157
Views
6
CrossRef citations to date
0
Altmetric
Review

Hydrogen sulfide and renal ischemia

, &
Pages 49-61 | Published online: 10 Jan 2014

References

  • Liano F, Pascual J. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group. Kidney Int.50(3), 811–818 (1996).
  • Bonventre JV, Weinberg JM. Recent advances in the pathophysiology of ischemic acute renal failure. J. Am. Soc. Nephrol.14(8), 2199–2210 (2003).
  • Smith RP, Gosselin RE. Hydrogen sulfide poisoning. J. Occup. Med.21(2), 93–97 (1979).
  • Beauchamp RO Jr, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA. A critical review of the literature on hydrogen sulfide toxicity. Crit. Rev. Toxicol.13(1), 25–97 (1984).
  • Warenycia MW, Goodwin LR, Benishin CG et al. Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem. Pharmacol.38(6), 973–981 (1989).
  • Doeller JE, Isbell TS, Benavides G et al. Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal. Biochem.341(1), 40–51 (2005).
  • Benavides GA, Squadrito GL, Mills RW et al. Hydrogen sulfide mediates the vasoactivity of garlic. Proc. Natl Acad. Sci. USA104(46), 17977–17982 (2007).
  • Lowicka E, Beltowski J. Hydrogen sulfide (H2S) – the third gas of interest for pharmacologists. Pharmacol. Rep.59(1), 4–24 (2007).
  • Furne J, Springfield J, Koenig T, DeMaster E, Levitt MD. Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa. Biochem. Pharmacol.62(2), 255–259 (2001).
  • Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J.16(13), 1792–1798 (2002).
  • Wilcken DE, Gupta VJ. Sulphur containing amino acids in chronic renal failure with particular reference to homocystine and cysteine–homocysteine mixed disulphide. Eur. J. Clin. Invest.9(4), 301–307 (1979).
  • Mattson MP, Shea TB. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci.26(3), 137–146 (2003).
  • Selhub J. Homocysteine metabolism. Annu. Rev. Nutr.19, 217–246 (1999).
  • Li N, Chen YF, Zou AP. Implications of hyperhomocysteinemia in glomerular sclerosis in hypertension. Hypertension39(2 Pt 2), 443–448 (2002).
  • Clarke R, Daly L, Robinson K et al. Hyperhomocysteinemia: an independent risk factor for vascular disease. N. Engl. J. Med.324(17), 1149–1155 (1991).
  • McCully KS. Homocysteine and vascular disease. Nat. Med.2(4), 386–389 (1996).
  • Austin RC, Lentz SR, Werstuck GH. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ.11(Suppl. 1), S56–S64 (2004).
  • McCully KS. Chemical pathology of homocysteine. I. Atherogenesis. Ann. Clin. Lab. Sci.23(6), 477–493 (1993).
  • Yi F, Li PL. Mechanisms of homocysteine-induced glomerular injury and sclerosis. Am. J. Nephrol.28(2), 254–264 (2008).
  • Stamler JS, Osborne JA, Jaraki O et al. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J. Clin. Invest.91(1), 308–318 (1993).
  • Zhang X, Li H, Jin H, Ebin Z, Brodsky S, Goligorsky MS. Effects of homocysteine on endothelial nitric oxide production. Am. J. Physiol. Renal Physiol.279(4), F671–F678 (2000).
  • Diez N, Perez R, Hurtado V, Santidrian S. Hyperhomocysteinaemia induced by dietary folate restriction causes kidney oxidative stress in rats. Br. J. Nutr.94(2), 204–210 (2005).
  • Zhang F, Siow YL. Hyperhomocysteinemia activates NF-κB and inducible nitric oxide synthase in the kidney. Kidney Int.65(4), 1327–1338 (2004).
  • Prathapasinghe GA, Siow YL. Detrimental role of homocysteine in renal ischemia–reperfusion injury. Am. J. Physiol. Renal Physiol.292(5), F1354–F1363 (2007).
  • Jakubowski H. The pathophysiological hypothesis of homocysteine thiolactone-mediated vascular disease. J. Physiol. Pharmacol.59(Suppl. 9), 155–167 (2008).
  • Glushchenko AV, Jacobsen DW. Molecular targeting of proteins by L-homocysteine: mechanistic implications for vascular disease. Antioxid. Redox Signal.9(11), 1883–1898 (2007).
  • Ingrosso D, Perna AF. Epigenetics in hyperhomocysteinemic states. A special focus on uremia. Biochim. Biophys. Acta1790(9), 892–899 (2009).
  • Sen U, Mishra PK, Tyagi N, Tyagi SC. Homocysteine to hydrogen sulfide or hypertension. Cell Biochem. Biophys.57(2–3), 49–58 (2010).
  • Perna AF, Luciano MG, Ingrosso D et al. Hydrogen sulfide, the third gaseous signaling molecule with cardiovascular properties, is decreased in hemodialysis patients. J. Renal Nutr.20(5 Suppl.), S11–S14 (2010).
  • Sen U, Basu P, Abe OA et al. Hydrogen sulfide ameliorates hyperhomocysteinemia-associated chronic renal failure. Am. J. Physiol. Renal Physiol.297(2), F410–F419 (2009).
  • Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R. H2S biogenesis by human cystathionine γ-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J. Biol. Chem.284(17), 11601–11612 (2009).
  • House JD, O’Connor CP, Guenter W. Plasma homocysteine and glycine are sensitive indices of folate status in a rodent model of folate depletion and repletion. J. Agric. Food Chem.51(15), 4461–4467 (2003).
  • Ishii I, Akahoshi N, Yu XN et al. Murine cystathionine γ-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochem. J.381(Pt 1), 113–123 (2004).
  • Li N, Chen L, Muh RW, Li PL. Hyperhomocysteinemia associated with decreased renal transsulfuration activity in Dahl S rats. Hypertension47(6), 1094–1100 (2006).
  • Xia M, Chen L, Muh RW, Li PL, Li N. Production and actions of hydrogen sulfide, a novel gaseous bioactive substance, in the kidneys. J. Pharmacol. Exp. Ther.329(3), 1056–1062 (2009).
  • Stipanuk MH, Beck PW. Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem. J.206(2), 267–277 (1982).
  • Xu Z, Prathapasinghe G, Wu N, Hwang SY, Siow YL. Ischemia–reperfusion reduces cystathionine-β-synthase-mediated hydrogen sulfide generation in the kidney. Am. J. Physiol. Renal Physiol.297(1), F27–F35 (2009).
  • Tripatara P, Patel NS, Collino M et al. Generation of endogenous hydrogen sulfide by cystathionine γ-lyase limits renal ischemia/reperfusion injury and dysfunction. Lab. Invest.88(10), 1038–1048 (2008).
  • Konno R, Ikeda M, Yamaguchi K, Ueda Y, Niwa A. Nephrotoxicity of D-proparglyglycine in mice. Arch. Toxicol.74(8), 473–479 (2000).
  • Triguero A, Barber T, Garcia C, Puertes IR, Sastre J, Vina JR. Liver intracellular L-cysteine concentration is maintained after inhibition of the trans-sulfuration pathway by propargylglycine in rats. Br. J. Nutr.78(5), 823–831 (1997).
  • Taniguchi E, Matsunami M, Kimura T et al. Rhodanese, but not cystathionine-γ-lyase, is associated with dextran sulfate sodium-evoked colitis in mice: a sign of impaired colonic sulfide detoxification? Toxicology264(1–2), 96–103 (2009).
  • Ubuka T, Hosaki Y, Nishina H, Ikeda T. 3-mercaptopyruvate sulfurtransferase activity in guinea pig and rat tissues. Physiol. Chem. Phys. Med. NMR17(1), 41–43 (1985).
  • Lee SW, Cheng Y, Moore PK, Bian JS. Hydrogen sulphide regulates intracellular pH in vascular smooth muscle cells. Biochem. Biophys. Res. Commun.358(4), 1142–1147 (2007).
  • Liu YH, Bian JS. Bicarbonate-dependent effect of hydrogen sulphide on vascular contractility in rat aortic rings. Am. J. Physiol. Cell Physiol.299(4), C866–C872 (2010).
  • Wu N, Siow YL. Ischemia/reperfusion reduces transcription factor Sp1-mediated cystathionine β-synthase expression in the kidney. J. Biol. Chem.285(24), 18225–18233 (2010).
  • Tripatara P, Patel NS, Brancaleone V et al. Characterisation of cystathionine γ-lyase/hydrogen sulphide pathway in ischaemia/reperfusion injury of the mouse kidney: an in vivo study. Eur. J. Pharmacol.606(1–3), 205–209 (2009).
  • Prathapasinghe GA, Siow YL, Xu Z. Inhibition of cystathionine-β-synthase activity during renal ischemia–reperfusion: role of pH and nitric oxide. Am. J. Physiol. Renal Physiol.295(4), F912–F922 (2008).
  • Olson KR, Whitfield NL. Hydrogen sulfide and oxygen sensing in the cardiovascular system. Antioxid. Redox Signal.12(10), 1219–1234 (2010).
  • Beltowski J. Hypoxia in the renal medulla: implications for hydrogen sulfide signaling. J. Pharmacol. Exp. Ther.334(2), 358–363 (2010).
  • Li Q, Sun B, Wang X et al. A crucial role for hydrogen sulfide in oxygen sensing via modulating large conductance calcium-activated potassium channels. Antioxid. Redox. Signal.12(10), 1179–1189 (2010).
  • Cao C, Lee-Kwon W, Silldorff EP, Pallone TL. KATP channel conductance of descending vasa recta pericytes. Am. J. Physiol. Renal Physiol.289(6), F1235–F1245 (2005).
  • Cooper CE, Brown GC. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J. Bioenerg. Biomembr.40(5), 533–539 (2008).
  • Hosgood SA, Nicholson ML. Hydrogen sulphide ameliorates ischaemia–reperfusion injury in an experimental model of non-heart-beating donor kidney transplantation. Br. J. Surg.97(2), 202–209 (2010).
  • Kimura Y, Kimura H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J.18(10), 1165–1167 (2004).
  • Jha S, Calvert JW, Duranski MR, Ramachandran A, Lefer DJ. Hydrogen sulfide attenuates hepatic ischemia–reperfusion injury: role of antioxidant and antiapoptotic signaling. Am. J. Physiol. Heart Circ. Physiol.295(2), H801–H806 (2008).
  • Hu LF, Lu M, Wu ZY, Wong PT, Bian JS. Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function. Mol. Pharmacol.75(1), 27–34 (2009).
  • Zheng X, Zhang X, Sun H et al. Protection of renal ischemia injury using combination gene silencing of complement 3 and caspase 3 genes. Transplantation82(12), 1781–1786 (2006).
  • Zhang X, Zheng X, Sun H et al. Prevention of renal ischemic injury by silencing the expression of renal caspase 3 and caspase 8. Transplantation82(12), 1728–1732 (2006).
  • Bos EM, Leuvenink HG, Snijder PM et al. Hydrogen sulfide-induced hypometabolism prevents renal ischemia/reperfusion injury. J. Am. Soc. Nephrol.20(9), 1901–1905 (2009).
  • Johansen D, Ytrehus K, Baxter GF. Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia–reperfusion injury – evidence for a role of KATP channels. Basic Res. Cardiol.101(1), 53–60 (2006).
  • Sivarajah A, McDonald MC, Thiemermann C. The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat. Shock26(2), 154–161 (2006).
  • Elrod JW, Calvert JW, Morrison J et al. Hydrogen sulfide attenuates myocardial ischemia–reperfusion injury by preservation of mitochondrial function. Proc. Natl Acad. Sci. USA104(39), 15560–15565 (2007).
  • Bian JS, Yong QC, Pan TT et al. Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J. Pharmacol. Exp. Ther.316(2), 670–678 (2006).
  • Hu LF, Pan TT, Neo KL, Yong QC, Bian JS. Cyclooxygenase-2 mediates the delayed cardioprotection induced by hydrogen sulfide preconditioning in isolated rat cardiomyocytes. Pflugers Arch.455(6), 971–978 (2008).
  • Sodha NR, Clements RT, Feng J et al. The effects of therapeutic sulfide on myocardial apoptosis in response to ischemia–reperfusion injury. Eur. J. Cardiothorac. Surg.33(5), 906–913 (2008).
  • Bliksoen M, Kaljusto ML, Vaage J, Stenslokken KO. Effects of hydrogen sulphide on ischaemia–reperfusion injury and ischaemic preconditioning in the isolated, perfused rat heart. Eur. J. Cardiothorac. Surg.34(2), 344–349 (2008).
  • Calvert JW, Coetzee WA, Lefer DJ. Novel insights into hydrogen sulfide-mediated cytoprotection. Antioxid. Redox Signal.12(10), 1203–1217 (2010).
  • Fu Z, Liu X, Geng B, Fang L, Tang C. Hydrogen sulfide protects rat lung from ischemia–reperfusion injury. Life Sci.82(23–24), 1196–1202 (2008).
  • Qu K, Chen CP, Halliwell B, Moore PK, Wong PT. Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke37(3), 889–893 (2006).
  • Florian B, Vintilescu R, Balseanu AT et al. Long-term hypothermia reduces infarct volume in aged rats after focal ischemia. Neurosci. Lett.438(2), 180–185 (2008).
  • Liu H, Bai XB, Shi S, Cao YX. Hydrogen sulfide protects from intestinal ischaemia–reperfusion injury in rats. J. Pharm. Pharmacol.61(2), 207–212 (2009).
  • Henderson PW, Weinstein AL, Sung J, Singh SP, Nagineni V, Spector JA. Hydrogen sulfide attenuates ischemia–reperfusion injury in in vitro and in vivo models of intestine free tissue transfer. Plast. Reconstr. Surg.125(6), 1670–1678 (2010).
  • Wang MJ, Cai WJ, Li N, Ding YJ, Chen Y, Zhu YC. The hydrogen sulfide donor NaHS promotes angiogenesis in a rat model of hind limb ischemia. Antioxid. Redox Signal.12(9), 1065–1077 (2010).
  • Lu M, Liu YH, Goh HS et al. Hydrogen sulfide inhibits plasma renin activity. J. Am. Soc. Nephrol.21(6), 993–1002 (2010).
  • Li L, Whiteman M, Guan YY et al. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation117(18), 2351–2360 (2008).
  • Lim JJ, Liu YH, Khin ES, Bian JS. Vasoconstrictive effect of hydrogen sulfide involves downregulation of cAMP in vascular smooth muscle cells. Am. J. Physiol. Cell. Physiol.295(5), C1261–C1270 (2008).
  • Yong QC, Pan TT, Hu LF, Bian JS. Negative regulation of β-adrenergic function by hydrogen sulphide in the rat hearts. J. Mol. Cell. Cardiol.44(4), 701–710 (2008).
  • Laggner H, Hermann M, Esterbauer H et al. The novel gaseous vasorelaxant hydrogen sulfide inhibits angiotensin-converting enzyme activity of endothelial cells. J. Hypertens.25(10), 2100–2104 (2007).
  • Perna AF, Luciano MG, Ingrosso D et al. Hydrogen sulphide-generating pathways in haemodialysis patients: a study on relevant metabolites and transcriptional regulation of genes encoding for key enzymes. Nephrol. Dial. Transplant.24(12), 3756–3763 (2009).
  • Sen U, Munjal C, Qipshidze N, Abe O, Gargoum R, Tyagi SC. Hydrogen sulfide regulates homocysteine-mediated glomerulosclerosis. Am. J. Nephrol.31(5), 442–455 (2010).
  • Savas M, Yeni E, Ciftci H et al. The antioxidant role of oral administration of garlic oil on renal ischemia–reperfusion injury. Renal Fail.32(3), 362–367 (2010).
  • Sener G, Sakarcan A, Yegen BC. Role of garlic in the prevention of ischemia–reperfusion injury. Mol. Nutr. Food Res.51(11), 1345–1352 (2007).
  • Toombs CF, Insko MA, Wintner EA et al. Detection of exhaled hydrogen sulphide gas in healthy human volunteers during intravenous administration of sodium sulphide. Br. J. Clin. Pharmacol.69(6), 626–636 (2010).
  • Szabo C. Hydrogen sulphide and its therapeutic potential. Nat. Rev. Drug Discov.6(11), 917–935 (2007).
  • Pan TT, Neo KL, Hu LF, Yong QC, Bian JS. H2S preconditioning-induced PKC activation regulates intracellular calcium handling in rat cardiomyocytes. Am. J. Physiol. Cell Physiol.294(1), C169–C177 (2008).
  • Hu LF, Wong PT, Moore PK, Bian JS. Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. J. Neurochem.100(4), 1121–1128 (2007).
  • Lu M, Hu LF, Hu G, Bian JS. Hydrogen sulfide protects astrocytes against H2O2-induced neural injury via enhancing glutamate uptake. Free Radic. Biol. Med.45(12), 1705–1713 (2008).
  • Tiong CX, Bian JS. Protective effect of hydrogen sulfide against 6-OHDA-induced cell injury in SH-SY5Y cells involves PKC/PI3K/Akt pathway. Br. J. Pharm.161(2), 467–480 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.