298
Views
26
CrossRef citations to date
0
Altmetric
Review

FcγRIIB: a modulator of cell activation and humoral tolerance

, , , , &
Pages 243-254 | Published online: 10 Jan 2014

References

  • Hogarth PM. Fc receptors are major mediators of antibody based inflammation in autoimmunity. Curr. Opin. Immunol.14(6), 798–802 (2002).
  • Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat. Rev. Immunol.8(1), 34–47 (2008).
  • Takai T. Roles of Fc receptors in autoimmunity. Nat. Rev. Immunol.2(8), 580–592 (2002).
  • Tarasenko T, Dean JA, Bolland S. FcgammaRIIB as a modulator of autoimmune disease susceptibility. Autoimmunity40(6), 409–417 (2007).
  • Daeron M, Lesourne R. Negative signaling in Fc receptor complexes. Adv. Immunol.89, 39–86 (2006).
  • Nitschke L, Floyd H, Crocker PR. New functions for the sialic acid-binding adhesion molecule CD22, a member of the growing family of Siglecs. Scand. J. Immunol.53(3), 227–234 (2001).
  • Ravetch JV, Lanier LL. Immune inhibitory receptors. Science290(5489), 84–89 (2000).
  • Nimmerjahn F, Ravetch JV. Antibody-mediated modulation of immune responses. Immunol. Rev.236, 265–275 (2010).
  • Baerenwaldt A, Nimmerjahn F. Immune regulation: FcgammaRIIB – regulating the balance between protective and autoreactive immune responses. Immunol. Cell. Biol.86(6), 482–484 (2008).
  • Davis RS, Ehrhardt GR, Leu CM, Hirano M, Cooper MD. An extended family of Fc receptor relatives. Eur. J. Immunol.35(3), 674–680 (2005).
  • Foy TM, Lynch RG, Waldschmidt TJ. Ontogeny and distribution of the murine B cell Fc gamma RII. J. Immunol.149(5), 1516–1523 (1992).
  • Xiang Z, Cutler AJ, Brownlie RJ et al. FcgammaRIIb controls bone marrow plasma cell persistence and apoptosis. Nat. Immunol.8(4), 419–429 (2007).
  • Kato I, Takai T, Kudo A. The pre-B cell receptor signaling for apoptosis is negatively regulated by Fc gamma RIIB. J. Immunol.168(2), 629–634 (2002).
  • De Andres B, Mueller AL, Verbeek S, Sandor M, Lynch RG. A regulatory role for Fcgamma receptors CD16 and CD32 in the development of murine B cells. Blood92(8), 2823–2829 (1998).
  • Baerenwaldt A, Lux A, Danzer H et al. Fcgamma receptor IIB (FcgammaRIIB) maintains humoral tolerance in the human immune system in vivo. Proc. Natl Acad. Sci. USA108(46), 18772–18777 (2011).
  • Macardle PJ, Mardell C, Bailey S et al. FcgammaRIIb expression on human germinal center B lymphocytes. Eur. J. Immunol.32(12), 3736–3744 (2002).
  • Xiu Y, Nakamura K, Abe M et al. Transcriptional regulation of Fcgr2b gene by polymorphic promoter region and its contribution to humoral immune responses. J. Immunol.169(8), 4340–4346 (2002).
  • Rahman ZS, Alabyev B, Manser T. FcgammaRIIB regulates autoreactive primary antibody-forming cell, but not germinal center B cell, activity. J. Immunol.178(2), 897–907 (2007).
  • Rahman ZS, Manser T. Failed up-regulation of the inhibitory IgG Fc receptor Fc gamma RIIB on germinal center B cells in autoimmune-prone mice is not associated with deletion polymorphisms in the promoter region of the Fc gamma RIIB gene. J. Immunol.175(3), 1440–1449 (2005).
  • Dhodapkar KM, Banerjee D, Connolly J et al. Selective blockade of the inhibitory Fcgamma receptor (FcgammaRIIB) in human dendritic cells and monocytes induces a type I interferon response program. J. Exp. Med.204(6), 1359–1369 (2007).
  • Dhodapkar KM, Kaufman JL, Ehlers M et al. Selective blockade of inhibitory Fcgamma receptor enables human dendritic cell maturation with IL-12p70 production and immunity to antibody-coated tumor cells. Proc. Natl Acad. Sci. USA102(8), 2910–2915 (2005).
  • Dhodapkar KM, Krasovsky J, Williamson B, Dhodapkar MV. Antitumor monoclonal antibodies enhance cross-presentation of Cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J. Exp. Med.195(1), 125–133 (2002).
  • Boruchov AM, Heller G, Veri MC, Bonvini E, Ravetch JV, Young JW. Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. J. Clin. Invest.115(10), 2914–2923 (2005).
  • Devaraj S, Davis B, Simon SI, Jialal I. CRP promotes monocyte-endothelial cell adhesion via Fcgamma receptors in human aortic endothelial cells under static and shear flow conditions. Am. J. Physiol. Heart Circ. Physiol.1(3), 1170–1176 (2006).
  • Qin D, Wu J, Vora KA et al. Fc gamma receptor IIB on follicular dendritic cells regulates the B cell recall response. J. Immunol.164(12), 6268–6275 (2000).
  • Phillips NE, Parker DC. Cross-linking of B lymphocyte Fc gamma receptors and membrane immunoglobulin inhibits anti-immunoglobulin-induced blastogenesis. J. Immunol.132(2), 627–632 (1984).
  • Ono M, Bolland S, Tempst P, Ravetch JV. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor Fc(gamma)RIIB. Nature383(6597), 263–266 (1996).
  • Ono M, Okada H, Bolland S et al. Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell90(2), 293–301 (1997).
  • Pearse RN, Kawabe T, Bolland S, Guinamard R, Kurosaki T, Ravetch JV. SHIP recruitment attenuates Fc gamma RIIB-induced B cell apoptosis. Immunity10(6), 753–760 (1999).
  • Tzeng SJ, Bolland S, Inabe K, Kurosaki T, Pierce SK. The B cell inhibitory Fc receptor triggers apoptosis by a novel c-Abl-family kinase dependent pathway. J. Biol. Chem.280(42), 35247-35254 (2005).
  • Radbruch A, Muehlinghaus G, Luger EO et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol.6(10), 741–750 (2006).
  • Brauweiler AM, Cambier JC. Autonomous SHIP-dependent FcgammaR signaling in pre-B cells leads to inhibition of cell migration and induction of cell death. Immunol. Lett.92(1–2), 75–81 (2004).
  • Fournier EM, Siberil S, Costes A et al. Activation of human peripheral IgM+ B cells is transiently inhibited by BCR-independent aggregation of Fc gammaRIIB. J. Immunol.181(8), 5350–5359 (2008).
  • Takai T, Ono M, Hikida M, Ohmori H, Ravetch JV. Augmented humoral and anaphylactic responses in Fc gamma RII-deficient mice. Nature379(6563), 346–349 (1996).
  • Bolland S, Ravetch JV. Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity13(2), 277–228 (2000).
  • Bolland S, Yim YS, Tus K, Wakeland EK, Ravetch JV. Genetic modifiers of systemic lupus erythematosus in FcgammaRIIB(-/-) mice. J. Exp. Med.195(9), 1167–1174 (2002).
  • Yajima K, Nakamura A, Sugahara A, Takai T. FcgammaRIIB deficiency with Fas mutation is sufficient for the development of systemic autoimmune disease. Eur. J. Immunol.33(4), 1020–1029 (2003).
  • Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science312(5780), 1669–1672 (2006).
  • Subramanian S, Tus K, Li QZ et al. A TLR7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl Acad. Sci. USA103(26), 9970–9975 (2006).
  • Fukuyama H, Nimmerjahn F, Ravetch JV. The inhibitory Fcgamma receptor modulates autoimmunity by limiting the accumulation of immunoglobulin G+ anti-DNA plasma cells. Nat. Immunol.6(1), 99–106 (2005).
  • Paul E, Nelde A, Verschoor A, Carroll MC. Follicular exclusion of autoreactive B cells requires FcgammaRIIb. Int. Immunol.19(4), 365–373 (2007).
  • Tiller T, Kofer J, Kreschel C et al. Development of self-reactive germinal center B cells and plasma cells in autoimmune Fc gammaRIIB-deficient mice. J. Exp. Med.207(12), 2767–2778 (2010).
  • Mcgaha TL, Karlsson MC, Ravetch JV. FcgammaRIIB deficiency leads to autoimmunity and a defective response to apoptosis in Mrl-MpJ mice. J. Immunol.180(8), 5670–5679 (2008).
  • Jiang Y, Hirose S, Abe M et al. Polymorphisms in IgG Fc receptor IIB regulatory regions associated with autoimmune susceptibility. Immunogenetics51(6), 429–435 (2000).
  • Jiang Y, Hirose S, Sanokawa-Akakura R et al. Genetically determined aberrant down-regulation of FcgammaRIIB1 in germinal center B cells associated with hyper-IgG and IgG autoantibodies in murine systemic lupus erythematosus. Int. Immunol.11(10), 1685–1691 (1999).
  • Pritchard NR, Cutler AJ, Uribe S, Chadban SJ, Morley BJ, Smith KG. Autoimmune-prone mice share a promoter haplotype associated with reduced expression and function of the Fc receptor FcgammaRII. Curr. Biol.10(4), 227–230 (2000).
  • Mcgaha TL, Sorrentino B, Ravetch JV. Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science307(5709), 590–593 (2005).
  • Brownlie RJ, Lawlor KE, Niederer HA et al. Distinct cell-specific control of autoimmunity and infection by FcgammaRIIb. J. Exp. Med.205(4), 883–895 (2008).
  • Lin Q, Xiu Y, Jiang Y et al. Genetic dissection of the effects of stimulatory and inhibitory IgG Fc receptors on murine lupus. J. Immunol.177(3), 1646–1654 (2006).
  • Horton HM, Chu SY, Ortiz EC et al. Antibody-mediated coengagement of FcgammaRIIb and B cell receptor complex suppresses humoral immunity in systemic lupus erythematosus. J. Immunol.186(7), 4223–4233 (2011).
  • Veri MC, Burke S, Huang L et al. Therapeutic control of B cell activation via recruitment of Fcgamma receptor IIb (CD32B) inhibitory function with a novel bispecific antibody scaffold. Arthritis Rheum.62(7), 1933–1943 (2010).
  • Boross P, Arandhara VL, Martin-Ramirez J et al. The inhibiting Fc receptor for IgG, FcgammaRIIB, is a modifier of autoimmune susceptibility. J. Immunol.187(3), 1304–1313 (2011).
  • Bygrave AE, Rose KL, Cortes-Hernandez J et al. Spontaneous autoimmunity in 129 and C57BL/6 mice-implications for autoimmunity described in gene-targeted mice. PLoS Biol.2(8), E243 (2004).
  • Wandstrat AE, Nguyen C, Limaye N et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity21(6), 769–780 (2004).
  • Bickerstaff MC, Botto M, Hutchinson WL et al. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat. Med.5(6), 694–697 (1999).
  • Nitschke L, Carsetti R, Ocker B, Kohler G, Lamers MC. CD22 is a negative regulator of B-cell receptor signalling. Curr. Biol.7(2), 133–143 (1997).
  • O’keefe TL, Williams GT, Batista FD, Neuberger MS. Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J. Exp. Med.189(8), 1307–1313 (1999).
  • Samardzic T, Marinkovic D, Danzer CP, Gerlach J, Nitschke L, Wirth T. Reduction of marginal zone B cells in CD22-deficient mice. Eur. J. Immunol.32(2), 561–567 (2002).
  • Lathrop SK, Bloom SM, Rao SM et al. Peripheral education of the immune system by colonic commensal microbiota. Nature478(7368), 250–254 (2011).
  • Kriegel MA, Sefik E, Hill JA, Wu HJ, Benoist C, Mathis D. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc. Natl Acad. Sci. USA108(28), 11548–11553 (2011).
  • Kranich J, Maslowski KM, Mackay CR. Commensal flora and the regulation of inflammatory and autoimmune responses. Semin. Immunol.23(2), 139–145 (2011).
  • Okazaki T, Otaka Y, Wang J et al. Hydronephrosis associated with antiurothelial and antinuclear autoantibodies in BALB/c-fcgr2b-/-Pdcd1-/- mice. J. Exp. Med.202(12), 1643–1648 (2005).
  • Clynes R, Calvani N, Croker BP, Richards HB. Modulation of the immune response in pristane-induced lupus by expression of activation and inhibitory Fc receptors. Clin. Exp. Immunol.141(2), 230–237 (2005).
  • Nakamura A, Nukiwa T, Takai T. Deregulation of peripheral B-cell development in enhanced severity of collagen-induced arthritis in FcgammaRIIB-deficient mice. J. Autoimmun.20(3), 227–236 (2003).
  • Nakamura A, Yuasa T, Ujike A et al. Fcgamma receptor IIB-deficient mice develop Goodpasture’s syndrome upon immunization with type IV collagen: a novel murine model for autoimmune glomerular basement membrane disease. J. Exp. Med.191(5), 899–906 (2000).
  • Waisberg M, Tarasenko T, Vickers BK et al. Genetic susceptibility to systemic lupus erythematosus protects against cerebral malaria in mice. Proc. Natl Acad. Sci. USA108(3), 1122–1127 (2011).
  • Clatworthy MR, Willcocks L, Urban B et al. Systemic lupus erythematosus-associated defects in the inhibitory receptor FcgammaRIIb reduce susceptibility to malaria. Proc. Natl Acad. Sci. USA104(17), 7169–7174 (2007).
  • Willcocks LC, Carr EJ, Niederer HA et al. A defunctioning polymorphism in fcgr2b is associated with protection against malaria but susceptibility to systemic lupus erythematosus. Proc. Natl Acad. Sci. USA107(17), 7881–7885 (2010).
  • Steinman RM, Hawiger D, Liu K et al. Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann. NY Acad. Sci.987, 15–25 (2003).
  • Dudziak D, Kamphorst AO, Heidkamp GF et al. Differential antigen processing by dendritic cell subsets in vivo. Science315(5808), 107–111 (2007).
  • Hawiger D, Inaba K, Dorsett Y et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med.194(6), 769–779 (2001).
  • Yamazaki S, Dudziak D, Heidkamp GF et al. CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J. Immunol.181(10), 6923–6933 (2008).
  • Rafiq K, Bergtold A, Clynes R. Immune complex-mediated antigen presentation induces tumor immunity. J. Clin. Invest.110(1), 71–79 (2002).
  • Regnault A, Lankar D, Lacabanne V et al. Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J. Exp. Med.189(2), 371–380 (1999).
  • Groh V, Li YQ, Cioca D et al. Efficient cross-priming of tumor antigen-specific T cells by dendritic cells sensitized with diverse anti-MICA opsonized tumor cells. Proc. Natl Acad. Sci. USA102(18), 6461–6466 (2005).
  • Harbers SO, Crocker A, Catalano G et al. Antibody-enhanced cross-presentation of self antigen breaks T cell tolerance. J. Clin. Invest.117(5), 1361–1369 (2007).
  • Kalergis AM, Ravetch JV. Inducing tumor immunity through the selective engagement of activating Fcgamma receptors on dendritic cells. J. Exp. Med.195(12), 1653–1659 (2002).
  • Desai DD, Harbers SO, Flores M et al. Fc gamma receptor IIB on dendritic cells enforces peripheral tolerance by inhibiting effector T cell responses. J. Immunol.178(10), 6217–6226 (2007).
  • Flores M, Desai DD, Downie M et al. Dominant expression of the inhibitory FcgammaRIIB prevents antigen presentation by murine plasmacytoid dendritic cells. J. Immunol.183(11), 7129–7139 (2009).
  • Wykes M, Pombo A, Jenkins C, Macpherson GG. Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J. Immunol.161(3), 1313–1319 (1998).
  • Dubois B, Bridon JM, Fayette J et al. Dendritic cells directly modulate B cell growth and differentiation. J. Leukoc. Biol.66(2), 224–230 (1999).
  • Dubois B, Barthelemy C, Durand I, Liu YJ, Caux C, Briere F. Toward a role of dendritic cells in the germinal center reaction: triggering of B cell proliferation and isotype switching. J. Immunol.162(6), 3428–3436 (1999).
  • Johansson B, Ingvarsson S, Bjorck P, Borrebaeck CA. Human interdigitating dendritic cells induce isotype switching and IL-13-dependent IgM production in CD40-activated naive B cells. J. Immunol.164(4), 1847–1854 (2000).
  • Bergtold A, Desai DD, Gavhane A, Clynes R. Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity23(5), 503–514 (2005).
  • Tackenberg B, Jelcic I, Baerenwaldt A et al. Impaired inhibitory Fc gamma receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proc. Natl Acad. Sci. USA106(12), 4788–4792 (2009).
  • Tackenberg B, Nimmerjahn F, Lunemann JD. Mechanisms of IVIG efficacy in chronic inflammatory demyelinating polyneuropathy. J. Clin. Immunol.30Suppl 1. 65–69 (2010).
  • Mackay M, Stanevsky A, Wang T et al. Selective dysregulation of the FcgammaIIB receptor on memory B cells in SLE. J. Exp. Med.203(9), 2157–2164 (2006).
  • Su K, Yang H, Li X et al. Expression profile of FcgammaRIIb on leukocytes and its dysregulation in systemic lupus erythematosus. J. Immunol.178(5), 3272–3280 (2007).
  • Blank MC, Stefanescu RN, Masuda E et al. Decreased transcription of the human fcgr2b gene mediated by the -343 G/C promoter polymorphism and association with systemic lupus erythematosus. Hum. Genet.117(2–3), 220–227 (2005).
  • Su K, Li X, Edberg JC, Wu J, Ferguson P, Kimberly RP. A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgammaRIIb alters receptor expression and associates with autoimmunity. II. Differential binding of GATA4 and Yin-Yang1 transcription factors and correlated receptor expression and function. J. Immunol.172(11), 7192–7199 (2004).
  • Su K, Wu J, Edberg JC et al. A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgammaRIIb alters receptor expression and associates with autoimmunity. I. Regulatory fcgr2b polymorphisms and their association with systemic lupus erythematosus. J. Immunol.172(11), 7186–7191 (2004).
  • Kyogoku C, Dijstelbloem HM, Tsuchiya N et al. Fcgamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of fcgr2b to genetic susceptibility. Arthritis Rheum.46(5), 1242–1254 (2002).
  • Siriboonrit U, Tsuchiya N, Sirikong M et al. Association of Fcgamma receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens61(5), 374–383 (2003).
  • Chu ZT, Tsuchiya N, Kyogoku C et al. Association of Fcgamma receptor IIb polymorphism with susceptibility to systemic lupus erythematosus in Chinese: a common susceptibility gene in the Asian populations. Tissue Antigens63(1), 21–27 (2004).
  • Niederer HA, Willcocks LC, Rayner TF et al. Copy number, linkage disequilibrium and disease association in the fcgr locus. Hum. Mol. Genet.19(16), 3282–3294 (2010).
  • Floto RA, Clatworthy MR, Heilbronn KR et al. Loss of function of a lupus-associated FcgammaRIIb polymorphism through exclusion from lipid rafts. Nat. Med.11(10), 1056–1058 (2005).
  • Kono H, Kyogoku C, Suzuki T et al. FcgammaRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum. Mol. Genet.14(19), 2881–2892 (2005).
  • Smith KG, Clatworthy MR. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat. Rev. Immunol.10(5), 328–343 (2010).
  • Li X, Wu J, Carter RH et al. A novel polymorphism in the Fcgamma receptor IIB (CD32B) transmembrane region alters receptor signaling. Arthritis Rheum.48(11), 3242–3252 (2003).
  • Legrand N, Ploss A, Balling R et al. Humanized mice for modeling human infectious disease: challenges, progress, and outlook. Cell Host Microbe6(1), 5–9 (2009).
  • Macchiarini F, Manz MG, Palucka AK, Shultz LD. Humanized mice: are we there yet? J. Exp. Med.202(10), 1307–1311 (2005).
  • Negi VS, Elluru S, Siberil S et al. Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J. Clin. Immunol.27(3), 233–245 (2007).
  • Crow AR, Brinc D, Lazarus AH. New insight into the mechanism of action of IVIg: the role of dendritic cells. J. Thromb. Haemost.7(Suppl 1.), 245–248 (2009).
  • Nimmerjahn F, Ravetch JV. Anti-inflammatory actions of intravenous immunoglobulin. Annu. Rev. Immunol.26, 513–533 (2008).
  • Bruhns P, Samuelsson A, Pollard JW, Ravetch JV. Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity18(4), 573–581 (2003).
  • Kaneko Y, Nimmerjahn F, Madaio MP, Ravetch JV. Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. J. Exp. Med.203(3), 789–797 (2006).
  • Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science313(5787), 670–673 (2006).
  • Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science291(5503), 484–486 (2001).
  • Crow AR, Song S, Freedman J et al. IVIg-mediated amelioration of murine ITP via FcgammaRIIB is independent of SHIP1, SHP-1, and Btk activity. Blood102(2), 558–560 (2003).
  • Anthony RM, Kobayashi T, Wermeling F, Ravetch JV. Intravenous gammaglobulin suppresses inflammation through a novel T(h)2 pathway. Nature475(7354), 110–113 (2011).
  • Scallon BJ, Tam SH, Mccarthy SG, Cai AN, Raju TS. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol. Immunol.44(7), 1524–1534 (2007).
  • Anthony RM, Wermeling F, Karlsson MC, Ravetch JV. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc. Natl Acad. Sci. USA105(50), 19571–19578 (2008).
  • Nikolova KA, Tchorbanov AI, Djoumerska-Alexieva IK, Nikolova M, Vassilev TL. Intravenous immunoglobulin up-regulates the expression of the inhibitory FcgammaIIB receptor on B cells. Immunol. Cell Biol.87(7), 529–533 (2009).
  • Li F, Ravetch JV. Inhibitory Fcgamma receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science333(6045), 1030–1034 (2011).
  • Wilson NS, Yang B, Yang A et al. An Fcgamma receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell19(1), 101–113 (2011).
  • White AL, Chan HT, Roghanian A et al. Interaction with FcgammaRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody. J. Immunol.187(4), 1754–1763 (2011).
  • Xu Y, Szalai AJ, Zhou T et al. Fc gamma Rs modulate cytotoxicity of anti-Fas antibodies: implications for agonistic antibody-based therapeutics. J. Immunol.171(2), 562–568 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.