163
Views
35
CrossRef citations to date
0
Altmetric
Review

Evolution and future prospects of adipose-derived immunomodulatory cell therapeutics

, , &
Pages 175-184 | Published online: 10 Jan 2014

References

  • Kaminski DA, Randall TD. Adaptive immunity and adipose tissue biology. Trends Immunol. 31(10), 384–390 (2010).
  • Pond CM. Adipose tissue and the immune system. Prostaglandins Leukot. Essent. Fatty Acids 73(1), 17–30 (2005).
  • Schäffler A, Müller-Ladner U, Schölmerich J, Büchler C. Role of adipose tissue as an inflammatory organ in human diseases. Endocr. Rev. 27(5), 449–467 (2006).
  • Creely SJ, McTernan PG, Kusminski CM et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 292(3), E740–E747 (2007).
  • Pond CM, Mattacks CA. The activation of the adipose tissue associated with lymph nodes during the early stages of an immune response. Cytokine 17(3), 131–139 (2002).
  • Alexaki VI, Notas G, Pelekanou V et al. Adipocytes as immune cells: differential expression of TWEAK, BAFF, and APRIL and their receptors (Fn14, BAFF-R, TACI, and BCMA) at different stages of normal and pathological adipose tissue development. J. Immunol. 183(9), 5948–5956 (2009).
  • Vandanmagsar B, Youm YH, Ravussin A et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17(2), 179–188 (2011).
  • Koenen TB, Stienstra R, van Tits LJ et al. The inflammasome and caspase-1 activation: a new mechanism underlying increased inflammatory activity in human visceral adipose tissue. Endocrinology 152(10), 3769–3778 (2011).
  • Goossens GH, Blaak EE, Theunissen R et al. Expression of NLRP3 inflammasome and T cell population markers in adipose tissue are associated with insulin resistance and impaired glucose metabolism in humans. Mol. Immunol. 50(3), 142–149 (2012).
  • Hwa Cho H, Bae YC, Jung JS. Role of Toll-like receptors on human adipose-derived stromal cells. Stem Cells 24(12), 2744–2752 (2006).
  • Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ. Res. 100(9), 1249–1260 (2007).
  • Mitchell JB, McIntosh K, Zvonic S et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24(2), 376–385 (2006).
  • McIntosh K, Zvonic S, Garrett S et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells 24(5), 1246–1253 (2006).
  • Kintscher U, Hartge M, Hess K et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler. Thromb. Vasc. Biol. 28(7), 1304–1310 (2008).
  • Yang H, Youm YH, Vandanmagsar B et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J. Immunol. 185(3), 1836–1845 (2010).
  • Nguyen MT, Favelyukis S, Nguyen AK et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem. 282(48), 35279–35292 (2007).
  • Nishimura S, Manabe I, Nagasaki M et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15(8), 914–920 (2009).
  • Winer S, Chan Y, Paltser G et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15(8), 921–929 (2009).
  • Feuerer M, Herrero L, Cipolletta D et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15(8), 930–939 (2009).
  • Moro K, Yamada T, Tanabe M et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463(7280), 540–544 (2010).
  • WeisbergSP, McCannD, DesaiM, RosenbaumM, LeibelRL, FerranteAW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112(12), 1796–1808 (2003).
  • Xu H, Barnes GT, Yang Q et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112(12), 1821–1830 (2003).
  • Cousin B, André M, Arnaud E, Pénicaud L, Casteilla L. Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochem. Biophys. Res. Commun. 301(4), 1016–1022 (2003).
  • Han J, Koh YJ, Moon HR et al. Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells. Blood 115(5), 957–964 (2010).
  • Zimmerlin L, Donnenberg VS, Pfeifer ME et al. Stromal vascular progenitors in adult human adipose tissue. Cytometry. A 77(1), 22–30 (2010).
  • Jurgens WJ, Kroeze RJ, Bank RA, Ritt MJ, Helder MN. Rapid attachment of adipose stromal cells on resorbable polymeric scaffolds facilitates the one-step surgical procedure for cartilage and bone tissue engineering purposes. J. Orthop. Res. 29(6), 853–860 (2011).
  • Zuk PA, Zhu M, Ashjian P et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13(12), 4279–4295 (2002).
  • Zuk PA, Zhu M, Mizuno H et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7(2), 211–228 (2001).
  • Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J. Cell. Physiol. 189(1), 54–63 (2001).
  • Sen A, Lea-Currie YR, Sujkowska D et al. Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. J. Cell. Biochem. 81(2), 312–319 (2001).
  • Yu G, Wu X, Dietrich MA et al. Yield and characterization of subcutaneous human adipose-derived stem cells by flow cytometric and adipogenic mRNA analyzes. Cytotherapy 12(4), 538–546 (2010).
  • Guilak F, Lott KE, Awad HA et al. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J. Cell. Physiol. 206(1), 229–237 (2006).
  • Kilroy GE, Foster SJ, Wu X et al. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J. Cell. Physiol. 212(3), 702–709 (2007).
  • Nakao N, Nakayama T, Yahata T et al. Adipose tissue-derived mesenchymal stem cells facilitate hematopoiesis in vitro and in vivo: advantages over bone marrow-derived mesenchymal stem cells. Am. J. Pathol. 177(2), 547–554 (2010).
  • Corre J, Planat-Benard V, Corberand JX, Pénicaud L, Casteilla L, Laharrague P. Human bone marrow adipocytes support complete myeloid and lymphoid differentiation from human CD34 cells. Br. J. Haematol. 127(3), 344–347 (2004).
  • Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J. Embryol. Exp. Morphol. 16(3), 381–390 (1966).
  • Owen M. Marrow stromal stem cells. J. Cell Sci. Suppl. 10, 63–76 (1988).
  • Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp. 136, 42–60 (1988).
  • Weiss L, Sakai H. The hematopoietic stroma. Am. J. Anat. 170(3), 447–463 (1984).
  • Westen H, Bainton DF. Association of alkaline-phosphatase-positive reticulum cells in bone marrow with granulocytic precursors. J. Exp. Med. 150(4), 919–937 (1979).
  • Pietrangeli CE, Hayashi S, Kincade PW. Stromal cell lines which support lymphocyte growth: characterization, sensitivity to radiation and responsiveness to growth factors. Eur. J. Immunol. 18(6), 863–872 (1988).
  • Friedenstein AJ. Precursor cells of mechanocytes. Int. Rev. Cytol. 47, 327–359 (1976).
  • Caplan AI. Mesenchymal stem cells. J. Orthop. Res. 9(5), 641–650 (1991).
  • Horwitz EM, Le Blanc K, Dominici M et al.; International Society for Cellular Therapy. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7(5), 393–395 (2005).
  • Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4), 315–317 (2006).
  • Kronsteiner B, Wolbank S, Peterbauer A et al. Human mesenchymal stem cells from adipose tissue and amnion influence T-cells depending on stimulation method and presence of other immune cells. Stem Cells Dev. 20(12), 2115–2126 (2011).
  • Troyer DL, Weiss ML. Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26(3), 591–599 (2008).
  • Péault B, Rudnicki M, Torrente Y et al. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol. Ther. 15(5), 867–877 (2007).
  • De Coppi P, Bartsch G Jr, Siddiqui MM et al. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25(1), 100–106 (2007).
  • Delo DM, De Coppi P, Bartsch G Jr, Atala A. Amniotic fluid and placental stem cells. Meth. Enzymol. 419, 426–438 (2006).
  • Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5), 1294–1301 (2006).
  • Danisovic L, Varga I, Polák S et al. Comparison of in vitro chondrogenic potential of human mesenchymal stem cells derived from bone marrow and adipose tissue. Gen. Physiol. Biophys. 28(1), 56–62 (2009).
  • De Ugarte DA, Morizono K, Elbarbary A et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 174(3), 101–109 (2003).
  • Afizah H, Yang Z, Hui JH, Ouyang HW, Lee EH. A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng. 13(4), 659–666 (2007).
  • Frisbie DD, Kisiday JD, Kawcak CE, Werpy NM, McIlwraith CW. Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J. Orthop. Res. 27(12), 1675–1680 (2009).
  • Huang JI, Kazmi N, Durbhakula MM, Hering TM, Yoo JU, Johnstone B. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J. Orthop. Res. 23(6), 1383–1389 (2005).
  • Hui JH, Li L, Teo YH, Ouyang HW, Lee EH. Comparative study of the ability of mesenchymal stem cells derived from bone marrow, periosteum, and adipose tissue in treatment of partial growth arrest in rabbit. Tissue Eng. 11(5–6), 904–912 (2005).
  • Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthr. Cartil. 13(10), 845–853 (2005).
  • Rebelatto CK, Aguiar AM, Moretão MP et al. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp. Biol. Med. (Maywood) 233(7), 901–913 (2008).
  • Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 327(3), 449–462 (2007).
  • Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu. Rev. Cell Dev. Biol. 17, 387–403 (2001).
  • Spalding KL, Arner E, Westermark PO et al. Dynamics of fat cell turnover in humans. Nature 453(7196), 783–787 (2008).
  • Strawford A, Antelo F, Christiansen M, Hellerstein MK. Adipose tissue triglyceride turnover, de novo lipogenesis, and cell proliferation in humans measured with 2H2O. Am. J. Physiol. Endocrinol. Metab. 286(4), E577–E588 (2004).
  • Crisan M, Yap S, Casteilla L et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3), 301–313 (2008).
  • Traktuev DO, Merfeld-Clauss S, Li J et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ. Res. 102(1), 77–85 (2008).
  • Zannettino AC, Paton S, Arthur A et al. Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J. Cell. Physiol. 214(2), 413–421 (2008).
  • Amos PJ, Shang H, Bailey AM, Taylor A, Katz AJ, Peirce SM. IFATS collection: the role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype. Stem Cells 26(10), 2682–2690 (2008).
  • Rodeheffer MS, Birsoy K, Friedman JM. Identification of white adipocyte progenitor cells in vivo. Cell 135(2), 240–249 (2008).
  • Puissant B, Barreau C, Bourin P et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br. J. Haematol. 129(1), 118–129 (2005).
  • Klyushnenkova E, Mosca JD, Zernetkina V et al. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J. Biomed. Sci. 12(1), 47–57 (2005).
  • Wolbank S, Stadler G, Peterbauer A et al. Telomerase immortalized human amnion- and adipose-derived mesenchymal stem cells: maintenance of differentiation and immunomodulatory characteristics. Tissue Eng. Part A 15(7), 1843–1854 (2009).
  • Technau A, Froelich K, Hagen R, Kleinsasser N. Adipose tissue-derived stem cells show both immunogenic and immunosuppressive properties after chondrogenic differentiation. Cytotherapy 13(3), 310–317 (2011).
  • Niemeyer P, Kornacker M, Mehlhorn A et al. Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic differentiation in vitro. Tissue Eng. 13(1), 111–121 (2007).
  • Yañez R, Lamana ML, García-Castro J, Colmenero I, Ramírez M, Bueren JA. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 24(11), 2582–2591 (2006).
  • Cui L, Yin S, Liu W, Li N, Zhang W, Cao Y. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng. 13(6), 1185–1195 (2007).
  • Abumaree M, Al Jumah M, Pace RA et al. Immunosuppressive properties of mesenchymal stem cells. Stem Cell Rev. 8(2), 375–392 (2011).
  • Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noël D. Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res. Ther. 1(1), 2 (2010).
  • Hegyi B, Kudlik G, Monostori E, Uher F. Activated T-cells and pro-inflammatory cytokines differentially regulate prostaglandin E2 secretion by mesenchymal stem cells. Biochem. Biophys. Res. Commun. 419(2), 215–220 (2012).
  • Kang JW, Kang KS, Koo HC, Park JR, Choi EW, Park YH. Soluble factors-mediated immunomodulatory effects of canine adipose tissue-derived mesenchymal stem cells. Stem Cells Dev. 17(4), 681–693 (2008).
  • Crop MJ, Baan CC, Korevaar SS et al. Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells. Clin. Exp. Immunol. 162(3), 474–486 (2010).
  • Crop MJ, Baan CC, Korevaar SS, Ijzermans JN, Weimar W, Hoogduijn MJ. Human adipose tissue-derived mesenchymal stem cells induce explosive T-cell proliferation. Stem Cells Dev. 19(12), 1843–1853 (2010).
  • Yoo KH, Jang IK, Lee MW et al. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell. Immunol. 259(2), 150–156 (2009).
  • DelaRosa O, Lombardo E, Beraza A et al. Requirement of IFN-gamma-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose-derived stem cells. Tissue Eng. Part A 15(10), 2795–2806 (2009).
  • González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 136(3), 978–989 (2009).
  • Choi EW, Shin IS, Lee HW et al. Transplantation of CTLA4Ig gene-transduced adipose tissue-derived mesenchymal stem cells reduces inflammatory immune response and improves Th1/Th2 balance in experimental autoimmune thyroiditis. J. Gene Med. 13(1), 3–16 (2011).
  • Constantin G, Marconi S, Rossi B et al. Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells 27(10), 2624–2635 (2009).
  • Gonzalez-Rey E, Gonzalez MA, Varela N et al. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann. Rheum. Dis. 69(1), 241–248 (2010).
  • Wan CD, Cheng R, Wang HB, Liu T. Immunomodulatory effects of mesenchymal stem cells derived from adipose tissues in a rat orthotopic liver transplantation model. HBPD INT 7(1), 29–33 (2008).
  • Bartholomew A, Sturgeon C, Siatskas M et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 30(1), 42–48 (2002).
  • Bochev I, Elmadjian G, Kyurkchiev D et al. Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro. Cell Biol. Int. 32(4), 384–393 (2008).
  • Ivanova-Todorova E, Bochev I, Mourdjeva M et al. Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells. Immunol. Lett. 126(1–2), 37–42 (2009).
  • Yañez R, Oviedo A, Aldea M, Bueren JA, Lamana ML. Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells. Exp. Cell Res. 316(19), 3109–3123 (2010).
  • Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One 5(4), e10088 (2010).
  • Bunnell BA, Betancourt AM, Sullivan DE. New concepts on the immune modulation mediated by mesenchymal stem cells. Stem Cell Res. Ther. 1(5), 34 (2010).
  • Poncelet AJ, Vercruysse J, Saliez A, Gianello P. Although pig allogeneic mesenchymal stem cells are not immunogenic in vitro, intracardiac injection elicits an immune response in vivo. Transplantation 83(6), 783–790 (2007).
  • Camp DM, Loeffler DA, Farrah DM, Borneman JN, LeWitt PA. Cellular immune response to intrastriatally implanted allogeneic bone marrow stromal cells in a rat model of Parkinson’s disease. J. Neuroinflammation 5(6), 17 (2009).
  • Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 108(6), 2114–2120 (2006).
  • Zangi L, Margalit R, Reich-Zeliger S et al. Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells 27(11), 2865–2874 (2009).
  • Kotobuki N, Katsube Y, Katou Y, Tadokoro M, Hirose M, Ohgushi H. In vivo survival and osteogenic differentiation of allogeneic rat bone marrow mesenchymal stem cells (MSCs). Cell Transplant. 17(6), 705–712 (2008).
  • Li Y, McIntosh K, Chen J et al. Allogeneic bone marrow stromal cells promote glial-axonal remodeling without immunologic sensitization after stroke in rats. Exp. Neurol. 198(2), 313–325 (2006).
  • Beggs KJ, Lyubimov A, Borneman JN et al. Immunologic consequences of multiple, high-dose administration of allogeneic mesenchymal stem cells to baboons. Cell Transplant. 15(8–9), 711–721 (2006).
  • Gal P, Necas A, Planka L et al. Chrondrocytic potential of allogeneic mesenchymal stem cells transplanted without immunosuppression to regenerate physeal defect in rabbits. Acta Vet Brno. 76(2), 265–275 (2007).
  • Dai W, Hale SL, Martin BJ et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 112(2), 214–223 (2005).
  • Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringdén O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand. J. Immunol. 57(1), 11–20 (2003).
  • Le Blanc K, Rasmusson I, Sundberg B et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363(9419), 1439–1441 (2004).
  • Newman RE, Yoo D, LeRoux MA, Danilkovitch-Miagkova A. Treatment of inflammatory diseases with mesenchymal stem cells. Inflamm. Allergy Drug Targets 8(2), 110–123 (2009).
  • Cavallo C, Cuomo C, Fantini S et al. Comparison of alternative mesenchymal stem cell sources for cell banking and musculoskeletal advanced therapies. J. Cell. Biochem. 112(5), 1418–1430 (2011).
  • Yoshimura K, Sato K, Aoi N et al. Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatological Surgery 34, 1178–1185 (2008).
  • Matsumoto D, Sato K, Gonda K et al. Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng. 12(12), 3375–3382 (2006).
  • Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast. Surg. 32(1), 48–55; discussion 56 (2008).
  • Yoshimura K, Asano Y, Aoi N et al. Progenitor-enriched adipose tissue transplantation as rescue for breast implant complications. Breast J. 16(2), 169–175 (2010).
  • Kim M, Kim I, Lee SK, Bang SI, Lim SY. Clinical trial of autologous differentiated adipocytes from stem cells derived from human adipose tissue. Dermatol. Surg. 37(6), 750–759 (2011).
  • Sterodimas A, de Faria J, Nicaretta B, Boriani F. Autologous fat transplantation versus adipose-derived stem cell-enriched lipografts: a study. Aesthet. Surg. J. 31(6), 682–693 (2011).
  • Rubin JP, Coon D, Zuley M et al. Mammographic changes after fat transfer to the breast compared with changes after breast reduction: a blinded study. Plast. Reconstr. Surg. 129(5), 1029–1038 (2012).
  • Mesimäki K, Lindroos B, Törnwall J et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int. J. Oral Maxillofac. Surg. 38(3), 201–209 (2009).
  • Thesleff T, Lehtimäki K, Niskakangas T et al. Cranioplasty with adipose-derived stem cells and biomaterial: a novel method for cranial reconstruction. Neurosurgery 68(6), 1535–1540 (2011).
  • Lendeckel S, Jödicke A, Christophis P et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J. Craniomaxillofac. Surg. 32(6), 370–373 (2004).
  • García-Olmo D, García-Arranz M, García LG et al. Autologous stem cell transplantation for treatment of rectovaginal fistula in perianal Crohn’s disease: a new cell-based therapy. Int. J. Colorectal Dis. 18(5), 451–454 (2003).
  • Garcia-Olmo D, Garcia-Arranz M, Herreros D. Expanded adipose-derived stem cells for the treatment of complex perianal fistula including Crohn’s disease. Expert Opin. Biol. Ther. 8(9), 1417–1423 (2008).
  • García-Olmo D, García-Arranz M, Herreros D, Pascual I, Peiro C, Rodríguez-Montes JA. A Phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis. Colon Rectum 48(7), 1416–1423 (2005).
  • Garcia-Olmo D, Herreros D, Pascual I et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a Phase II clinical trial. Dis. Colon Rectum 52(1), 79–86 (2009).
  • Garcia-Olmo D, Herreros D, Pascual M et al. Treatment of enterocutaneous fistula in Crohn’s Disease with adipose-derived stem cells: a comparison of protocols with and without cell expansion. Int. J. Colorectal Dis. 24(1), 27–30 (2009).
  • Taxonera C, Schwartz DA, García-Olmo D. Emerging treatments for complex perianal fistula in Crohn’s disease. World J. Gastroenterol. 15(34), 4263–4272 (2009).
  • Ra JC, Shin IS, Kim SH et al. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 20(8), 1297–1308 (2011).
  • Lee HC, An SG, Lee HW et al. Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ. J. 76(7), 1750–1760 (2012).
  • Spees JL, Gregory CA, Singh H et al. Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol. Ther. 9(5), 747–756 (2004).
  • Sundin M, Ringdén O, Sundberg B, Nava S, Götherström C, Le Blanc K. No alloantibodies against mesenchymal stromal cells, but presence of anti-fetal calf serum antibodies, after transplantation in allogeneic hematopoietic stem cell recipients. Haematologica 92(9), 1208–1215 (2007).
  • Hicok KC, Hedrick MH. Automated isolation and processing of adipose-derived stem and regenerative cells. Methods Mol. Biol. 702, 87–105 (2011).
  • Riordan NH, Ichim TE, Min WP et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J. Transl. Med. 7, 29 (2009).
  • Seeger FH, Tonn T, Krzossok N, Zeiher AM, Dimmeler S. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur. Heart J. 28(6), 766–772 (2007).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.