178
Views
28
CrossRef citations to date
0
Altmetric
Review

Hydrogen sulfide in the endocrine and reproductive systems

, &
Pages 75-82 | Published online: 10 Jan 2014

References

  • Reiffenstein RJ, Hulbert WC, Roth SH. Toxicology of hydrogen sulfide. Annu. Rev. Pharmacol. Toxicol.32, 109–134 (1992).
  • Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci.16(3), 1066–1071 (1996).
  • Bhatia M. Hydrogen sulfide as a vasodilator. IUBMB Life57(9), 603–606 (2005).
  • Wallace JL. Physiological and pathophysiological roles of hydrogen sulfide in the gastrointestinal tract. Antioxid. Redox Signal.12(9), 1125–1133 (2010).
  • Kimura H. Hydrogen sulfide: from brain to gut. Antioxid. Redox Signal.12(9), 1111–1123 (2010).
  • Hayden LJ, Goeden H, Roth SH. Exposure to low levels of hydrogen sulfide elevates circulating glucose in maternal rats. J. Toxicol. Environ. Health31(1), 45–52 (1990).
  • Yusuf M, Kwong Huat BT, Hsu A, Whiteman M, Bhatia M, Moore PK. Streptozotocin-induced diabetes in the rat is associated with enhanced tissue hydrogen sulfide biosynthesis. Biochem. Biophys. Res. Commun.333(4), 1146–1152 (2005).
  • Kaneko Y, Kimura Y, Kimura H, Niki I. L-cysteine inhibits insulin release from the pancreatic β-cell: possible involvement of metabolic production of hydrogen sulfide, a novel gasotransmitter. Diabetes55(5), 1391–1397 (2006).
  • Kaneko Y, Kimura T, Taniguchi S et al. Glucose-induced production of hydrogen sulfide may protect the pancreatic β-cells from apoptotic cell death by high glucose. FEBS Lett.583(2), 377–382 (2009).
  • Yang W, Yang G, Jia X, Wu L, Wang R. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. J. Physiol.569(Pt 2), 519–531 (2005).
  • Ali MY, Whiteman M, Low CM, Moore PK. Hydrogen sulphide reduces insulin secretion from HIT-T15 cells by a KATP channel-dependent pathway. J. Endocrinol.195(1), 105–112 (2007).
  • Ashcroft FM. ATP-sensitive potassium channelopathies: focus on insulin secretion. J. Clin. Invest.115(8), 2047–2058 (2005).
  • Lipson KL, Fonseca SG, Urano F. Endoplasmic reticulum stress-induced apoptosis and auto-immunity in diabetes. Curr. Mol. Med.6(1), 71–77 (2006).
  • Yang G, Yang W, Wu L, Wang R. H2S, endoplasmic reticulum stress, and apoptosis of insulin-secreting β-cells. J. Biol. Chem.282(22), 16567–16576 (2007).
  • Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab.89(6), 2548–2556 (2004).
  • Rondinone CM. Adipocyte-derived hormones, cytokines, and mediators. Endocrine29(1), 81–90 (2006).
  • Feng X, Chen Y, Zhao J, Tang C, Jiang Z, Geng B. Hydrogen sulfide from adipose tissue is a novel insulin resistance regulator. Biochem. Biophys. Res. Commun.380(1), 153–159 (2009).
  • Hajer GR, van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur. Heart J.29(24), 2959–2971 (2008).
  • Whiteman M, Gooding KM, Whatmore JL et al. Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia53(8), 1722–1726 (2010).
  • Brancaleone V, Roviezzo F, Vellecco V, De Gruttola L, Bucci M, Cirino G. Biosynthesis of H2S is impaired in non-obese diabetic (NOD) mice. Br. J. Pharmacol.155(5), 673–680 (2008).
  • Gollasch M, Dubrovska G. Paracrine role for periadventitial adipose tissue in the regulation of arterial tone. Trends Pharmacol. Sci.25(12), 647–653 (2004).
  • Fang L, Zhao J, Chen Y et al. Hydrogen sulfide derived from periadventitial adipose tissue is a vasodilator. J. Hypertens.27(11), 2174–2185 (2009).
  • Schleifenbaum J, Köhn C, Voblova N et al. Systemic peripheral artery relaxation by KCNQ channel openers and hydrogen sulfide. J. Hypertens.28(9), 1875–1882 (2010).
  • Szabó C. Hydrogen sulphide and its therapeutic potential. Nat. Rev. Drug Discov.6(11), 917–935 (2007).
  • Koenitzer JR, Isbell TS, Patel HD et al. Hydrogen sulfide mediates vasoactivity in an O2-dependent manner. Am. J. Physiol. Heart Circ. Physiol.292(4), H1953–H1960 (2007).
  • Hosogai N, Fukuhara A, Oshima K et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes56(4), 901–911 (2007).
  • Rausch ME, Weisberg S, Vardhana P, Tortoriello DV. Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int. J. Obes. (Lond).32(3), 451–463 (2008).
  • Maenhaut N, Boydens C, Van de Voorde J. Hypoxia enhances the relaxing influence of perivascular adipose tissue in isolated mice aorta. Eur. J. Pharmacol.641(2–3), 207–212 (2010).
  • Tsigos C, Chrousos GP. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res.53(4), 865–871 (2002).
  • Mancuso C, Navarra P, Preziosi P. Roles of nitric oxide, carbon monoxide, and hydrogen sulfide in the regulation of the hypothalamic–pituitary–adrenal axis. J. Neurochem.113(3), 563–575 (2010).
  • Dello Russo C, Tringali G, Ragazzoni E et al. Evidence that hydrogen sulphide can modulate hypothalamo–pituitary–adrenal axis function: in vitro and in vivo studies in the rat. J. Neuroendocrinol.12(3), 225–233 (2000).
  • Lou LX, Geng B, Du JB, Tang CS. Hydrogen sulphide-induced hypothermia attenuates stress-related ulceration in rats. Clin. Exp. Pharmacol. Physiol.35(2), 223–228 (2008).
  • Perry SF, McNeill B, Elia E, Nagpal A, Vulesevic B. Hydrogen sulfide stimulates catecholamine secretion in rainbow trout (Oncorhynchus mykiss). Am. J. Physiol. Regul. Integr. Comp. Physiol.296(1), R133–R140 (2009).
  • Heinonen K. Studies on cystathionase activity in rat liver and brain during development. Effects of hormones and amino acids in vivo. Biochem. J.136(4), 1011–1015 (1973).
  • Oi Y, Imafuku M, Shishido C, Kominato Y, Nishimura S, Iwai K. Garlic supplementation increases testicular testosterone and decreases plasma corticosterone in rats fed a high protein diet. J. Nutr.131(8), 2150–2156 (2001).
  • Sitdikova GF, Weiger TM, Hermann A. Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells. Pflugers Arch.459(3), 389–397 (2010).
  • Ghatta S, Nimmagadda D, Xu X, O’Rourke ST. Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacol. Ther.110(1), 103–116 (2006).
  • Kulkarni KH, Monjok EM, Zeyssig R et al. Effect of hydrogen sulfide on sympathetic neurotransmission and catecholamine levels in isolated porcine iris-ciliary body. Neurochem. Res.34(3), 400–406 (2009).
  • Sugiura Y, Kashiba M, Maruyama K et al. Cadmium exposure alters metabolomics of sulfur-containing amino acids in rat testes. Antioxid. Redox Signal.7(5–6), 781–787 (2005).
  • d’Emmanuele di Villa Bianca R, Sorrentino R, Maffia P et al. Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. Proc. Natl Acad. Sci. USA106(11), 4513–4518 (2009).
  • Liang R, Yu WD, Du JB, Yang LJ, Shang M, Guo JZ. Localization of cystathionine β synthase in mice ovaries and its expression profile during follicular development. Chin. Med. J. (Engl.)119(22), 1877–1883 (2006).
  • Patel P, Vatish M, Heptinstall J, Wang R, Carson RJ. The endogenous production of hydrogen sulphide in intrauterine tissues. Reprod. Biol. Endocrinol.7, 10 (2009).
  • Srilatha B, Hu L, Adaikan GP, Moore PK. Initial characterization of hydrogen sulfide effects in female sexual function. J. Sex. Med.6(7), 1875–1884 (2009).
  • Srilatha B, Adaikan PG, Moore PK. Possible role for the novel gasotransmitter hydrogen sulphide in erectile dysfunction – a pilot study. Eur. J. Pharmacol.535(1–3), 280–282 (2006).
  • Srilatha B, Adaikan PG, Li L, Moore PK. Hydrogen sulphide: a novel endogenous gasotransmitter facilitates erectile function. J. Sex. Med.4(5), 1304–1311 (2007).
  • Shukla N, Rossoni G, Hotston M et al. Effect of hydrogen sulphide-donating sildenafil (ACS6) on erectile function and oxidative stress in rabbit isolated corpus cavernosum and in hypertensive rats. BJU Int.103(11), 1522–1529 (2009).
  • Yang G, Wu L, Jiang B et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science322(5901), 587–590 (2008).
  • Watanabe M, Osada J, Aratani Y et al. Mice deficient in cystathionine β-synthase: animal models for mild and severe homocyst(e)inemia. Proc. Natl Acad. Sci. USA92(5), 1585–1589 (1995).
  • Guzmán MA, Navarro MA, Carnicer R et al. Cystathionine β-synthase is essential for female reproductive function. Hum. Mol. Genet.15(21), 3168–3176 (2006).
  • Liang R, Yu WD, Du JB et al. Cystathionine bsynthase participates in murine oocyte maturation mediated by homocysteine. Reprod. Toxicol.24(1), 89–96 (2007).
  • Soleymanlou N, Jurisica I, Nevo O et al. Molecular evidence of placental hypoxia in preeclampsia. J. Clin. Endocrinol. Metab.90(7), 4299–4308 (2005).
  • Hayden LJ, Franklin KJ, Roth SH, Moore GJ. Inhibition of oxytocin-induced but not angiotensin-induced rat uterine contractions following exposure to sodium sulfide. Life Sci.45(26), 2557–2560 (1989).
  • Hayden LJ, Goeden H, Roth SH. Growth and development in the rat during sub-chronic exposure to low levels of hydrogen sulfide. Toxicol. Ind. Health6(3–4), 389–401 (1990).
  • Sidhu R, Singh M, Samir G, Carson RJ. L-cysteine and sodium hydrosulphide inhibit spontaneous contractility in isolated pregnant rat uterine strips in vitro. Pharmacol. Toxicol.88(4), 198–203 (2001).
  • Kraus JP, Oliveriusová J, Sokolová J et al. The human cystathionine β-synthase (CBS) gene: complete sequence, alternative splicing, and polymorphisms. Genomics52(3), 312–324 (1998).
  • Ishii I, Akahoshi N, Yu XN et al. Murine cystathionine γ-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochem. J.381(Pt 1), 113–123 (2004).
  • Ge Y, Jensen TL, Matherly LH, Taub JW. Synergistic regulation of human cystathionine-β-synthase-1b promoter by transcription factors NF-YA isoforms and Sp1. Biochim. Biophys. Acta1579(2–3), 73–80 (2002).
  • Ge Y, Konrad MA, Matherly LH, Taub JW. Transcriptional regulation of the human cystathionine β-synthase -1b basal promoter: synergistic transactivation by transcription factors NF-Y and Sp1/Sp3. Biochem. J.357(Pt 1), 97–105 (2001).
  • Ge Y, Matherly LH, Taub JW. Transcriptional regulation of cell-specific expression of the human cystathionine β-synthase gene by differential binding of Sp1/Sp3 to the -1b promoter. J. Biol. Chem.276(47), 43570–43579 (2001).
  • Schalinske KL. Interrelationship between diabetes and homocysteine metabolism: hormonal regulation of cystathionine β-synthase. Nutr. Rev.61(4), 136–138 (2003).
  • Jacobs RL, House, JD, Brosnan ME, Brosnan JT. Effects of streptozotocin-induced diabetes and insulin treatment on homocysteine metabolism in the rat. Diabetes47(12), 1967–1970 (1998).
  • Jacobs RL, Steads LM, Brosnan ME, Brosnan JT. Hyperglucagonemia in rats results in decreased plasma homocysteine and increased flux through the transsulfuration pathway in liver. J. Biol. Chem.276(47), 43740–43747 (2001).
  • Ratnam S, Maclean KN, Jacobs RL, Brosnan ME, Kraus JP, Brosnan JT. Hormonal regulation of cystathionine β-synthase expression in liver. J. Biol. Chem.277(45), 42912–42918 (2002).
  • Dickman-Brown A, Fonseca VA, Fink LM, Kern PA. The effect of glucose and insulin on the activity of methylene tetrahydrofolate reductase and cystathionine-β-synthase: studies in hepatocytes. Atherosclerosis158(2), 297–301 (2001).
  • Li L, Whiteman M, Moore PK. Dexamethasone inhibits lipopolysaccharide-induced hydrogen sulphide biosynthesis in intact cells and in an animal model of endotoxic shock. J. Cell. Mol. Med.13(8B), 2684–2692 (2009).
  • Zhu XY, Liu SJ, Liu YJ, Wang S, Ni X. Glucocorticoids suppress cystathionine γ-lyase expression and H2S production in lipopolysaccharide-treated macrophages. Cell. Mol. Life. Sci.67(7), 1119–1132 (2010).
  • Bucci M, Mirone V, Di Lorenzo A et al. Hydrogen sulphide is involved in testosterone vascular effect. Eur. Urol.56(2), 378–383 (2009).
  • Toombs CF, Insko MA, Wintner EA et al. Detection of exhaled hydrogen sulphide gas in healthy human volunteers during intravenous administration of sodium sulphide. Br. J. Clin. Pharmacol.69(6), 626–636 (2010).
  • Li L, Salto-Tellez M, Tan CH, Whiteman M, Moore PK. GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic. Biol. Med.47(1), 103–113 (2009).
  • Wang Q, Wang XL, Liu HR, Rose P, Zhu YZ. Protective effects of cysteine analogues on acute myocardial ischemia: novel modulators of endogenous H2S production. Antioxid. Redox. Signal.12(10), 1155–1165 (2010).
  • Gong QH, Pan LL, Liu XH, Wang Q, Huang H, Zhu YZ. S-propargyl-cysteine (ZYZ-802), a sulphur-containing amino acid, attenuates β-amyloid-induced cognitive deficits and pro-inflammatory response: involvement of ERK1/2 and NF-Kgr;B pathway in rats. Amino Acids DOI: 10.1007/s00726-010-0685-1 (2010) (Epub ahead of print).
  • Bao L, Vlcek C, Paces V, Kraus JP. Identification and tissue distribution of human cystathionine β-synthase mRNA isoforms. Arch. Biochem. Biophys.350(1), 95–103 (1998).
  • Whitfield NL, Kreimier EL, Verdial FC, Skovgaard N, Olson KR. Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol.294(6), R1930–R1937 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.