26
Views
2
CrossRef citations to date
0
Altmetric
Review

Strategies towards more effective anticancer therapies: targeting DNA damage response pathways

Pages 103-115 | Published online: 10 Jan 2014

References

  • Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J. Pathol.205, 275–292 (2005).
  • Ame JC, Splenlehauer C, de Murcia G. The PARP superfamily. Bioessays26, 882–893 (2004).
  • Malanga M, Althaus FR. The role of poly(ADP-ribose) in the DNA damage signaling network. Biochem. Cell Biol.83, 354–364 (2005).
  • Memisologu A, Samson L. Base excision repair in yeast and mammals. Mutat. Res.451, 39–51 (2000).
  • Virag L, Szabo C. The therapeutic potential of poly(ADP-ribose) inhibitors. Pharmacol. Rev.54(3), 375–429 (2002).
  • Graziani G, Szabo C. Clinical perspectives of PARP inhibitors. Pharmacol. Res.52(1), 109–118 (2005).
  • Jagtap P, Szabo C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat. Rev. Drug Disc.4(5) 421–440 (2005).
  • Horvath EM, Szabo C. Poly(ADP-ribose) polymerase as a drug target for cardiovascular disease and cancer: an update. Drug News Perspect.20(3), 171–181 (2007).
  • de Murcia JM, Niedergang C, Trucco C et al. Requirement of poly(ADP-ribose)polymerase in recovery from DNA damage in mice and cells. Proc. Natl Acad. Sci. USA94, 7303–7307 (1997).
  • Bryant HE, Schultz N, Thomas HW et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature434, 913–916 (2005).
  • Farmer H, McCabe N, Lord CJ et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature434, 917–921 (2005).
  • Ashworth A. A synthetic lethal approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J. Clin. Oncol.26, 3785–3790 (2008).
  • Lewis C, Low JA. Clinical poly(ADP-ribose)polymerase inhibitors for the treatment of cancer. Curr. Opin. Invest. Drugs8(12), 1051–1056 (2006).
  • Plummer ER. Inhibition of poly(ADP-ribose polymerase in cancer. Curr. Opin. Pharmacol.6, 362–368 (2006).
  • Ratnam K, Low JA. Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin Cancer Res.13(5), 1383–1388 (2007).
  • Jones C, Plummer ER. PARP inhibitors and cancer therapy – early results and potential applications. Br. J. Radiol. Special Issue81, S2–S5 (2008).
  • Tikhe JG, Webber SE, Hostomsky Z et al. Design, synthesis and evaluation of 3,4-dihydro-2H-[1,4]diazepino[6,7,1-hi]indol-1-ones as inhibitors of poly(ADP-ribose) polymerase. J. Med. Chem.47(22), 5467–5481 (2004).
  • Thomas HD, Calabrese CR, Batey MA et al. Preclinical selection of a novel poly(ADP-ribose)polymerase inhibitor for clinical trial. Mol. Cancer Ther.6(3), 945–956 (2007).
  • Calabrese CR, Almassy R, Barton S et al. Anticancer chemosensitization snd radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J. Natl Cancer Inst.96, 56–67 (2005).
  • Daniel RA, Rozanska AL, Thomas HD et al. Inhibition of poly(ADP-ribose) polymerase-1 enhances temozolomide and topotecan activity against childhood neuroblastoma. Clin. Cancer Res.15(4), 1241–1249 (2009).
  • Plummer ER, Middleton MR, Jones C et al. Temozolomide pharmacodynamics in patients with metastatic melanoma: DNA damage activity or repair enzymes O6-alkylguanine alkyltransferase and poly(ADP-ribose) polymerase-1. Clin Cancer Res.11(9), 3402–3409 (2005).
  • Plummer R, Middleton M, Wilson R et al. First in human Phase I trial of the PARP inhibitor AG-014699 with temozolomide (TMZ) in patients with advanced solid tumors. Am. Soc. Clin. Oncol.23, (2005) (Abstract 3065).
  • Plummer R, Jones C, Middleton M et al. Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin. Cancer Res.14(23), 7917–7923 (2008).
  • Plummer R, Lorigan P, Evans J et al. First and final report of a Phase II study of the poly(ADP-ribose) polymerase (PARP) inhibitor, AG014699, in combination with temozolomide (TMZ) in patients with metastatic malignant melanoma (MM). J. Clin. Oncol.24(18s), (2006) (Abstract 8013).
  • Penning TD, Zhu JD, Gandhi VB et al. Discovery of the poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J. Med. Chem.52(2), 514–523 (2009).
  • Donawho CK, Luo Y, Luo Y et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin. Cancer Res.13(9), 2728–2737 (2007).
  • Palma J, Rodriguez L, Wang YW et al. The PARP inhibitor ABT888 overcomes resistance in temozolomide refractory breast and prostate xenograft tumors implanted in metastatic site in vivo. Presented at: 20th EORTC-NCI-AACR International Congress. Geneva, Switzerland 25–28 October 2008.
  • Clarke MJ, Mulligan EA, Grogan PT et al. Effective sensitization of temozolomide by ABT-888 is lost with development of temozolomide resistance in glioblastoma xenograft lines. Mol. Cancer Ther.8(2), 407–414 (2009).
  • Palma JP, Rodriguez LE, Bontcheva-Diaz VD et al. The PARP inhibitor, ABT-888 potentiates temozolomide: correlation with drug levels and reduction of PARP activity in vivo. Anticancer Res.28(5A), 2625–2635 (2008).
  • Liu S, Coackley C, Krause M, Jalali F, Chan N, Bristow RG. A novel poly(ADP-ribose) polymerase inhibitor, ABT-888, radiosensitizes malignant human cell lines under hypoxia. Radiat. Oncol.88, 258–268 (2008).
  • Liu X, Shi Y, Guan R et al. Potentiation of temozolomide cytotoxicity by poly(ADP)ribose polymerase inhibitor ABT888 requires a conversion of single-stranded DNA damage to double-stranded DNA breaks. Mol. Cancer Res.6(10), 1621–1629 (2008).
  • Horton TM, Zhang L, Jenkins GN, Berg SL, Blaney SM. In vitro evaluation of the PARP inhibitor ABT-888 in combination with temozolomide for treatment of pediatric leukemia. J. Clin. Oncol.25(18s), (2007) (Abstract 9528).
  • Kinders RJ, Hollingshead M, Khin S et al. Preclinical modeling of a Phase 0 clinical trial: qualification of a pharmacodynamic assay of poly(ADP-ribose) polymerase in tumor biopsies of mouse xenografts. Clin Cancer Res.14(21), 6877–6885 (2008).
  • Gutierrez M, Kummar S, Horneffer Y et al. Recruitment experience in a pPhase 0 trial of ABT888, an inhibitor of poly(ADP-ribose) polymerase (PARP) in patients with advanced malignancies. J. Clin. Oncol.25(18s), (2007) (Abstract 14111).
  • Kummar S, Kinders R, Gutierrez M et al. Inhibition of poly(ADP-ribose) polymerase (PARP) by ABT888 in patients with advanced malignancies: results of a Phase 0 trial. J. Clin. Oncol.25(18s), (2007) (Abstract 3518).
  • Kang SX, Kummar S, Rubinstein L et al. Phase 0 pharmacodynamic study of poly(ADP-ribose) polymerase (PARP) inhibitor ABT888 in patients with refactory solid tumors and lymphomas: Immunohistochemistry results. J. Clin. Oncol.26(15s), (2008) (Abstract 3580).
  • Kumamr S, Kinders R, Guitterez ME et al. Phase 0 clinical trial of the poly(ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J. Clin. Oncol. (2009) (Epub ahead of print).
  • Molina J, Erlichman C, Northfelt DW et al. Ongoing Phase I study of a novel PARP inhibitor, ABT-888 in combination with temozolomide; Pharmacokinetics, safety and anti-tumor activity. Presented at: 100th AACR Annual Meeting. Denver, CO USA. 18–22 April 2009 (Abstract 3602).
  • Loh VM, Cockcroft X, Dillon KJ et al. Phthalazinones. Part1: The design and synthesis of a novel series of potent inhibitors of poly(ADP-ribose)polymerase. Bioorg. Med. Chem Letts.15, 2253–2238 (2005).
  • Cockcroft X, Dillon KJ, Dixon L et al. Pthalazinones 2: optimisation and synthesis of novel potent inhibitors of poly(ADP-ribose)polymerase. Bioorg. Med. Chem. Letts.16, 1040–1044 (2006).
  • Menear KA, Adcock C, Boulter R et al. 4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalzin-1-one: A novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J. Med. Chem.51(20), 6581–6591 (2008).
  • Evers B, Drost R, Schut E et al. Selective inhibition of BRCA-2 deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin. Cancer Res.14(12), 3916–3924 (2008).
  • Rottenberg S, Jaspers JE, Kersbergen A et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl Acad. Sci. USA105(44), 17079–17084 (2008).
  • Hay T. A role for PARP inhibition in the treatment of Brca2 null mammary tumours. Presented at Wales Cancer Conference 2008 – A BioMedEx meeting. Cardiff UK. 30 April–1 May 2008
  • Cranston AN, Moore S, Beaudoin L et al. Pre-clinical pharmacology of the novel PARP inhibitor, AZD2281 (KU-0059436). Presented at: 20th EORTC-NCI-AACR International Congress. Geneva, Switzerland, 21–24 October 2008.
  • Hay T, Matthews JR, Pietzka L et al. Poly(ADP-ribose)polymerase-1 inhibitor treatment regresses autochthonous Brca2/p53-mutant mammary tumors in vivo and delays tumor relapse in combination with carboplatin. Cancer Res.69(9), 3850–3855 (2009).
  • O Connor MJ, Lau A, Finn RS et al. Pre-clinical activity of the PARP inhibitor AZD2281 in homologous recombination repair deficient triple negative breast cancer. Presented at: 20th EORTC-NCI-AACR International Congress. Geneva, Switzerland 21–24 October 2008.
  • Knights C, Riches L, Lau A et al. Pre-clinical evaluation of the PARP inhibitor olaparib (AZD2281) in homologous recombination deficient triple-negative breast cancer. Presented at: 100th AACR Annual Meeting. Denver, CO USA. 18–22 April 18–22 2009 (Abstract 5494).
  • Fong PC, Spicer J, Reade S et al. Phase 1 pharmacokinetic (PK) and pharmacodynamic (PD) evaluation of a small molecule inhibitor of poly(ADP-ribose) polymerase (PARP), KU-0059436 (Ku) in patients (p) with advanced tumors. J. Clin. Oncol.24(18s), (2006) (Abstract 3022).
  • Yap TA, Boss DS, Fong PC et al. First in human Phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of KU-0059436 (Ku), a small molecule inhibitor of poly(ADP-ribose)polymerase (PARP) in cancer patients (p), including BRCA1/2 mutation carriers. J. Clin. Oncol.25(18s), (2007) (Abstract 3529).
  • Fong PC, Boss DS, Carden CP et al. AZD2281 (KU-0059436), a PARP (poly ADP-ribose polymerase) inhibitor with single agent anticancer activity in patients with BRCA deficient ovarian cancer: Results from a Phase I study. J. Clin. Oncol.26(15s), (2008) (Abstract 5510).
  • Rustin GS. Use of CA-125 to assess response to new agents in ovarian cancer trials. J. Clin. Oncol.21(10s), 187S–193S (2003).
  • Therasse P, Arbuck SG, Eisenhauer EA et al. New guidelines to evaluate the response to treatment in solid tumors. J. Natl Cancer Inst.92(3), 205–216 (2000).
  • Fong PC, Boss DS, Yap TA et al. Inhibition of poly(ADP)ribose polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med361(2), 123–134 (2009).
  • Tutt A, Robson M, Garber JE et al. Phase II trial of the oral PARP inhibitor olaparib in BRCA-deficient advanced breast cancer. J Clin Oncol27(15s), (2009) (Abstract CRA501).
  • Audeh MW, Penson RT, Friedlander M et al. Phase II trial of the oral PARP inhibitor olaparib in BRCA-deficient advanced ovarian cancer. J. Clin. Oncol.27(15s), (2009) (Abstract 5500).
  • Ossavskaya V, Li L, Bradley C et al. Activity of BSI-201, a potent poly(ADP-ribose) polymerase (PARP1) inhibitor, alone and in combination with topotecan in human ovarian xenografts. Presented at: 99th AACR Annual Meeting San Diego, CA, USA 12–16 April 2008.
  • Ossavskaya V, Li L, Broude EV et al. BSI-201 enhances the activity of multiple classes of cytotoxic agents and irradiation in triple negative breast cancer. Presented at: 100th AACR Annual Meeting. Denver, CO USA 18–22 April 2009.
  • O’Shaughnessy J, Osborne C, Pippen J et al. Efficacy of BSI-201, a poly(ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): Results of a randomized Phase II trial. J. Clin. Oncol.27(15s), (2009) (Abstract 3).
  • Bartek L, Lukas J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol.19, 238–245 (2007).
  • Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature432, 316–323 (2004).
  • Riberio JC, Barnetson AR, Jackson P, Ow K, Links M, Russel PJ. Caffeine-increased radiosensitivity is not dependent on a loss of G2/M arrest or apoptosis in bladder cancer cell lines. Int. J. Radiation Biol.75(4) 481–492 (1999).
  • Moser BA, Brondello J-M, Baber-Furnari B, Russel P. Mechanism of caffeine-induced checkpoint override in fission yeast. Mol Cell Biol.20(12), 4288–4294 (2000).
  • Wang Q, Fan S, Eastman A, Worland PJ, Sausville EA, O’Connor PM. UCN-01: A potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J. Natl Cancer Inst.88(14), 956–965 (1996).
  • Graves PR, Yu L, Schwarz JK et al. The CHK1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J. Biol. Chem.275(8), 5600–5605 (2000).
  • Busby EC, Leistritz DF, Abraham RT, Karnitz LM, Sarkaria JN. The radiosensitizing agent 7-hydroxystaurosporine (UCN-01) inhibits the DNA damage checkpoint kinase hCHK1. Cancer Res.60(8), 2108–2112 (2000).
  • Jackson JR, Gilmartin A, Imburgia C, Winkler JD, Marshall LA, Roshak A. An indolocarbazole inhibitor of human checkpoint kinase (CHK1) abrogates cell cycle arrest caused by DNA damage. Cancer Res.60(3), 566–572 (2000).
  • O’Connor MJ, Martin NMB, Smith GCM. Targeted cancer therapies based on the inhibition of DNA strand break repair. Oncogene26, 7816–7824 (2007).
  • Prudhomme M. Combining DNA damaging agents and checkpoint 1 inhibitors. Curr. Med. Chem. Anticancer Agents4, 435–438 (2004).
  • Prudhomme M. Novel checkpoint 1 inhibitors. Rec. Patents Anticancer Drug Disc.1, 55–68 (2006).
  • Tao Z-F, Lin N-H. CHK1 inhibitors for novel cancer treatment. Anticancer Agents Med. Chem.6(4), 377–388 (2006).
  • Janetka JW, Ashwell S, Zabludoff S, Lyne P. Inhibitors of checkpoint kinases: from discovery to the clinic. Curr. Opin. Drug Disc. Dev.10, 473–486 (2007).
  • Arrington KL, Dudkin VY. Novel inhibitors of checkpoint kinase 1. ChemMedChem2, 1571–1585 (2007).
  • Tse AN, Carvajal R, Schwartz GK. Targeting checkpoint kinase 1 in cancer therapeutics. Clin. Cancer Res.13, 1955–1960 (2007).
  • Niida H, Katsuno Y, Banerjee B, Hande MP, Nakanishi M. Specific role of Chk1 phosphorylations in cell survival and checkpoint activation. Mol. Cell Biol.27, 2572–2581 (2007).
  • Morgan MA, Parsels LA, Parsels JD, Lawrence TS, Maybaum J. The relationship of premature mitosis to cytotoxicity in response to checkpoint abrogation and antimetabolite treatment. Cell Cycle5, 1983–1988 (2006).
  • Xiao Z, Xue S, Sowin TJ, Zhang H. Differential roles of checkpoint kinase 1, checkpoint kinase 2, and mitogen-activated protein kinase-activated protein kinase 2 in mediating DNA damage-induced cell cycle arrest: implications for cancer therapy. Mol. Cancer Ther.5, 1935–1943 (2006).
  • Nieborowska-Skorska M, Stoklosa T, Datta M et al. ATR-Chk1 axis protects BCR/ABL leukemia cells from the lethal effect of DNA double-strand breaks. Cell Cycle5, 994–1000 (2006).
  • Wang HY, Zhang M, Zou P et al. Mechanism of G2/M blockage triggered by activated-Chk1 in regulation of drug-resistance in K562/A02 cell line. Zhongguo Shi Yan Xue Ye Xue Za Zhi.14, 1105–1109 (2006).
  • Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature444, 756–760 (2006).
  • Verlinden L, Bempt IV, Eelen G et al. The E2F-regulated gene Chk1 is highly expressed in triple-negative estrogen receptor-/HER-2-breast carcinomas. Cancer Res.67, 6574–6581 (2007).
  • Madoz-Gurpide J, Canamero M, Sanchez L et al. A proteomics analysis of cell signaling alterations in colorectal cancer. Mol. Cell Proteomics6, 2150–2164 (2007).
  • Matthews DJ, Yakes FM, Chen J et al. Pharmacological abrogation of S-phase checkpoint enhances the anti-tumour activity of gemcitabine in vivo. Cell Cycle6(1), 104–110 (2007).
  • Clary DO. Inhibition of CHks in a leukemia model abrogates DNA damage checkpoints and promotes mitotic catastrophe. Proc. Am. Assoc. Cancer Res.48, (2007) (Abstract 5385).
  • Castedo M, Perfettini J-L, Roumier T, Andreau K, Medema R, Krowner G. Cell death by mitotic catastrophe: a molecular definition. Oncogene23(16), 2825–2837 (2004).
  • Matthews DJ: Dissecting the roles of CHK1 and CHK2 in mitotic catastrophe using chemical genetics. Eur. J. Cancer4(Suppl. 12), (2006) (Abstract 344).
  • Tse AN, Yazji S, Naing A et al. Phase 1 study of XL844, a novel Chk1 and Chk2 kinase inhibitor, in combination with gemcitabine in subjects with advanced malignancies. Presented at: 20th EORTC-NCI-AACR International Congress. Geneva, Switzerland, 21–24 October 2008.
  • Ashwell S: AZD7762, a novel potent and selective inhibitor of checkpoint kinases. Presented at: 2007 AACR Annual Meeting, Los Angeles, CA, USA 14–18 April 2007.
  • Zabludoff S, Deng C, Grondine MR et al. AZD7762, a potent checkpoint kinase 1 inhibitor, drives cell cycle checkpoint abrogation and potentiates DNA targeted therapies. Mol. Cancer Ther.7(9), 2955–2966 (2008).
  • Ashwell S, Caleb B. L, Green S et al. Preclinical identification of AZD7762, a novel, potent and selective inhibitor of checkpoint kinases. Presented at: 19th EORTC-NCI-AACR International Meeting on Molecular Targets and Therapeutics, San Francisco, CA, USA, 22–26 October 2007.
  • Almeida L, Ashwell, S, Ayres D. W. et al. Structure activity and structure property relationships of a novel series of potent checkpoint kinase inhibitors. Presented at: 19th EORTC-NCI-AACR International Meeting on Molecular Targets and Therapeutics, San Francisco, CA, USA, 22–26 October 2007.
  • Janetka JW, Almeida L, Ashwell S et al. Discovery of a novel class of 2-ureido thiophene carboxamide checkpoint kinase inhibitors. Bioorg. Med. Chem. Letts.18(14), 4242–4248 (2008).
  • Morgan MA, Parsels LA, Parsels JD et al. Targeting Chk1 to enhance gemcitabine-radiation therapy efficacy in pancreatic cancer. Presented at: 2009 AACR Annual Meeting, Denver, USA 18–22 April 2009 (Abstract 2291).
  • Zabludoff SD, Zhu AC, Deng C et al. Olaparib (AZD2281; PARP inhibitor) and AZD7762 (CHK inhibitor) act synergistically to enhance cell death and reduce tumor growth in preclinical models. Presented at: 2009 AACR Annual Meeting, Denver, USA 18–22 April 2009 (Abstract 2487).
  • Anderes KL, Blasina A, Castillo R et al. Small molecule CHK1 inhibitor potentiates antitumour activity of chemotherapeutic agents in vivo. Proc. Am. Assoc. Cancer Res.46, (2005) (Abstract 4417).
  • Ninkovic S. The discovery and design of CHK kinase inhibitors. Presented at: First RSC-SCI Symposium on Kinase Inhibitor Design (Part I), London, UK, 9–10 May 2005.
  • McArthur GA. Imaging with FLT-PET demonstrates that PF-477736, an inhibitor of CHK1 kinase, overcomes a cell cycle checkpoint induced by gemcitabine in PC-3 xenografts. Proc. Am. Soc. Clin. Oncol.25, (2006) (Abstract 3045).
  • Raza Dewji M. Beyond VEGF, targeting tumour growth and angiogenesis via alternative mechanisms. Presented at: First International Meeting, Targeted Therapies in Cancer: Myth or Reality? Milan, Italy, 4–5 September 2006.
  • Anderes K, Blasina A, Chen E et al. Characterization of a novel and selective inhibitor of checkpoint kinase 1: breaching the tumour’s last checkpoint defense against chemotherapeutic agents. Presented at: 18th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics Prague, Czech Republic, 7–10 November 2006.
  • Hallin M, Zhang C, Yan Z et al. PF-00477736 an inhibitor of CHK1 enhances the antitumour activity of docetaxel indicating a role for CHK1 in the mitotic spindle checkpoint. Proc. Am. Assoc. Cancer Res.48, (2007) (Abstract 4373).
  • Cullinane C, Raleigh J, Anderes K, McArthur GA. Mechanisms of radiation enhancement by the CHK1 inhibitor PF-477736. Proc. Am. Assoc. Cancer Res.48, (2007) (Abstract 5386).
  • Li G, Elder RT, Qin K, Park HU, Liang D, Zhao RY. Mechanisms of radiation enhancement by the CHK1 inhibitor PF-477736. J. Biol. Chem.282(10), 7287–7298 (2007).
  • Arienti KL, Brunmark A, Axe FU et al. Checkpoint kinase inhibitors: SAR and radioprotective properties of a series of 2-arylbenzimidazoles. J. Med. Chem.48, 1872–1885 (2005).
  • Carlessi L, Buscemi G, Larson G et al. Biochemical and cellular characterization of VRX0466617, a novel and selective inhibitor for the checkpoint kinase Chk2. Mol. Cancer Ther.6, 935–944 (2007).
  • Kesicki EA, Gaudino JJ, Cook AW et al. Discovery of pyrazinyl ureas as inhibitors of the cell-cycle checkpoint kinase Chk1. Presented at: 228th ACS National Meeting Philadelphia, PA, USA. 22–26 August 2004.
  • Parry DA, Targeting the replication checkpoint with a potent and selective CHK1 inhibitor Presented at: 2009 AACR Annual Meeting, Denver, CO, USA, 18–22 April 2009.

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.