran J, Carr M, Waters A et al. Epstein–Barr virus gene expression, human leukocyte antigen alleles and chronic high viral loads in pediatric renal transplant patients. Transplantation 92(3), 328–333 (2011).
  • Fan H, Kim SC, Chima CO et al. Epstein–Barr viral load as a marker of lymphoma in AIDS patients. J. Med. Virol. 75(1), 59–69 (2005).
  • Leruez-Ville M, Seng R, Morand P et al. Blood Epstein–Barr virus DNA load and risk of progression to AIDS-related systemic B lymphoma. HIV Med. 13(8), 479–487 (2012).
  • Bonnet F, Jouvencel AC, Parrens M et al. A longitudinal and prospective study of Epstein–Barr virus load in AIDS-related non-Hodgkin lymphoma. J. Clin. Virol. 36(4), 258–263 (2006).
  • Tedeschi R, Bortolin MT, Bidoli E et al. Assessment of immunovirological features in HIV related non-Hodgkin lymphoma patients and their impact on outcome. J. Clin. Virol. 53(4), 297–301 (2012).
  • Van Baarle D, Wolthers KC, Hovenkamp E et al. Absolute level of Epstein–Barr virus DNA in human immunodeficiency virus type 1 infection is not predictive of AIDS-related non-Hodgkin lymphoma. J. Infect. Dis. 186(3), 405–409 (2002).
  • Fellner MD, Durand K, Correa RM et al. Circulating Epstein–Barr virus (EBV) in HIV-infected patients and its relation with primary brain lymphoma. Int. J. Infect. Dis. 11(2), 172–178 (2007).
  • Ivers LC, Kim AY, Sax PE. Predictive value of polymerase chain reaction of cerebrospinal fluid for detection of Epstein–Barr virus to establish the diagnosis of HIV-related primary central nervous system lymphoma. Clin. Infect. Dis. 38(11), 1629–1632 (2004).
  • Bower M, Collins S, Cottrill C et al.; AIDS Malignancy Subcommittee. British HIV Association guidelines for HIV-associated malignancies 2008. HIV Med. 9(6), 336–388 (2008).
  • Antinori A, De Rossi G, Ammassari A et al. Value of combined approach with thallium-201 single-photon emission computed tomography and Epstein–Barr virus DNA polymerase chain reaction in CSF for the diagnosis of AIDS-related primary CNS lymphoma. J. Clin. Oncol. 17(2), 554–560 (1999).
  • Antinori A, Cingolani A, De Luca A et al. Epstein–Barr virus in monitoring the response to therapy of acquired immunodeficiency syndrome-related primary central nervous system lymphoma. Ann. Neurol. 45(2), 259–261 (1999).
  • Wang J, Ozzard A, Nathan M et al. The significance of Epstein–Barr virus detected in the cerebrospinal fluid of people with HIV infection. HIV Med. 8(5), 306–311 (2007).
  • Jonigk D, Laenger F, Maegel L et al. Molecular and clinicopathological analysis of Epstein–Barr virus-associated posttransplant smooth muscle tumors. Am. J. Transplant. 12(7), 1908–1917 (2012).
  • Jenson HB, Leach CT, McClain KL et al. Benign and malignant smooth muscle tumors containing Epstein–Barr virus in children with AIDS. Leuk. Lymphoma 27(3-4), 303–314 (1997).
  • Suankratay C, Shuangshoti S, Mutirangura A et al. Epstein–Barr virus infection-associated smooth-muscle tumors in patients with AIDS. Clin. Infect. Dis. 40(10), 1521–1528 (2005).
  • Filipovich A, Johnson J, Zhang K, Marsh R. Lymphoproliferative disease, X-linked. In: GeneReviews™. Pagon RA (Ed.). University of Washington, WA, USA (2011).
  • Ito Y, Takakura S, Ichiyama S et al. Multicenter evaluation of prototype real-time PCR assays for Epstein–Barr virus and cytomegalovirus DNA in whole blood samples from transplant recipients. Microbiol. Immunol. 54(9), 516–522 (2010).
  • Abbate I, Zanchetta M, Gatti M et al. Multicenter comparative study of Epstein–Barr virus DNA quantification for virological monitoring in transplanted patients. J. Clin. Virol. 50(3), 224–229 (2011).
  • Hayden RT, Yan X, Wick MT et al.; College of American Pathologists Microbiology Resource Committee. Factors contributing to variability of quantitative viral PCR results in proficiency testing samples: a multivariate analysis. J. Clin. Microbiol. 50(2), 337–345 (2012).
  • Allan GJ, Rowe DT. Size and stability of the Epstein–Barr virus major internal repeat (IR-1) in Burkitt’s lymphoma and lymphoblastoid cell lines. Virology 173(2), 489–498 (1989).
  • Tierney RJ, Kao KY, Nagra JK, Rickinson AB. Epstein–Barr virus BamHI W repeat number limits EBNA2/EBNA-LP coexpression in newly infected B cells and the efficiency of B-cell transformation: a rationale for the multiple W repeats in wild-type virus strains. J. Virol. 85(23), 12362–12375 (2011).
  • White RA 3rd, Quake SR, Curr K. Digital PCR provides absolute quantitation of viral load for an occult RNA virus. J. Virol. Methods 179(1), 45–50 (2012).
  • Annels NE, Kalpoe JS, Bredius RG et al. Management of Epstein–Barr virus (EBV) reactivation after allogeneic stem cell transplantation by simultaneous analysis of EBV DNA load and EBV-specific T cell reconstitution. Clin. Infect. Dis. 42(12), 1743–1748 (2006).
  • Stevens SJ, Verschuuren EA, Pronk I et al. Frequent monitoring of Epstein–Barr virus DNA load in unfractionated whole blood is essential for early detection of posttransplant lymphoproliferative disease in high-risk patients. Blood 97(5), 1165–1171 (2001).
  • Baldanti F, Gatti M, Furione M et al. Kinetics of Epstein–Barr virus DNA load in different blood compartments of pediatric recipients of T-cell-depleted HLA-haploidentical stem cell transplantation. J. Clin. Microbiol. 46(11), 3672–3677 (2008).
  • Lee TC, Savoldo B, Rooney CM et al. Quantitative EBV viral loads and immunosuppression alterations can decrease PTLD incidence in pediatric liver transplant recipients. Am. J. Transplant. 5(9), 2222–2228 (2005).
  • Meerbach A, Wutzler P, Häfer R, Zintl F, Gruhn B. Monitoring of Epstein–Barr virus load after hematopoietic stem cell transplantation for early intervention in post-transplant lymphoproliferative disease. J. Med. Virol. 80(3), 441–454 (2008).
  • Riddler SA, Breinig MC, McKnight JL. Increased levels of circulating Epstein–Barr virus (EBV)-infected lymphocytes and decreased EBV nuclear antigen antibody responses are associated with the development of posttransplant lymphoproliferative disease in solid-organ transplant recipients. Blood 84(3), 972–984 (1994).
  • Kenagy DN, Schlesinger Y, Weck K, Ritter JH, Gaudreault-Keener MM, Storch GA. Epstein–Barr virus DNA in peripheral blood leukocytes of patients with posttransplant lymphoproliferative disease. Transplantation 60(6), 547–554 (1995).
  • Hoshino Y, Kimura H, Tanaka N et al. Prospective monitoring of the Epstein–Barr virus DNA by a real-time quantitative polymerase chain reaction after allogenic stem cell transplantation. Br. J. Haematol. 115(1), 105–111 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.