144
Views
26
CrossRef citations to date
0
Altmetric
Perspective

New insights into the prevention of staphylococcal infections and toxic shock syndrome

&
Pages 753-767 | Published online: 10 Jan 2014

References

  • Klein E, Smith DL, Laxminarayan R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg. Infect. Dis.13(12), 1840–1846 (2007).
  • Klevens RM, Edwards JR, Tenover FC, McDonald LC, Horan T, Gaynes R. Changes in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992–2003. Clin. Infect. Dis.42(3), 389–391 (2006).
  • King MD, Humphrey BJ, Wang YF, Kourbatova EV, Ray SM, Blumberg HM. Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann. Intern. Med.144(5), 309–317 (2006).
  • Reed SD, Friedman JY, Engemann JJ et al. Costs and outcomes among hemodialysis-dependent patients with methicillin-resistant or methicillin-susceptible Staphylococcus aureus bacteremia. Infect. Control Hosp. Epidemiol.26(2), 175–183 (2005).
  • Cosgrove SE, Qi Y, Kaye KS, Harbarth S, Karchmer AW, Carmeli Y. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect. Control Hosp. Epidemiol.26(2), 166–174 (2005).
  • Klevens RM, Morrison MA, Nadle J et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA298(15), 1763–1771 (2007).
  • Boucher HW, Corey GR. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis.46(Suppl. 5), S344–S349 (2008).
  • Naimi TS, LeDell KH, Como-Sabetti K et al. Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA290(22), 2976–2984 (2003).
  • Gorwitz RJ, Kruszon-Moran D, McAllister SK et al. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J. Infect. Dis.197(9), 1226–1234 (2008).
  • Moran GJ, Krishnadasan A, Gorwitz RJ et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N. Engl. J. Med.355(7), 666–674 (2006).
  • Saiman L, O’Keefe M, Graham PL 3rd et al. Hospital transmission of community-acquired methicillin-resistant Staphylococcus aureus among postpartum women. Clin. Infect. Dis.37(10), 1313–1319 (2003).
  • Seybold U, Kourbatova EV, Johnson JG et al. Emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream infections. Clin. Infect. Dis.42(5), 647–656 (2006).
  • Limbago B, Fosheim GE, Schoonover V et al. Characterization of methicillin-resistant Staphylococcus aureus isolates collected in 2005 and 2006 from patients with invasive disease: a population-based analysis. J. Clin. Microbiol.47(5), 1344–1351 (2009).
  • Fey PD, Said-Salim B, Rupp ME et al. Comparative molecular analysis of community- or hospital-acquired methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother.47(1), 196–203 (2003).
  • Bubeck Wardenburg J, Schneewind O. Vaccine protection against Staphylococcus aureus pneumonia. J. Exp. Med.205(2), 287–294 (2008).
  • Brosnahan AJ, Mantz MJ, Squier CA, Peterson ML, Schlievert PM. Cytolysins augment superantigen penetration of stratified mucosa. J. Immunol.182(4), 2364–2373 (2009).
  • Stevens DL, Ma Y, Salmi DB, McIndoo E, Wallace RJ, Bryant AE. Impact of antibiotics on expression of virulence-associated exotoxin genes in methicillin-sensitive and methicillin-resistant Staphylococcus aureus. J. Infect. Dis.195(2), 202–211 (2007).
  • O’Riordan K, Lee JC. Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev.17(1), 218–234 (2004).
  • Song Y, Liu CI, Lin FY et al. Inhibition of staphyloxanthin virulence factor biosynthesis in Staphylococcus aureus: in vitro, in vivo, and crystallographic results. J. Med. Chem.52(13), 3869–3880 (2009).
  • Foster TJ. Immune evasion by staphylococci. Nat. Rev. Microbiol.3(12), 948–958 (2005).
  • Becker K, Friedrich AW, Lubritz G, Weilert M, Peters G, Von Eiff C. Prevalence of genes encoding pyrogenic toxin superantigens and exfoliative toxins among strains of Staphylococcus aureus isolated from blood and nasal specimens. J. Clin. Microbiol.41(4), 1434–1439 (2003).
  • Schlievert PM, Case LC, Strandberg KL, Tripp TJ, Lin YC, Peterson ML. Vaginal Staphylococcus aureus superantigen profile shift from 1980 and 1981 to 2003, 2004, and 2005. J. Clin. Microbiol.45(8), 2704–2707 (2007).
  • Bernal A, Proft T, Fraser JD, Posnett DN. Superantigens in human disease. J. Clin. Immunol.19(3), 149–157 (1999).
  • McCormick JK, Yarwood JM, Schlievert PM. Toxic shock syndrome and bacterial superantigens: an update. Annu. Rev. Microbiol.55, 77–104 (2001).
  • Andrews MM, Parent EM, Barry M, Parsonnet J. Recurrent nonmenstrual toxic shock syndrome: clinical manifestations, diagnosis, and treatment. Clin. Infect. Dis.32(10), 1470–1479 (2001).
  • Hajjeh RA, Reingold A, Weil A, Shutt K, Schuchat A, Perkins BA. Toxic shock syndrome in the United States: surveillance update, 1979 1996. Emerg. Infect. Dis.5(6), 807–810 (1999).
  • Schlievert PM, Tripp TJ, Peterson ML. Reemergence of staphylococcal toxic shock syndrome in Minneapolis–St. Paul, Minnesota, during the 2000–2003 surveillance period. J. Clin. Microbiol.42(6), 2875–2876 (2004).
  • Descloux E, Perpoint T, Ferry T et al. One in five mortality in non-menstrual toxic shock syndrome versus no mortality in menstrual cases in a balanced French series of 55 cases. Eur. J. Clin. Microbiol. Infect. Dis.27(1), 37–43 (2008).
  • Yarwood JM, Leung DY, Schlievert PM. Evidence for the involvement of bacterial superantigens in psoriasis, atopic dermatitis, and Kawasaki syndrome. FEMS Microbiol. Lett.192(1), 1–7 (2000).
  • Li LB, Goleva E, Hall CF, Ou LS, Leung DY. Superantigen-induced corticosteroid resistance of human T cells occurs through activation of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK–ERK) pathway. J. Allergy Clin. Immunol.114(5), 1059–1069 (2004).
  • Li LB, Leung DY, Hall CF, Goleva E. Divergent expression and function of glucocorticoid receptor β in human monocytes and T cells. J. Leukoc. Biol.79(4), 818–827 (2006).
  • Curtis N, Zheng R, Lamb JR, Levin M. Evidence for a superantigen mediated process in Kawasaki disease. Arch. Dis. Child.72(4), 308–311 (1995).
  • Leung DY, Meissner HC, Fulton DR, Murray DL, Kotzin BL, Schlievert PM. Toxic shock syndrome toxin-secreting Staphylococcus aureus in Kawasaki syndrome. Lancet342(8884), 1385–1388 (1993).
  • Leung DY, Travers JB, Giorno R et al. Evidence for a streptococcal superantigen-driven process in acute guttate psoriasis. J. Clin. Invest.96(5), 2106–2112 (1995).
  • Ou LS, Goleva E, Hall C, Leung DY. T regulatory cells in atopic dermatitis and subversion of their activity by superantigens. J. Allergy Clin. Immunol.113(4), 756–763 (2004).
  • Bunikowski R, Mielke ME, Skarabis H et al. Evidence for a disease-promoting effect of Staphylococcus aureus-derived exotoxins in atopic dermatitis. J. Allergy Clin. Immunol.105(4), 814–819 (2000).
  • Bachert C, Gevaert P, Holtappels G, Johansson SG, van Cauwenberge P. Total and specific IgE in nasal polyps is related to local eosinophilic inflammation. J. Allergy Clin. Immunol.107(4), 607–614 (2001).
  • Semic-Jusufagic A, Bachert C, Gevaert P et al.Staphylococcus aureus sensitization and allergic disease in early childhood: population-based birth cohort study. J. Allergy Clin. Immunol.119(4), 930–936 (2007).
  • Lee PK, Vercellotti GM, Deringer JR, Schlievert PM. Effects of staphylococcal toxic shock syndrome toxin 1 on aortic endothelial cells. J. Infect. Dis.164(4), 711–719 (1991).
  • Peterson ML, Ault K, Kremer MJ et al. The innate immune system is activated by stimulation of vaginal epithelial cells with Staphylococcus aureus and toxic shock syndrome toxin 1. Infect. Immun.73(4), 2164–2174 (2005).
  • Dinges MM, Orwin PM, Schlievert PM. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev.13(1), 16–34 (2000).
  • Schlievert PM, Osterholm MT, Kelly JA, Nishimura RD. Toxin and enzyme characterization of Staphylococcus aureus isolates from patients with and without toxic shock syndrome. Ann. Intern. Med.96(6 Pt 2), 937–940 (1982).
  • O’Reilly M, Kreiswirth B, Foster TJ. Cryptic α-toxin gene in toxic shock syndrome and septicaemia strains of Staphylococcus aureus. Mol. Microbiol.4(11), 1947–1955 (1990).
  • Menestrina G, Dalla Serra M, Comai M et al. Ion channels and bacterial infection: the case of β-barrel pore-forming protein toxins of Staphylococcus aureus. FEBS Lett.552(1), 54–60 (2003).
  • Huseby M, Shi K, Brown CK et al. Structure and biological activities of β toxin from Staphylococcus aureus. J. Bacteriol.189(23), 8719–8726 (2007).
  • Rogolsky M. Nonenteric toxins of Staphylococcus aureus. Microbiol. Rev.43(3), 320–360 (1979).
  • Tajima A, Iwase T, Shinji H, Seki K, Mizunoe Y. Inhibition of endothelial interleukin-8 production and neutrophil transmigration by Staphylococcus aureus β-hemolysin. Infect. Immun.77(1), 327–334 (2009).
  • Huseby MJ, Kruse AC, Digre J et al. β toxin catalyzes formation of nucleoprotein matrix in staphylococcal biofilms. Proc. Natl Acad. Sci. USA107(32), 14407–14412 (2010).
  • Kaneko J, Kamio Y. Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Biosci. Biotechnol. Biochem.68(5), 981–1003 (2004).
  • Siqueira JA, Speeg-Schatz C, Freitas FI, Sahel J, Monteil H, Prevost G. Channel-forming leucotoxins from Staphylococcus aureus cause severe inflammatory reactions in a rabbit eye model. J. Med. Microbiol.46(6), 486–494 (1997).
  • Gravet A, Colin DA, Keller D, Girardot R, Monteil H, Prevost G. Characterization of a novel structural member, LukE–LukD, of the bi-component staphylococcal leucotoxins family. FEBS Lett.436(2), 202–208 (1998).
  • Lina G, Piemont Y, Godail-Gamot F et al. Involvement of Panton–Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis.29(5), 1128–1132 (1999).
  • Labandeira-Rey M, Couzon F, Boisset S et al.Staphylococcus aureus Panton–Valentine leukocidin causes necrotizing pneumonia. Science315(5815), 1130–1133 (2007).
  • Voyich JM, Otto M, Mathema B et al. Is Panton–Valentine leukocidin the major virulence determinant in community-associated methicillin-resistant Staphylococcus aureus disease? J. Infect. Dis.194(12), 1761–1770 (2006).
  • Wang R, Braughton KR, Kretschmer D et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med.13(12), 1510–1514 (2007).
  • Amagai M, Matsuyoshi N, Wang ZH, Andl C, Stanley JR. Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1. Nat. Med.6(11), 1275–1277 (2000).
  • Rooijakkers SH, Ruyken M, Roos A et al. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat. Immunol.6(9), 920–927 (2005).
  • Harraghy N, Hussain M, Haggar A et al. The adhesive and immunomodulating properties of the multifunctional Staphylococcus aureus protein Eap. Microbiology149(Pt 10), 2701–2707 (2003).
  • Fraser JD, Proft T. The bacterial superantigen and superantigen-like proteins. Immunol. Rev.225, 226–243 (2008).
  • Chen LF, Chopra T, Kaye KS. Pathogens resistant to antibacterial agents. Infect. Dis. Clin. North Am.23(4), 817–845, vii (2009).
  • Doss SA, Tillotson GS, Amyes SG. Effect of sub-inhibitory concentrations of antibiotics on the virulence of Staphylococcus aureus. J. Appl. Bacteriol.75(2), 123–128 (1993).
  • Nailor MD, Sobel JD. Antibiotics for Gram-positive bacterial infections: vancomycin, teicoplanin, quinupristin/dalfopristin, oxazolidinones, daptomycin, dalbavancin, and telavancin. Infect. Dis. Clin. North Am.23(4), 965–982, ix (2009).
  • Rybak MJ, Lomaestro BM, Rotschafer JC et al. Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin. Infect. Dis.49(3), 325–327 (2009).
  • Gilbert DN MR, Eliopoulous GM, Sande MA. The Sanford Guide to Antimicrobial Therapy 2006. Antimicrobial Therapy Inc., VA, USA (2006).
  • Schlievert PM, Kelly JA. Clindamycin-induced suppression of toxic-shock syndrome – associated exotoxin production. J. Infect. Dis.149(3), 471 (1984).
  • Ohlsen K, Ziebuhr W, Koller KP, Hell W, Wichelhaus TA, Hacker J. Effects of subinhibitory concentrations of antibiotics on α-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob. Agents Chemother.42(11), 2817–2823 (1998).
  • Stevens DL, Wallace RJ, Hamilton SM, Bryant AE. Successful treatment of staphylococcal toxic shock syndrome with linezolid: a case report and in vitro evaluation of the production of toxic shock syndrome toxin type 1 in the presence of antibiotics. Clin. Infect. Dis.42, 729–730 (2006).
  • Rempe S, Hayden JM, Robbins RA, Hoyt JC. Tetracyclines and pulmonary inflammation. Endocr. Metab. Immune Disord. Drug Targets7(4), 232–236 (2007).
  • Hoyt JC, Robbins RA. Macrolide antibiotics and pulmonary inflammation. FEMS Microbiol. Lett.205(1), 1–7 (2001).
  • Krakauer T, Buckley M. Doxycycline is anti-inflammatory and inhibits staphylococcal exotoxin-induced cytokines and chemokines. Antimicrob. Agents Chemother.47(11), 3630–3633 (2003).
  • Norrby-Teglund A, Kaul R, Low DE et al. Plasma from patients with severe invasive group A streptococcal infections treated with normal polyspecific IgG inhibits streptococcal superantigen-induced T cell proliferation and cytokine production. J. Immunol.156(8), 3057–3064 (1996).
  • Darenberg J, Ihendyane N, Sjolin J et al. Intravenous immunoglobulin G therapy in streptococcal toxic shock syndrome: a European randomized, double-blind, placebo-controlled trial. Clin. Infect. Dis.37(3), 333–340 (2003).
  • Barry W, Hudgins L, Donta ST, Pesanti EL. Intravenous immunoglobulin therapy for toxic shock syndrome. JAMA267(24), 3315–3316 (1992).
  • Kaul R, McGeer A, Norrby-Teglund A et al. Intravenous immunoglobulin therapy for streptococcal toxic shock syndrome – a comparative observational study. The Canadian Streptococcal Study Group. Clin. Infect. Dis.28(4), 800–807 (1999).
  • Stevens DL, Bisno AL, Chambers HF et al. Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clin. Infect. Dis.41(10), 1373–1406 (2005).
  • Laupland KB, Kirkpatrick AW, Delaney A. Polyclonal intravenous immunoglobulin for the treatment of severe sepsis and septic shock in critically ill adults: a systematic review and meta-analysis. Crit. Care Med.35(12), 2686–2692 (2007).
  • Hartung HP, Mouthon L, Ahmed R, Jordan S, Laupland KB, Jolles S. Clinical applications of intravenous immunoglobulins (IVIg) – beyond immunodeficiencies and neurology. Clin. Exp. Immunol.158(Suppl. 1), 23–33 (2009).
  • Ruzin A, Novick RP. Equivalence of lauric acid and glycerol monolaurate as inhibitors of signal transduction in Staphylococcus aureus. J. Bacteriol.182(9), 2668–2671 (2000).
  • Projan SJ, Brown-Skrobot S, Schlievert PM, Vandenesch F, Novick RP. Glycerol monolaurate inhibits the production of β-lactamase, toxic shock toxin-1, and other staphylococcal exoproteins by interfering with signal transduction. J. Bacteriol.176(14), 4204–4209 (1994).
  • Schlievert PM, Deringer JR, Kim MH, Projan SJ, Novick RP. Effect of glycerol monolaurate on bacterial growth and toxin production. Antimicrob. Agents Chemother.36(3), 626–631 (1992).
  • Peterson ML, Schlievert PM. Glycerol monolaurate inhibits the effects of Gram-positive select agents on eukaryotic cells. Biochemistry45(7), 2387–2397 (2006).
  • Schlievert PM, Strandberg KL, Brosnahan AJ et al. Glycerol monolaurate does not alter rhesus macaque (Macaca mulatta) vaginal lactobacilli and is safe for chronic use. Antimicrob. Agents Chemother.52(12), 4448–4454 (2008).
  • McNamara PJ, Syverson RE, Milligan-Myhre K et al. Surfactants, aromatic and isoprenoid compounds, and fatty acid biosynthesis inhibitors suppress Staphylococcus aureus production of toxic shock syndrome toxin 1. Antimicrob. Agents Chemother.53(5), 1898–1906 (2009).
  • Brissette JL, Cabacungan EA, Pieringer RA. Studies on the antibacterial activity of dodecylglycerol. Its limited metabolism and inhibition of glycerolipid and lipoteichoic acid biosynthesis in Streptococcus mutans BHT. J. Biol. Chem.261(14), 6338–6345 (1986).
  • Lin YC, Schlievert PM, Anderson MJ et al. Glycerol monolaurate and dodecylglycerol effects on Staphylococcus aureus and toxic shock syndrome toxin-1 in vitro and in vivo. PLoS ONE4(10), e7499 (2009).
  • Schlievert PM, Nemeth KA, Davis CC, Peterson ML, Jones BE. Staphylococcus aureus exotoxins are present in vivo in tampons. Clin. Vaccine Immunol.17(5), 722–727).
  • Schlievert PM, Case LC, Nemeth KA et al. α and β chains of hemoglobin inhibit production of Staphylococcus aureus exotoxins. Biochemistry46(50), 14349–14358 (2007).
  • Buonpane RA, Churchill HR, Moza B et al. Neutralization of staphylococcal enterotoxin B by soluble, high-affinity receptor antagonists. Nat. Med.13(6), 725–729 (2007).
  • Buonpane RA, Moza B, Sundberg EJ, Kranz DM. Characterization of T cell receptors engineered for high affinity against toxic shock syndrome toxin-1. J. Mol. Biol.353(2), 308–321 (2005).
  • Yang X, Buonpane RA, Moza B et al. Neutralization of multiple staphylococcal superantigens by a single-chain protein consisting of affinity-matured, variable domain repeats. J. Infect. Dis.198(3), 344–348 (2008).
  • Shinefield H, Black S, Fattom A et al. Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. N. Engl. J. Med.346(7), 491–496 (2002).
  • Nanra JS, Timofeyeva Y, Buitrago SM et al. Heterogeneous in vivo expression of clumping factor A and capsular polysaccharide by Staphylococcus aureus: implications for vaccine design. Vaccine27(25–26), 3276–3280 (2009).
  • Tuchscherr LP, Buzzola FR, Alvarez LP, Lee JC, Sordelli DO. Antibodies to capsular polysaccharide and clumping factor A prevent mastitis and the emergence of unencapsulated and small-colony variants of Staphylococcus aureus in mice. Infect. Immun.76(12), 5738–5744 (2008).
  • Kuklin NA, Clark DJ, Secore S et al. A novel Staphylococcus aureus vaccine: iron surface determinant B induces rapid antibody responses in rhesus macaques and specific increased survival in a murine S. aureus sepsis model. Infect. Immun.74(4), 2215–2223 (2006).
  • Weisman LE, Thackray HM, Garcia-Prats JA et al. Phase 1/2 double-blind, placebo-controlled, dose escalation, safety, and pharmacokinetic study of pagibaximab (BSYX-A110), an antistaphylococcal monoclonal antibody for the prevention of staphylococcal bloodstream infections, in very-low-birth-weight neonates. Antimicrob. Agents Chemother.53(7), 2879–2886 (2009).
  • Brown EL, Dumitrescu O, Thomas D et al. The Panton–Valentine leukocidin vaccine protects mice against lung and skin infections caused by Staphylococcus aureus USA300. Clin. Microbiol. Infect.15(2), 156–164 (2009).
  • Bubeck Wardenburg J, Palazzolo-Ballance AM, Otto M, Schneewind O, DeLeo FR. Panton–Valentine leukocidin is not a virulence determinant in murine models of community-associated methicillin-resistant Staphylococcus aureus disease. J. Infect. Dis.198(8), 1166–1170 (2008).
  • Lucero CA, Hageman J, Zell ER et al. Evaluating the potential public health impact of a Staphylococcus aureus vaccine through use of population-based surveillance for invasive methicillin-resistant S. aureus disease in the United States. Vaccine27(37), 5061–5068 (2009).
  • Wilke GA, Bubeck Wardenburg J. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin-mediated cellular injury. Proc. Natl Acad. Sci. USA107(30), 13473–13478 (2010).
  • O’Brien GJ, Riddell G, Elborn JS, Ennis M, Skibinski G. Staphylococcus aureus enterotoxins induce IL-8 secretion by human nasal epithelial cells. Respir. Res.7, 115 (2006).
  • Peterson ML, Ault K, Kremer MJ et al. The innate immune system is activated by stimulation of vaginal epithelial cells with Staphylococcus aureus and toxic shock syndrome toxin 1. Infect. Immun.73(4), 2164–2174 (2005).
  • Musch MW, Petrof EO, Kojima K, Ren H, McKay DM, Chang EB. Bacterial superantigen-treated intestinal epithelial cells upregulate heat shock proteins 25 and 72 and are resistant to oxidant cytotoxicity. Infect. Immun.72(6), 3187–3194 (2004).
  • Aubert V, Schneeberger D, Sauty A et al. Induction of tumor necrosis factor a and interleukin-8 gene expression in bronchial epithelial cells by toxic shock syndrome toxin 1. Infect. Immun.68(1), 120–124 (2000).
  • Strandberg KL, Peterson ML, Schaefers MM et al. Reduction in Staphylococcus aureus growth and exotoxin production and in vaginal interleukin 8 levels due to glycerol monolaurate in tampons. Clin. Infect. Dis.49(11), 1711–1717 (2009).
  • Ragle BE, Bubeck Wardenburg J. Anti-α-hemolysin monoclonal antibodies mediate protection against Staphylococcus aureus pneumonia. Infect. Immun.77(7), 2712–2718 (2009).
  • Schaffer AC, Lee JC. Staphylococcal vaccines and immunotherapies. Infect. Dis. Clin. North Am.23(1), 153–171 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.