104
Views
26
CrossRef citations to date
0
Altmetric
Review

Novel methods of targeted drug delivery: the potential of multifunctional nanoparticles

, , &
Pages 265-282 | Published online: 10 Jan 2014

References

  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science303(5665), 1818–1822 (2004).
  • Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature388(6645), 860–862 (1997).
  • Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release73(2–3), 137–172 (2001).
  • Nasongkla N, Bey E, Ren JM et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett.6(11), 2427–2430 (2006).
  • Sawant RM, Hurley JP, Salmaso S et al. “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug. Chem.17(4), 943–949 (2006).
  • Dass CR, Choong PFM. Selective gene delivery for cancer therapy using cationic liposomes: in vivo proof of applicability. J. Control. Release113(2), 155–163 (2006).
  • Li SD, Huang L. Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene Ther.13(18), 1313–1319 (2006).
  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev.55(3), 329–347 (2003).
  • Agu RU, Ugwoke MI, Armand M, Kinget R, Verbeke N. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir. Res.2(4), 198–209 (2001).
  • Grenha A, Seijo B, Remunan-Lopez C. Microencapsulated chitosan nanoparticles for lung protein delivery. Eur. J. Pharm. Sci.25(4–5), 427–437 (2005).
  • Pinto-Andary H, Andremont A, Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int. J. Antimicrob. Agents13(3), 155–168 (2000).
  • Kreuter J. Liposomes and nanoparticles as vehicles for antibiotics. Infection19, S224–S228 (1991).
  • Lobenberg R, Kreuter J. Macrophage targeting of azidothymidine: a promising strategy for AIDS therapy. AIDS Res. Hum. Retroviruses12(18), 1709–1715 (1996).
  • Courrier HM, Butz N, Vandamme TF. Pulmonary drug delivery systems: recent developments and prospects. Crit. Rev. Ther. Drug Carrier Syst.19(4–5), 425–498 (2002).
  • Arnedo A, Irache JM, Merodio M, Millan MSE. Albumin nanoparticles improved the stability, nuclear accumulation and anticytomegaloviral activity of a phosphodiester oligonucleotide. J. Control. Release94(1), 217–227 (2004).
  • Mishra V, Mahor S, Rawat A et al. Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J. Drug Target.14(1), 45–53 (2006).
  • Chattopadhyay P, Gupta RB. Production of griseofulvin nanoparticles using supercritical CO2 antisolvent with enhanced mass transfer. Int. J. Pharm.228(1–2), 19–31 (2001).
  • Pandey R, Ahmad Z, Sharma S, Khuller GK. Nano-encapsulation of azole antifungals: potential applications to improve oral drug delivery. Int. J. Pharm.301(1–2), 268–276 (2005).
  • Walsh TJ, Viviani MA, Arathoon E et al. New targets and delivery systems for antifungal therapy. Med. Mycol.38, 335–347 (2000).
  • Dong YC, Feng SS. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials25(14), 2843–2849 (2004).
  • Feng SS, Mu L, Win KY, Huang GF. Nanoparticles of biodegradable polymers for clinical administration of paclitaxel. Curr. Med. Chem.11(4), 413–424 (2004).
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer5(3), 161–171 (2005).
  • Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carrier Syst.20(5), 357–403 (2003).
  • Rogers TL, Gillespie IB, Hitt JE et al. Development and characterization of a scalable controlled precipitation process to enhance the dissolution of poorly water-soluble drugs. Pharm. Res.21(11), 2048–2057 (2004).
  • Harbury L. Solubility and melting point as functions of particle size 1. J. Phys. Chem.50(3), 190–199 (1946).
  • Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci.18(2), 113–120 (2003).
  • Torchilin VP, Lukyanov AN. Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov. Today8(6), 259–266 (2003).
  • Monfardini C, Veronese FM. Stabilization of substances in circulation. Bioconjug. Chem.9(4), 418–450 (1998).
  • Gref R, Domb A, Quellec P et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Deliv. Rev.16(2–3), 215–233 (1995).
  • Subramanian S, Parthasarathy R, Sen S, Boder ET, Discher DE. Species- and cell type-specific interactions between CD47 and human SIRP{a}. Blood107(6), 2548–2556 (2006).
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev.53(2), 283–318 (2001).
  • Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng.100(1), 1–11 (2005).
  • Patri AK, Kukowska-Latallo JF, Baker JR. Targeted drug delivery with dendrimers: Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv. Drug Deliv. Rev.57(15), 2203–2214 (2005).
  • Langer R. Drug delivery and targeting. Nature392(6679), 5–10 (1998).
  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev.56(11), 1649–1659 (2004).
  • Goldberg M, Langer R, Jia XQ. Nanostructured materials for applications in drug delivery and tissue engineering. J. Biomater. Sci. Polym. Ed.18(3), 241–268 (2007).
  • Staples M, Daniel K, Cima MJ, Langer R. Application of micro- and nano-electromechanical devices to drug delivery. Pharm. Res.23(5), 847–863 (2006).
  • Kong G, Braun RD, Dewhirst MW. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res.60(16), 4440–4445 (2000).
  • Gabizon A, Goren D, Horowitz AT, Tzemach D, Lossos A, Siegal T. Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Adv. Drug Deliv. Rev.24(2–3), 337–344 (1997).
  • Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv. Drug Deliv. Rev.55(10), 1261–1277 (2003).
  • Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul.41(1), 189–207 (2001).
  • Maeda H, Seymour LW, Miyamoto Y. Conjugates of anticancer agents and polymers: advantages of macromolecular therapeutics in vivo.Bioconjug. Chem.3(5), 351–362 (1992).
  • Kaul G, Amiji M. Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm. Res.19(7), 1061–1067 (2002).
  • Moghimi SM, Hunter AC, Murray JC et al. Cellular distribution of nonionic micelles. Science303(5658), 626–628 (2004).
  • Venugopal J, Prabhakaran MP, Low S et al. Nanotechnology for nanomedicine and delivery of drugs. Curr. Pharm. Des.14(22), 2184–2200 (2008).
  • Bai SH, Thomas C, Rawat A, Ahsan F. Recent progress in dendrimer-based nanocarriers. Crit. Rev. Ther. Drug Carrier Syst.23(6), 437–495 (2006).
  • Bae Y, Nishiyama N, Kataoka K. In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjug. Chem.18(4), 1131–1139 (2007).
  • Fernandez-Megia E, Novoa-Carballal R, Quinoa E, Riguera R. Conjugation of bioactive ligands to PEG-grafted chitosan at the distal end of PEG. Biomacromolecules8(3), 833–842 (2007).
  • Zeng FQ, Lee H, Allen C. Epidermal growth factor-conjugated poly(ethylene glycol)-block-poly(d-valerolactone) copolymer micelles for targeted delivery of chemotherapeutics. Bioconjug. Chem.17(2), 399–409 (2006).
  • Vinogradov S, Batrakova E, Li S, Kabanov A. Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells. Bioconjug. Chem.10(5), 851–860 (1999).
  • Gindy ME, Ji S, Hoye TR, Panagiotopoulos AZ, Prud’homme RK. Preparation of poly(ethylene glycol) protected nanoparticles with variable bioconjugate ligand density. Biomacromolecules9, 2705–2711 (2008).
  • Torchilin VP, Lukyanov AN, Gao ZG, Papahadjopoulos-Sternberg B. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc. Natl Acad. Sci. USA100(10), 6039–6044 (2003).
  • Jiang W, Kim BYS, Rutka JT, Chan WCW. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol.3(3), 145–150 (2008).
  • Gindy ME. PhD Thesis. In: Chemical Engineering. Princeton University, NJ, USA (2008)
  • Dharap SS, Wang Y, Chandna P et al. Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc. Natl Acad. Sci. USA102(36), 12962–12967 (2005).
  • Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science279(5349), 377–380 (1998).
  • Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev.41(2), 147–162 (2000).
  • Song EW, Zhu PC, Lee SK et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol.23(6), 709–717 (2005).
  • Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat. Biotechnol.23(9), 1137–1146 (2005).
  • Rudiger H, Siebert HC, Solis D et al. Medicinal chemistry based on the sugar code: fundamentals of lectinology and experimental strategies with lectins as targets. Curr. Med. Chem.7(4), 389–416 (2000).
  • Davis BG, Robinson MA. Drug delivery systems based on sugar-macromolecule conjugates. Curr. Opin. Drug Discov. Devel.5(2), 279–288 (2002).
  • Matsumoto T, Numata M, Anada T et al. Chemically modified polysaccharide schizophyllan for antisense oligonucleotides delivery to enhance the cellular uptake efficiency. Biochim. Biophys. Acta1670(2), 91–104 (2004).
  • Leamon CP, Low PS. Delivery of macromolecules into living cells – a method that exploits folate receptor endocytosis. Proc. Natl Acad. Sci. USA88(13), 5572–5576 (1991).
  • Astriab-Fisher A, Sergueev D, Fisher M, Shaw BR, Juliano RL. Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: effects on cellular uptake, binding to target sequences, and biologic actions. Pharm. Res.19(6), 744–754 (2002).
  • Bugaj JE, Achilefu S, Dorshow RB, Rajagopalan R. Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform. J. Biomed. Opt.6(2), 122–133 (2001).
  • Wunderbaldinger P, Josephson L, Weissleder R. Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. Bioconjug. Chem.13(2), 264–268 (2002).
  • Curnis F, Sacchi A, Borgna L, Magni F, Gasparri A, Corti A. Enhancement of tumor necrosis factor a antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat. Biotechnol.18(11), 1185–1190 (2000).
  • Lee JH, Canny MD, De Erkenez A et al. A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF(165). Proc. Natl Acad. Sci. USA102(52), 18902–18907 (2005).
  • Hicke BJ, Stephens AW, Gould T et al. Tumor targeting by an aptamer. J. Nucl. Med.47(4), 668–678 (2006).
  • Javier DJ, Nitin N, Levy M, Ellington A, Richards-Kortum R. Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconjug. Chem.19(6), 1309–1312 (2008).
  • Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Ann. Rev. Immunol.17, 593–623 (1999).
  • Kim TH, Jin H, Kim HW, Cho MH, Cho CS. Mannosylated chitosan nanoparticle-based cytokine gene therapy suppressed cancer growth in BALB/c mice bearing CT-26 carcinoma cells. Mol. Cancer Ther.5(7), 1723–1732 (2006).
  • Oberdorster G, Sharp Z, Atudorei V et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J. Toxicol. Environ. Health Part A65(20), 1531–1543 (2002).
  • Musante CJ, Schroeter JD, Rosati JA, Crowder TM, Hickey AJ, Martonen TB. Factors affecting the deposition of inhaled porous drug particles. J. Pharm. Sci.91(7), 1590–1600 (2002).
  • Liu Y. PhD thesis. Formulating nanoparticles by Flash NanoPrecipitation for drug delivery and sustained release. In: Chemical Engineering. Princeton University, Princeton, NJ, USA (2007).
  • Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin.55(3), 178–194 (2005).
  • Sapra P, Allen TM. Ligand-targeted liposomal anticancer drugs. Prog. Lipid Res.42(5), 439–462 (2003).
  • Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature256(5517), 495–497 (1975).
  • Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett.268(1), 235–237 (1990).
  • Torchilin VP. Drug targeting. Eur. J. Pharm. Sci.11(Suppl. 2), S81–S91 (2000).
  • Yokoyama M, Kwon GS, Okano T, Sakurai Y, Seto T, Kataoka K. Preparation of micelle-forming polymer drug conjugates. Bioconjug. Chem.3(4), 295–301 (1992).
  • Leserman LD, Barbet J, Kourilsky F, Weinstein JN. Targeting to cells of fluorecent liposomes covalently coupled with monoclonal antibody or protein-A. Nature288(5791), 602–604 (1980).
  • Boas U, Heegaard PMH. Dendrimers in drug research. Chem. Soc. Rev.33(1), 43–63 (2004).
  • Tada H, Higuchi H, Wanatabe TM, Ohuchi N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res.67(3), 1138–1144 (2007).
  • McDevitt MR, Chattopadhyay D, Kappel BJ et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J. Nucl. Med.48(7), 1180–1189 (2007).
  • Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro.Biochim. Biophys. Acta1233(2), 134–144 (1995).
  • Kim SH, Jeong JH, Joe CO, Park TG. Folate receptor mediated intracellular protein delivery using PLL–PEG–FOL conjugate. J. Control. Release103(3), 625–634 (2005).
  • Park EK, Kim SY, Lee SB, Lee YM. Folate-conjugated methoxy poly(ethylene glycol)/poly(e-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. J. Control. Release109(1–3), 158–168 (2005).
  • Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid–PEG conjugates. Adv. Drug Deliv. Rev.56(8), 1177–1192 (2004).
  • Hilgenbrink AR, Low PS. Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J. Pharm. Sci.94(10), 2135–2146 (2005).
  • Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR. PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules7(2), 572–579 (2006).
  • Majoros IJ, Thomas TP, Mehta CB, Baker JR. Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J. Med. Chem.48(19), 5892–5899 (2005).
  • Guo Y, Feinberg H, Conroy E et al. Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat. Struct. Mol. Biol.11(7), 591–598 (2004).
  • Kannagi R, Izawa M, Koike T, Miyazaki K, Kimura N. Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci.95(5), 377–384 (2004).
  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J.382, 769–781 (2004).
  • Fujita T, Matsushita M, Endo Y. The lectin-complement pathway – its role in innate immunity and evolution. Immunol. Rev.198(1), 185–202 (2004).
  • Lemarchand C, Gref R, Couvreur P. Polysaccharide-decorated nanoparticles. Eur. J. Pharm. Biopharm.58(2), 327–341 (2004).
  • Goban Y, Saida T, Saida K, Nishitani H, Kameyama M. Role of nonspecific myelin destruction by delayed-type hypersensitivity in primary demyelination. J. Neurol. Sci.74(1), 97–109 (1986).
  • Sinibaldi L, Goldoni P, Seganti L, Superti F, Tsiang H, Orsi N. Gangliosides in early interactions between vesicular stomatitis-virus and cer cells. Microbiologica8(4), 355–365 (1985).
  • Utsumi T, Aizono Y, Funatsu G. Receptor-mediated interaction of ricin with the lipid bilayer of ganglioside GM1-liposomes. FEBS Lett.216(1), 99–103 (1987).
  • Rock P, Allietta M, Young WW, Thompson TE, Tillack TW. Organization of glycosphingolipids in phosphatidylcholine bilayers- use of antibody molecules and fab fragments as morphological markers. Biochemistry29(36), 8484–8490 (1990).
  • Sarkar DP, Blumenthal R. The role of the target membrane structure in fusion with sendai virus. Membrane Biochem.7(4), 231–248 (1987).
  • Maruyama K, Holmberg E, Kennel SJ, Klibanov A, Torchilin VP, Huang L. Characterization of in vivo immunoliposome targeting to pulmonary endothelium. J. Pharm. Sci.79(11), 978–984 (1990).
  • Russell DG, Wilhelm H. The involvement of the major surface glycoprotein (GP63) of Leishmania promastigotes in attachment to the macrophages. J. Immunol.136(7), 2613–2620 (1986).
  • Schmitz B, Klein RA. Lectin interactions with the variant surface glycoprotein from Trypanosoma brucei brucei incorporated into liposomes. Biochem. Biophys. Res. Commun.141(3), 1274–1278 (1986).
  • Sharom FJ, Ross TE. Association of gangliosides with the lymphocyte plasma-membrane studies using radiolabels and spin labels. Acta Biochim. Biophys.854(2), 287–297 (1986).
  • Bailey GB, Gilmour JR, McCoomer NE. Roles of target-cell membrane carbohydrate and lipid in entamoeba-histolytica interaction with mammalian-cells. Infect. Immun.58(7), 2389–2391 (1990).
  • Yu FB, Jiang TY, Zhang JH, Cheng LH, Wang SL. Galactosylated liposomes as oligodeoxynucleotides carrier for hepatocyte-selective targeting. Pharmazie62(7), 528–533 (2007).
  • Holig P, Bach M, Volkel T et al. Novel RGD lipopeptides for the targeting of liposomes to integrin-expressing endothelial and melanoma cells. Protein Eng. Des. Sel.17(5), 433–441 (2004).
  • Mitra M, Mandal AK, Chatterjee TK, Das N. Targeting of mannosylated liposome incorporated benzyl derivative of Penicillium nigricans derived compound MT81 to reticuloendothelial systems for the treatment of visceral leishmaniasis. J. Drug Target.13(5), 285–293 (2005).
  • Managit C, Kawakami S, Yamashita F, Hashida M. Effect of galactose density on asialoglycoprotein receptor-mediated uptake of galactosylated liposomes. J. Pharm. Sci.94(10), 2266–2275 (2005).
  • Goppert TM, Muller RH. Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J. Drug Target.13(3), 179–187 (2005).
  • Sauer I, Dunay IR, Weisgraber K, Bienert M, Dathe M. An apolipoprotein E-derived peptide mediates uptake of sterically stabilized liposomes into brain capillary endothelial cells. Biochemistry44(6), 2021–2029 (2005).
  • Peer D, Margalit R. Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal doxorubicin in syngeneic and human xenograft mouse tumor models. Neoplasia6(4), 343–353 (2004).
  • Peer D, Margalit R. Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int. J. Cancer108(5), 780–789 (2004).
  • Wernig K, Griesbacher M, Andreae F et al. Depot formulation of vasoactive intestinal peptide by protamine-based biodegradable nanoparticles. J. Control. Release130(2), 192–198 (2008).
  • Bibby DC, Talmadge JE, Dalal MK et al. Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice. Int. J. Pharm.293(1–2), 281–290 (2005).
  • Kale AA, Torchilin VP. “Smart” drug carriers: PEGylated TATp-modified pH-sensitive liposomes. J. Liposome Res.17(3–4), 197–203 (2007).
  • Momekova D, Rangelov S, Yanev S et al. Long-circulating, pH-sensitive liposomes sterically stabilized by copolymers bearing short blocks of lipid-mimetic units. Eur. J. Pharm. Sci.32(4–5), 308–317 (2007).
  • Gil ES, Hudson SA. Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci.29(12), 1173–1222 (2004).
  • Chaw CS, Chooi KW, Liu XM, Tan CW, Wang L, Yang YY. Thermally responsive core-shell nanoparticles self-assembled from cholesteryl end-capped and grafted polyacrylamides: drug incorporation and in vitro release. Biomaterials25(18), 4297–4308 (2004).
  • Sant VP, Smith D, Leroux JC. Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization. J. Control. Release97(2), 301–312 (2004).
  • Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci.32(8–9), 962–990 (2007).
  • Chung JE, Yokoyama M, Aoyagi T, Sakurai Y, Okano T. Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J. Control. Release53(1–3), 119–130 (1998).
  • Lee SH, Choi SH, Kim SH, Park TG. Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: swelling induced physical disruption of endosome by cold shock. J. Control. Release125(1), 25–32 (2008).
  • Kohori F, Sakai K, Aoyagi T, Yokoyama M, Sakurai Y, Okano T. Preparation and characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide-b-dl-lactide). J. Control. Release55(1), 87–98 (1998).
  • Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev.58(15), 1655–1670 (2006).
  • Neradovic D, Soga O, Van Nostrum CF, Hennink WE. The effect of the processing and formulation parameters on the size of nanoparticles based on block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) with and without hydrolytically sensitive groups. Biomaterials25(12), 2409–2418 (2004).
  • Vandenelsen PA, Pol EJD, Viergever MA. Medical image matching – a review with classification. IEEE Eng. Med. Biol. Mag.12(1), 26–39 (1993).
  • Daldrup-Link HE, Simon GH, Brasch RC. Imaging of tumor angiogenesis: current approaches and future prospects. Curr. Pharm. Des.12(21), 2661–2672 (2006).
  • Flacke S, Fischer S, Scott MJ et al. Novel MRI contrast agent for molecular imaging of fibrin implications for detecting vulnerable plaques. Circulation104(11), 1280–1285 (2001).
  • Anzai Y. Superparamagnetic iron oxide nanoparticles: nodal metastases and beyond. Top. Magn. Reson. Imaging15(2), 103–111 (2004).
  • Langer R. Perspectives: drug delivery – drugs on target. Science293(5527), 58–59 (2001).
  • Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo.Proc. Natl Acad. Sci. USA99(20), 12617–12621 (2002).
  • Glennie MJ, Johnson PWM. Clinical trials of antibody therapy. Immunol. Today21(8), 403–410 (2000).
  • Ahmad I, Longenecker M, Samuel J, Allen TM. Antibody-targeted delivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice. Cancer Res.53(7), 1484–1488 (1993).
  • Nielsen UB, Kirpotin DB, Pickering EM et al. Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochim. Biophys. Acta1591(1–3), 109–118 (2002).
  • Gao Z, Lukyanov AN, Chakilam AR, Torchilin VP. PEG-PE/phosphatidylcholine mixed immunomicelles specifically deliver encapsulated taxol to tumor cells of different origin and promote their efficient killing. J. Drug Target.11(2), 87–92 (2003).
  • Wu G, Barth RF, Yang WL, Kawabata S, Zhang LW, Green-Church K. Targeted delivery of methotrexate to epidermal growth factor receptor-positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Mol. Cancer Ther.5(1), 52–59 (2006).
  • Hansen CB, Kao GY, Moase EH, Zalipsky S, Allen TM. Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. Biochim. Biophys. Acta1239(2), 133–144 (1995).
  • Lu D, Zhang HF, Koo H et al. A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J. Biol. Chem.280(20), 19665–19672 (2005).
  • Ni S, Stephenson SM, Lee RJ. Folate receptor targeted delivery of liposomal daunorubicin into tumor cells. Anticancer Res.22(4), 2131–2135 (2002).
  • Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin. Cancer Res.6(5), 1949–1957 (2000).
  • Stevens PJ, Sekido M, Lee RJ. A folate receptor-targeted lipid nanoparticle formulation for a lipophilic paclitaxel prodrug. Pharm. Res.21(12), 2153–2157 (2004).
  • Park EK, Lee SB, Lee YM. Preparation and characterization of methoxy poly(ethylene glycol)/poly([var e]-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials26(9), 1053–1061 (2005).
  • Anderson KE, Eliot LA, Stevenson BR, Rogers JA. Formulation and evaluation of a folic acid receptor-targeted oral vancomycin liposomal dosage form. Pharm. Res.18(3), 316–322 (2001).
  • Wang S, Lee RJ, Cauchon G, Gorenstein DG, Low PS. Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol. Proc. Natl Acad. Sci. USA92(8), 3318–3322 (1995).
  • Jones MN. Carbohydrate-mediated liposomal targeting and drug delivery. Adv. Drug Deliv. Rev.13(3), 215–249 (1994).
  • Ichinose K, Yamamoto M, Khoji T, Ishii N, Sunamoto J, Kanematsu T. Antitumor effect of polysaccharide coated liposomal adriamycin on AH66 hepatoma in nude mice. Anticancer Res.18(1A), 401–404 (1998).
  • Yamamoto M, Ichinose K, Ishii N et al. Utility of liposomes coated with polysaccharide bearing 1-aminolactose as targeting chemotherapy for AH66 hepatoma cells. Oncol. Rep.7(1), 107–111 (2000).
  • Wang SN, Deng YH, Xu H, Wu HB, Qiu YK, Chen DW. Synthesis of a novel galactosylated lipid and its application to the hepatocyte-selective targeting of liposomal doxorubicin. Eur. J. Pharm. Biopharm.62(1), 32–38 (2006).
  • Zalipsky S, Qazen M, Walker JA, Mullah N, Quinn YP, Huang SK. New Detachable poly(ethylene glycol) conjugates: cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phosphatidylethanolamine. Bioconjug. Chem.10(5), 703–707 (1999).
  • Guo X, Szoka FC. Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG–diortho ester-lipid conjugate. Bioconjug. Chem.12(2), 291–300 (2001).
  • Boomer JA, Thompson DH. Synthesis of acid-labile diplasmenyl lipids for drug and gene delivery applications. Chem. Phys. Lipids99(2), 145–153 (1999).
  • Heffernan MJ, Murthy N. Polyketal nanoparticles: a new pH-sensitive biodegradable drug delivery vehicle. Bioconjug. Chem.16(6), 1340–1342 (2005).
  • Kratz F, Beyer U, Schutte MT. Drug-polymer conjugates containing acid-cleavable bonds. Crit. Rev. Ther. Drug Carrier Syst.16(3), 245–288 (1999).
  • Leroux J-C, Roux E, Le Garrec D, Hong K, Drummond DC. N-isopropylacrylamide copolymers for the preparation of pH-sensitive liposomes and polymeric micelles. J. Control. Release72(1–3), 71–84 (2001).
  • Roux E, Stomp R, Giasson S, Pezolet M, Moreau P, Leroux JC. Steric stabilization of liposomes by pH-responsive N-isopropylacrylamide copolymer. J. Pharm. Sci.91(8), 1795–1802 (2002).
  • Sudimack JJ, Guo W, Tjarks W, Lee RJ. A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochim. Biophys. Acta1564(1), 31–37 (2002).
  • Lee ES, Shin HJ, Na K, Bae YH. Poly(l-histidine)–PEG block copolymer micelles and pH-induced destabilization. J. Control. Release90(3), 363–374 (2003).
  • Maeda M, Kumano A, Tirrell DA. H+-induced release of contents of phosphatidylcholine vesicles bearing surface-bound polyelectrolyte chains. J. Am. Chem. Soc.110(22), 7455–7459 (1988).
  • Meyer O, Papahadjopoulos D, Leroux J-C. Copolymers of N-isopropylacrylamide can trigger pH sensitivity to stable liposomes. FEBS Lett.421(1), 61–64 (1998).
  • Kakudo T, Chaki S, Futaki S et al. Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artificial viral-like delivery system. Biochemistry43(19), 5618–5628 (2004).
  • Shi G, Guo W, Stephenson SM, Lee RJ. Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. J. Control. Release80(1–3), 309–319 (2002).
  • Devalapally H, Shenoy D, Little S, Langer R, Amiji M. Poly(ethylene oxide)-modified poly(b-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemother. Pharmacol.59(4), 477–484 (2007).
  • Shenoy D, Little S, Langer R, Amiji M. Poly(ethylene oxide)-modified poly(b-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Mol. Pharm.2(5), 357–366 (2005).
  • Shenoy D, Little S, Langer R, Amiji M. Poly(ethylene oxide)-modified poly(b-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs:part 2. In vivo distribution and tumor localization studies. Pharm. Res.22(12), 2107–2114 (2005).
  • Hong K, Schuber F, Papahadjopoulos D. Polyamines. Biological modulators of membrane fusion. Biochim. Biophys. Acta732(2), 469–472 (1983).
  • Walter A, Steer CJ, Blumenthal R. Polylysine induces pH-dependent fusion of acidic phospholipid-vesicles a model for polycation-induced fusion. Acta Biochim. Biophys.861(2), 319–330 (1986).
  • Gad AE, Silver BL, Eytan GD. Polycation-induced fusion of negatively-charged vesicles. Acta Biochim. Biophys.690(1), 124–132 (1982).
  • Uster PS, Deamer DW. pH-dependent fusion of liposomes using titratable polycations. Biochemistry24(1), 1–8 (1985).
  • Richardson S, Ferruti P, Duncan R. Poly(amidoamine)s as potential endosomolytic polymers: evaluation in vitro and body distribution in normal and tumour-bearing animals. J. Drug Target.6(6), 391–404 (1999).
  • Chung JC, Gross DJ, Thomas JL, Tirrell DA, Opsahl-Ong LR. pH-sensitive, cation-selective channels formed by a simple synthetic polyelectrolyte in artificial bilayer membranes. Macromolecules29(13), 4636–4641 (1996).
  • Mills JK, Eichenbaum G, Needham D. Effect of bilayer cholesterol and surface grafted poly(ethylene glycol) on pH-induced release of contents from liposomes by poly(2-ethylacrylic acid). J. Liposome Res.9(2), 275–290 (1999).
  • Kono K, Nakai R, Morimoto K, Takagishi T. Thermosensitive polymer-modified liposomes that release contents around physiological temperature. Biochim. Biophys. Acta1416(1–2), 239–250 (1999).
  • Thomas JL, Devlin BP, Tirrell DA. Kinetics of membrane micellization by the hydrophobic polyelectrolyte poly(2-ethylacrylic acid). Biochim. Biophys. Acta1278(1), 73–78 (1996).
  • Pinilla IM, Martinez MB, Tirrell DA. Selective H+ dependent release of contents from thymine-labeled phospholipid-vesicles by an adenine-labeled polyelectrolyte. Macromolecules27(10), 2671–2674 (1994).
  • Kitano H, Akatsuka Y, Ise N. pH-responsive liposomes which contain amphiphiles prepared by using lipophilic radical initiator. Macromolecules24(1), 42–46 (1991).
  • Chen T, Choi LS, Einstein S, Klippenstein MA, Scherrer P, Cullis PR. Proton-induced permeability and fusion of large unilamellar vesicles by covalently conjugated poly(2-ethylacrylic acid). J. Liposome Res.9(3), 387–405 (1999).
  • Schroeder UKO, Tirrell DA. Structural reorganization of phosphatidylcholine vesicle membranes by poly(2-ethylacrylic acid)-influence of the molecular-weight of the polymer. Macromolecules22(2), 765–769 (1989).
  • Needham D, Mills J, Eichenbaum G. Interactions between poly(2-ethylacrylic acid) and lipid bilayer membranes: effects of cholesterol and grafted poly(ethylene glycol). Faraday Discuss.111(111), 103–110 (1998).
  • Dufresne MH, Garrec DL, Sant V, Leroux JC, Ranger M. Preparation and characterization of water-soluble pH-sensitive nanocarriers for drug delivery. Int. J. Pharm.277(1–2), 81–90 (2004).
  • Hrubý M, Konák C, Ulbrich K. Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J. Control. Release103(1), 137–148 (2005).
  • Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J. Control. Release103(2), 405–418 (2005).
  • Rice JR, Gerberich JL, Nowotnik DP, Howell SB. Preclinical efficacy and pharmacokinetics of AP5346, a novel diaminocyclohexane-platinum tumor-targeting drug delivery system. Clin. Cancer Res.12(7), 2248–2254 (2006).
  • Li WJ, Huang ZH, MacKay JA, Grube S, Szoka FC. Low-pH-sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanlipoparticles: effects of PEG chain length, lipid composition and assembly conditions on gene delivery. J. Gene Med.7(1), 67–79 (2005).
  • Chen W-H, Regen SL. Thermally gated liposomes. J. Am. Chem. Soc.127(18), 6538–6539 (2005).
  • Chung JE, Yokoyama M, Suzuki K, Aoyagi T, Sakurai Y, Okano T. Reversibly thermo-responsive alkyl-terminated poly(N-isopropylacrylamide) core-shell micellar structures. Colloids Surf. B Biointerfaces9(1–2), 37–48 (1997).
  • Liu SQ, Tong YW, Yang YY. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(d,l-lactide -co-glycolide) with varying compositions. Biomaterials26(24), 5064–5074 (2005).
  • Harisinghani MG, Weissleder R. Sensitive, noninvasive detection of lymph node metastases. PLoS Med.1(3), 202–209 (2004).
  • Artemov D. Molecular magnetic resonance imaging with targeted contrast agents. J. Cell. Biochem.90(3), 518–524 (2003).
  • Winter PM, Caruthers SD, Yu X et al. Improved molecular imaging contrast agent for detection of human thrombus. Magn. Reson. Med.50(2), 411–416 (2003).
  • Yu X, Song SK, Chen JJ et al. High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn. Reson. Med.44(6), 867–872 (2000).
  • Nasongkla N, Bey E, Ren J et al. Multifunctional polymeric micelles as cancer-targeted, mri-ultrasensitive drug delivivery systems. Nano Lett.6(11), 2427–2430 (2006).
  • Hochepied JF, Pileni MP. Magnetic properties of mixed cobalt – zinc ferrite nanoparticles. J. Appl. Phys.87(5), 2472–2478 (2000).
  • Morawski AM, Winter PM, Crowder KC et al. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn. Reson. Med.51(3), 480–486 (2004).
  • Gupta AK, Berry C, Gupta M, Curtis A. Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis. IEEE Trans. Nanobioscience2(4), 255–261 (2003).
  • Lee JH, Huh YM, Jun Y et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med.13(1), 95–99 (2007).
  • Ke C-Y, Mathias CJ, Green MA. The folate receptor as a molecular target for tumor-selective radionuclide delivery. Nucl. Med. Biol.30(8), 811–817 (2003).
  • Mathias CJ, Lewis MR, Reichert DE et al. Preparation of 66Ga- and 68Ga-labeled Ga(III)-deferoxamine-folate as potential folate-receptor-targeted PET radiopharmaceuticals. Nucl. Med. Biol.30(7), 725–731 (2003).
  • Hicke BJ, Stephens AW, Gould T et al. Tumor targeting by an aptamer. J. Nucl. Med.47(4), 668–678 (2006).
  • Front D, Israel O. The role of Ga-97 Scintigraphy in evaluating the results of therapy of lymphoma patients. Semin. Nucl. Med.25(1), 60–71 (1995).
  • van Leeuwen-Stok AE, Dräger AM, Schuurhuis GJ, Platier AWJ, Teule GJJ, Huijgens PC. Gallium 67 in the human lymphoid cell line U-715: uptake, cytotoxicity and intracellular localization. Int. J. Radiat. Biol.64(6), 749–759 (1993).
  • Vera DR. Gallium-labeled deferoxamine-galactosyl-neoglycoalbumin – a radiopharmaceutical for regional measurement of hepatic receptor biochemistry. J. Nucl. Med.33(6), 1160–1166 (1992).
  • Wang S, Lee RJ, Mathias CJ, Green MA, Low PS. Synthesis, purification, and tumor cell uptake of 67Ga-deferoxamine–folate, a potential radiopharmaceutical for tumor imaging. Bioconjug. Chem.7(1), 56–62 (1996).
  • Mathias CJ, Wang S, Waters DJ, Turek JJ, Low PS, Green MA. Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. J. Nucl. Med.39(9), 1579–1585 (1998).
  • De La Zerda A, Zavaleta C, Keren S et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol.3(9), 557–562 (2008).
  • Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol.22(8), 969–976 (2004).
  • Sullivan DC, Ferrari M. Nanotechnology and tumor imaging: seizing an opportunity. Mol. Imaging3(4), 364–369 (2004).
  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater.4(6), 435–446 (2005).
  • Jain K. Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev. Mol. Diagn.3(2), 153–161 (2003).
  • Lubbe AS, Bergemann C, Huhnt W et al. Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res.56(20), 4694–4701 (1996).
  • Jurgons R, Seliger C, Hilpert A, Trahms L, Odenbach S, Alexiou C. Drug loaded magnetic nanoparticles for cancer therapy. J. Phys. Condens. Matter.18(38), S2893–S2902 (2006).
  • Medarova Z, Pham W, Kim Y, Dai GP, Moore A. In vivo imaging of tumor response to therapy using a dual-modality imaging strategy. Int. J. Cancer118(11), 2796–2802 (2006).
  • Mitra A, Mulholland J, Nan A, McNeill E, Ghandehari H, Line BR. Targeting tumor angiogenic vasculature using polymer-RGD conjugates. J. Control. Release102(1), 191–201 (2005).
  • Brooks PC, Clark RAF, Cheresh DA. Requirement of vascular integrin A(V)B(3) for angiogenesis. Science264(5158), 569–571 (1994).
  • Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN. Targeted quantum dot conjugates for siRNA delivery. Bioconjug. Chem.18(5), 1391–1396 (2007).
  • Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf. B Biointerfaces16(1–4), 3–27 (1999).
  • Kabanov AV, Nazarova IR, Astafieva IV et al. Micelle formation and solubilization of fluorescent-probes in poly(oxyethylene-b-oxypropylene-b-oxyethylene) solutions. Macromolecules28(7), 2303–2314 (1995).
  • Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Adv. Drug Deliv. Rev.54(2), 203–222 (2002).
  • Rosler A, Vandermeulen GWM, Klok HA. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliv. Rev.53(1), 95–108 (2001).
  • Savic R, Luo LB, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science300(5619), 615–618 (2003).
  • Kumar V, Prud’homme RK. Thermodynamic limits on drug loading in nanoparticle cores. J. Pharm. Sci.97(11), 4904–4914 (2008).
  • Kim SY, Shin ILG, Lee YM, Cho CS, Sung YK. Methoxy poly(ethylene glycol) and epsilon-caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours. J. Control. Release51(1), 13–22 (1998).
  • La SB, Okano T, Kataoka K. Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(b-benzyl l-aspartate) block copolymer micelles. J. Pharm. Sci.85(1), 85–90 (1996).
  • Johnson BK, Prud’homme RK. Chemical processing and micromixing in confined impinging jets. AIChE J.49(9), 2264–2282 (2003).
  • Johnson BK, Prud’homme RK. Mechanism for rapid self-assembly of block copolymer nanoparticles. Phys. Rev. Lett.91(11), 118302 (2003).
  • Dixon DJ, Johnston KP, Bodmeier RA. Polymeric materials formed by precipitation with a compressed fluid antisolvent. AIChE J.39(1), 127–139 (1993).
  • Timothy J. Young KPJ, Mishima K, Tanaka H. Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid antisolvent. J. Pharm. Sci.88(6), 640–650 (1999).
  • Hoeben BJ, Burgess DS, McConville JT et al.In vivo efficacy of aerosolized nanostructured itraconazole formulations for prevention of invasive pulmonary aspergillosis. Antimicrob. Agents Chemother.50(4), 1552–1554 (2006).
  • Matteucci ME, Hotze MA, Williams RO, Johnston KP. Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. Langmuir22(21), 8951–8959 (2006).
  • Pham KN, Puertas AM, Bergenholtz J et al. Multiple glassy states in a simple model system. Science296(5565), 104–106 (2002).
  • Kumar V, Prud’homme RK. Thermodynamic limits on drug loading in nanoparticle cores. J. Pharm. Sci.97(11), 4904–4914 (2008).
  • Liu Y, Cheng C, Liu Y, Prud’homme RK, Fox RO. Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chem. Eng. Sci.63(11), 2829–2842 (2008).
  • Johnson BK, Prud’homme RK. Flash NanoPrecipitation of organic actives and block copolymers using a confined impinging jets mixer. Aust. J. Chem.56(10), 1021–1024 (2003).
  • Gindy ME, Panagiotopoulos AZ, Prud’homme RK. Composite block copolymer stabilized nanoparticles: simultaneous encapsulation of organic actives and inorganic nanostructures. Langmuir24(1), 83–90 (2008).
  • Akbulut M, Ginart P, Gindy ME, Theriault C, Sobojeyo W, Prud’homme RK. Generic method of preparing fluorescent nanoparticles using Flash NanoPrecipitation (FNP). Adv. Funct. Mater.19–15, 718–725 (2009).
  • Szoka F, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl Acad. Sci. USA75(9), 4194–4198 (1978).
  • Szoka F, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Ann. Rev. Biophys. Bioeng.9, 467–508 (1980).
  • Israelachvili JN. Intermolecular and Surface Forces. Academic Press, London, UK (1991).
  • Sofou S, Thomas JL, Lin HY, McDevitt MR, Scheinberg DA, Sgouros G. Engineered liposomes for potential a-particle therapy of metastatic cancer. J. Nucl. Med.45(2), 253–260 (2004).
  • Shvedova AA, Castranova V, Kisin ER et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Envrion. Health Part A66(20), 1909 (2003).
  • Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett.4(1), 11–18 (2004).
  • Savic R, Luo L, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science300(5619), 615–618 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.