155
Views
9
CrossRef citations to date
0
Altmetric
Review

Novel antibiotics for the treatment of Staphylococcus aureus

Pages 661-672 | Published online: 10 Jan 2014

References

  • Garau J, Bouza E, Chastre J, Gudiol F, Harbarth S. Management of methicillin-resistant Staphylococcus aureus infections. Clin. Microbiol. Infect.15, 125–136 (2009).
  • Gordon RJ, Lowy FD. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis.46(Suppl. 5), S350–S359 (2008).
  • Diep BA, Otto M. The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol.16, 361–369 (2008).
  • Lowy FD. Staphylococcus aureus infections. N. Engl. J. Med.339, 520–532 (1998).
  • National nosocomial infections surveillance (NNIS) system report, data summary from January 1992 through June 2004 issued October 2004. Am. J. Infect. Control32, 470–485 (2004).
  • Tiemersma EW, Bronzwaer SL, Lyytikainen O et al. Methicillin-resistant Staphylococcus aureus in Europe, 1999–2002. Emerg. Infect. Dis.10, 1627–1634 (2004).
  • David MZ, Rudolph KM, Hennessy TW, Boyle-Vavra S, Daum RS. Molecular epidemiology of methicillin-resistant Staphylococcus aureus, rural southwestern Alaska. Emerg. Infect. Dis.14, 1693–1699 (2008).
  • Chambers HF. Community-associated MRSA-resistance and virulence converge. N. Engl. J. Med.352, 1485–1487 (2005).
  • Diep BA, Sensabaugh GF, Somboona NS, Carleton HA, Perdreau-Remington F. Widespread skin and soft-tissue infections due to two methicillin-resistant Staphylococcus aureus strains harboring the genes for Panton–Valentine leucocidin. J. Clin. Microbiol.42, 2080–2084 (2004).
  • Kazakova SV, Hageman JC, Matava M et al. A clone of methicillin-resistant Staphylococcus aureus among professional football players. N. Engl. J. Med.352, 468–475 (2005).
  • Bratu S, Eramo A, Kopec R et al. Community-associated methicillin-resistant Staphylococcus aureus in hospital nursery and maternity units. Emerg. Infect. Dis.11, 808–813 (2005).
  • Maree CL, Daum RS, Boyle-Vavra S, Matayoshi K, Miller LG. Community-associated methicillin-resistant Staphylococcus aureus isolates causing healthcare-associated infections. Emerg. Infect. Dis.13, 236–242 (2007).
  • Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin. Infect. Dis.36, 53–59 (2003).
  • Shurland S, Zhan M, Bradham DD, Roghmann MC. Comparison of mortality risk associated with bacteremia due to methicillin-resistant and methicillin-susceptible Staphylococcus aureus. Infect. Control Hosp. Epidemiol.28, 273–279 (2007).
  • Cosgrove SE, Qi Y, Kaye KS, Harbarth S, Karchmer AW, Carmeli Y. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect. Control Hosp. Epidemiol.26, 166–174 (2005).
  • Zahar JR, Clech C, Tafflet M et al. Is methicillin resistance associated with a worse prognosis in Staphylococcus aureus ventilator-associated pneumonia? Clin. Infect. Dis.41, 1224–1231 (2005).
  • Engemann JJ, Carmeli Y, Cosgrove SE et al. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin. Infect. Dis.36, 592–598 (2003).
  • Klevens RM, Morrison MA, Nadle J et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA298, 1763–1771 (2007).
  • Chang S, Sievert DM, Hageman JC et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J. Med.348, 1342–1347 (2003).
  • Witte W, Cuny C, Klare I, Nubel U, Strommenger B, Werner G. Emergence and spread of antibiotic-resistant Gram-positive bacterial pathogens. Int. J. Med. Microbiol.298, 365–377 (2008).
  • Ohlsen K, Lorenz U. Novel targets for antibiotics in Staphylococcus aureus. Future Microbiol.2, 655–666 (2007).
  • Martins A, Cunha Mde L. Methicillin resistance in Staphylococcus aureus and coagulase-negative staphylococci: epidemiological and molecular aspects. Microbiol. Immunol.51, 787–795 (2007).
  • Ito T, Katayama Y, Asada K et al. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother.45, 1323–1336 (2001).
  • Deurenberg RH, Vink C, Kalenic S, Friedrich AW, Bruggeman CA, Stobberingh EE. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect.13, 222–235 (2007).
  • Hiramatsu K, Katayama Y, Yuzawa H, Ito T. Molecular genetics of methicillin-resistant Staphylococcus aureus. Int. J. Med. Microbiol.292, 67–74 (2002).
  • Couto I, de Lencastre H, Severina E et al. Ubiquitous presence of a mecA homologue in natural isolates of Staphylococcus sciuri. Microb. Drug Resist.2, 377–391 (1996).
  • Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin. Invest.111, 1265–1273 (2003).
  • Projan SJ. Why is big Pharma getting out of antibacterial drug discovery? Curr. Opin. Microbiol.6, 427–430 (2003).
  • Coates AR, Hu Y. Novel approaches to developing new antibiotics for bacterial infections. Br. J. Pharmacol.152, 1147–1154 (2007).
  • Raes J, Korbel JO, Lercher MJ, von Mering C, Bork P. Prediction of effective genome size in metagenomic samples. Genome Biol.8, R10 (2007).
  • Capparelli R, Parlato M, Borriello G, Salvatore P, Iannelli D. Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob. Agents Chemother.51, 2765–2773 (2007).
  • Fischetti VA. Bacteriophage lysins as effective antibacterials. Curr. Opin. Microbiol.11, 393–400 (2008).
  • Ippolito JA, Kanyo ZF, Wang D et al. Crystal structure of the oxazolidinone antibiotic linezolid bound to the 50S ribosomal subunit. J. Med. Chem.51, 3353–3356 (2008).
  • Micek ST. Alternatives to vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin. Infect. Dis.45(Suppl. 3), S184–S190 (2007).
  • French GL. What’s new and not so new on the antimicrobial horizon? Clin. Microbiol. Infect.14(Suppl. 6), 19–29 (2008).
  • De Cock E, Krueger WA, Sorensen S et al. Cost-effectiveness of linezolid vs vancomycin in suspected methicillin-resistant Staphylococcus aureus nosocomial pneumonia in Germany. Infection37, 123–132 (2009).
  • Itani KM, Weigelt J, Li JZ, Duttagupta S. Linezolid reduces length of stay and duration of intravenous treatment compared with vancomycin for complicated skin and soft tissue infections due to suspected or proven methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Antimicrob. Agents26, 442–448 (2005).
  • Kohno S, Yamaguchi K, Aikawa N et al. Linezolid versus vancomycin for the treatment of infections caused by methicillin-resistant Staphylococcus aureus in Japan. J. Antimicrob. Chemother.60, 1361–1369 (2007).
  • Weigelt J, Kaafarani HM, Itani KM, Swanson RN. Linezolid eradicates MRSA better than vancomycin from surgical-site infections. Am. J. Surg.188, 760–766 (2004).
  • Shorr AF, Kunkel MJ, Kollef M. Linezolid versus vancomycin for Staphylococcus aureus bacteraemia: pooled analysis of randomized studies. J. Antimicrob. Chemother.56, 923–929 (2005).
  • Garazzino S, De Rosa FG, Bargiacchi O, Audagnotto S, Maiello A, Di Perri G. Haematological safety of long-term therapy with linezolid. Int. J. Antimicrob. Agents29, 480–483 (2007).
  • Lawrence KR, Adra M, Gillman PK. Serotonin toxicity associated with the use of linezolid: a review of postmarketing data. Clin. Infect. Dis.42, 1578–1583 (2006).
  • Stevens DL, Ma Y, Salmi DB, McIndoo E, Wallace RJ, Bryant AE. Impact of antibiotics on expression of virulence-associated exotoxin genes in methicillin-sensitive and methicillin-resistant Staphylococcus aureus. J. Infect. Dis.195, 202–211 (2007).
  • Jones RN, Ross JE, Castanheira M, Mendes RE. United States resistance surveillance results for linezolid (LEADER Program for 2007). Diagn. Microbiol. Infect. Dis.62, 416–426 (2008).
  • Meka VG, Gold HS. Antimicrobial resistance to linezolid. Clin. Infect. Dis.39, 1010–1015 (2004).
  • Meka VG, Gold HS, Cooke A et al. Reversion to susceptibility in a linezolid-resistant clinical isolate of Staphylococcus aureus. J. Antimicrob. Chemother.54, 818–820 (2004).
  • Meka VG, Pillai SK, Sakoulas G et al. Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA. J. Infect. Dis.190, 311–317 (2004).
  • Kehrenberg C, Aarestrup FM, Schwarz S. IS21–558 insertion sequences are involved in the mobility of the multiresistance gene cfr. Antimicrob. Agents Chemother.51, 483–487 (2007).
  • Kehrenberg C, Schwarz S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob. Agents Chemother.50, 1156–1163 (2006).
  • Mendes RE, Deshpande LM, Castanheira M, DiPersio J, Saubolle MA, Jones RN. First report of cfr-mediated resistance to linezolid in human staphylococcal clinical isolates recovered in the United States. Antimicrob. Agents Chemother.52, 2244–2246 (2008).
  • Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Antimicrob. Agents Chemother.50, 2500–2505 (2006).
  • Kehrenberg C, Cuny C, Strommenger B, Schwarz S, Witte W. Methicillin-resistant and -susceptible Staphylococcus aureus strains of clonal lineages ST398 and ST9 from swine carry the multidrug resistance gene cfr. Antimicrob. Agents Chemother.53, 779–781 (2009).
  • Carpenter CF, Chambers HF. Daptomycin: another novel agent for treating infections due to drug-resistant Gram-positive pathogens. Clin. Infect. Dis.38, 994–1000 (2004).
  • Jevitt LA, Smith AJ, Williams PP, Raney PM, McGowan JE Jr, Tenover FC. In vitro activities of Daptomycin, Linezolid, and Quinupristin-Dalfopristin against a challenge panel of Staphylococci and Enterococci, including vancomycin-intermediate Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Microb. Drug Resist.9, 389–393 (2003).
  • Steenbergen JN, Alder J, Thorne GM, Tally FP. Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections. J. Antimicrob. Chemother.55, 283–288 (2005).
  • Huang YT, Liao CH, Teng LJ, Hsueh PR. Comparative bactericidal activities of daptomycin, glycopeptides, linezolid and tigecycline against blood isolates of Gram-positive bacteria in Taiwan. Clin. Microbiol. Infect.14, 124–129 (2008).
  • Julian K, Kosowska-Shick K, Whitener C et al. Characterization of a daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus strain in a patient with endocarditis. Antimicrob. Agents Chemother.51, 3445–3448 (2007).
  • Patel JB, Jevitt LA, Hageman J, McDonald LC, Tenover FC. An association between reduced susceptibility to daptomycin and reduced susceptibility to vancomycin in Staphylococcus aureus. Clin. Infect. Dis.42, 1652–1653 (2006).
  • Cui L, Tominaga E, Neoh HM, Hiramatsu K. Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob. Agents Chemother.50, 1079–1082 (2006).
  • Fowler VG, Jr., Boucher HW, Corey GR et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N. Engl. J. Med.355, 653–665 (2006).
  • Lalani T, Boucher HW, Cosgrove SE et al. Outcomes with daptomycin versus standard therapy for osteoarticular infections associated with Staphylococcus aureus bacteraemia. J. Antimicrob. Chemother.61, 177–182 (2008).
  • Friedman L, Alder JD, Silverman JA. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob. Agents Chemother.50, 2137–2145 (2006).
  • Boucher HW, Sakoulas G. Perspectives on daptomycin resistance, with emphasis on resistance in Staphylococcus aureus. Clin. Infect. Dis.45, 601–608 (2007).
  • Sader HS, Jones RN, Dowzicky MJ, Fritsche TR. Antimicrobial activity of tigecycline tested against nosocomial bacterial pathogens from patients hospitalized in the intensive care unit. Diagn. Microbiol. Infect. Dis.52, 203–208 (2005).
  • Livermore DM. Tigecycline: what is it, and where should it be used? J. Antimicrob. Chemother.56, 611–614 (2005).
  • Pillar CM, Draghi DC, Dowzicky MJ, Sahm DF. In vitro activity of tigecycline against Gram-positive and Gram-negative pathogens as evaluated by broth microdilution and Etest. J. Clin. Microbiol.46, 2862–2867 (2008).
  • Ellis-Grosse EJ, Babinchak T, Dartois N, Rose G, Loh E. The efficacy and safety of tigecycline in the treatment of skin and skin-structure infections: results of 2 double-blind Phase 3 comparison studies with vancomycin-aztreonam. Clin. Infect. Dis.41(Suppl. 5), S341–S353 (2005).
  • Florescu I, Beuran M, Dimov R et al. Efficacy and safety of tigecycline compared with vancomycin or linezolid for treatment of serious infections with methicillin-resistant Staphylococcus aureus or vancomycin-resistant enterococci: a Phase 3, multicentre, double-blind, randomized study. J. Antimicrob. Chemother.62(Suppl. 1), I17–I28 (2008).
  • Sacchidanand S, Penn RL, Embil JM et al. Efficacy and safety of tigecycline monotherapy compared with vancomycin plus aztreonam in patients with complicated skin and skin structure infections: Results from a Phase 3, randomized, double-blind trial. Int. J. Infect. Dis.9, 251–261 (2005).
  • Swoboda S, Ober M, Hainer C et al. Tigecycline for the treatment of patients with severe sepsis or septic shock: a drug use evaluation in a surgical intensive care unit. J. Antimicrob. Chemother.61, 729–733 (2008).
  • Gales AC, Sader HS, Fritsche TR. Tigecycline activity tested against 11808 bacterial pathogens recently collected from US medical centers. Diagn. Microbiol. Infect. Dis.60, 421–427 (2008).
  • Pachon-Ibanez ME, Jimenez-Mejias ME, Pichardo C, Llanos AC, Pachon J. Activity of tigecycline (GAR-936) against Acinetobacter baumannii strains, including those resistant to imipenem. Antimicrob. Agents Chemother.48, 4479–4481 (2004).
  • Nichols RL, Graham DR, Barriere SL et al. Treatment of hospitalized patients with complicated Gram-positive skin and skin structure infections: two randomized, multicentre studies of quinupristin/dalfopristin versus cefazolin, oxacillin or vancomycin: Synercid Skin and Skin Structure Infection group. J. Antimicrob. Chemother.44, 263–273 (1999).
  • Chambers HF. Ceftobiprole: in-vivo profile of a bactericidal cephalosporin. Clin Microbiol. Infect.12(Suppl. 2), 17–22 (2006).
  • Fritsche TR, Sader HS, Jones RN. Antimicrobial activity of ceftobiprole, a novel anti-methicillin-resistant Staphylococcus aureus cephalosporin, tested against contemporary pathogens: results from the SENTRY Antimicrobial Surveillance Program (2005–2006). Diagn. Microbiol. Infect. Dis.61, 86–95 (2008).
  • Pope SD, Roecker AM. Dalbavancin: a novel lipoglycopeptide antibacterial. Pharmacotherapy26, 908–918 (2006).
  • Bailey J, Summers KM. Dalbavancin: a new lipoglycopeptide antibiotic. Am. J. Health Syst. Pharm.65, 599–610 (2008).
  • Biedenbach DJ, Bell JM, Sader HS, Turnidge JD, Jones RN. Activities of dalbavancin against a worldwide collection of 81,673 Gram-positive bacterial isolates. Antimicrob. Agents Chemother.53, 1260–1263 (2009).
  • Biedenbach DJ, Jones RN. Multicenter evaluation of the in vitro activity of dalbavancin tested against staphylococci and streptococci in 5 European countries: results from the DECIDE Surveillance Program (2007). Diagn. Microbiol. Infect. Dis.64, 177–184 (2009).
  • Gales AC, Sader HS, Jones RN. Antimicrobial activity of dalbavancin tested against Gram-positive clinical isolates from Latin American medical centres. Clin. Microbiol. Infect.11, 95–100 (2005).
  • Attwood RJ, LaPlante KL. Telavancin: a novel lipoglycopeptide antimicrobial agent. Am. J. Health Syst. Pharm.64, 2335–2348 (2007).
  • Draghi DC, Benton BM, Krause KM, Thornsberry C, Pillar C, Sahm DF. Comparative surveillance study of telavancin activity against recently collected Gram-positive clinical isolates from across the United States. Antimicrob. Agents Chemother.52, 2383–2388 (2008).
  • Draghi DC, Benton BM, Krause KM, Thornsberry C, Pillar C, Sahm DF. In vitro activity of telavancin against recent Gram-positive clinical isolates: results of the 2004–05 Prospective European Surveillance Initiative. J. Antimicrob. Chemother.62, 116–121 (2008).
  • Stryjewski ME, Graham DR, Wilson SE et al. Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by Gram-positive organisms. Clin. Infect. Dis.46, 1683–1693 (2008).
  • Crandon J, Nicolau DP: Oritavancin. a potential weapon in the battle against serious Gram-positive pathogens. Future Microbiol.3, 251–263 (2008).
  • Zhanel GG, Sniezek G, Schweizer F et al. Ceftaroline: A novel broad-spectrum cephalosporin with activity against meticillin-resistant Staphylococcus aureus. Drugs69, 809–831 (2009).
  • Kanafani ZA, Corey GR. Ceftaroline: a cephalosporin with expanded Gram-positive activity. Future Microbiol.4, 25–33 (2009).
  • Laue H, Weiss L, Bernardi A, Hawser S, Lociuro S, Islam K. In vitro activity of the novel diaminopyrimidine, iclaprim, in combination with folate inhibitors and other antimicrobials with different mechanisms of action. J. Antimicrob. Chemother.60, 1391–1394 (2007).
  • Schneider P, Hawser S, Islam K. Iclaprim, a novel diaminopyrimidine with potent activity on trimethoprim sensitive and resistant bacteria. Bioorg. Med. Chem. Lett.13, 4217–4221 (2003).
  • Krievins D, Brandt R, Hawser S, Hadvary P, Islam K. Multicenter, randomized study of the efficacy and safety of intravenous iclaprim in complicated skin and skin structure infections. Antimicrob. Agents Chemother.53, 2834–2840 (2009).
  • Lawrence L, Danese P, DeVito J, Franceschi F, Sutcliffe J. In vitro activities of the Rx-01 oxazolidinones against hospital and community pathogens. Antimicrob. Agents Chemother.52, 1653–1662 (2008).
  • Leonard SN, Cheung CM, Rybak MJ. Activities of ceftobiprole, linezolid, vancomycin, and daptomycin against community-associated and hospital-associated methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother.52, 2974–2976 (2008).
  • Traczewski MM, Katz BD, Steenbergen JN, Brown SD. Inhibitory and bactericidal activities of daptomycin, vancomycin, and teicoplanin against methicillin-resistant Staphylococcus aureus isolates collected from 1985 to 2007. Antimicrob. Agents Chemother.53, 1735–1738 (2009).
  • Noviello S, Ianniello F, Esposito S. In vitro activity of LY333328 (oritavancin) against Gram-positive aerobic cocci and synergy with ciprofloxacin against enterococci. J. Antimicrob. Chemother.48, 283–286 (2001).
  • Patel R, Rouse MS, Piper KE, Cockerill FR, 3rd, Steckelberg JM. In vitro activity of LY333328 against vancomycin-resistant enterococci, methicillin-resistant Staphylococcus aureus, and penicillin-resistant Streptococcus pneumoniae. Diagn. Microbiol. Infect. Dis.30, 89–92 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.