289
Views
46
CrossRef citations to date
0
Altmetric
Review

Hydrogen sulfide in the pathogenesis of atherosclerosis and its therapeutic potential

&
Pages 97-108 | Published online: 10 Jan 2014

References

  • Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J.16(13), 1792–1798 (2002).
  • Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H. Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J. Biochem.146(5), 623–626, (2009).
  • Shibuya N, Tanaka M, Yoshida M et al. 3-mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid. Redox Signal.11(4), 703–714 (2009).
  • Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci.16(3), 1066–1071 (1996).
  • Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous K(ATP) channel opener. EMBO J.20(21), 6008–6016 (2001).
  • Toombs CF, Insko MA, Wintner EA et al. Detection of exhaled hydrogen sulphide gas in healthy human volunteers during intravenous administration of sodium sulphide. Br. J. Clin. Pharmacol.69(6), 626–636 (2010).
  • Zhu XY, Liu SJ, Liu YJ, Wang S, Ni X. Glucocorticoids suppress cystathionine γ-lyase expression and H2S production in lipopolysaccharide-treated macrophages. Cell. Mol. Life Sci.67(7), 1119–1132 (2010).
  • Wang Y, Zhao X, Jin H et al. Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol.29(2), 173–179 (2009).
  • Whiteman M, Armstrong JS, Chu SH et al. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J. Neurochem.90(3), 765–768 (2004).
  • Chang L, Geng B, Yu F et al. Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids34(4), 573–585 (2008).
  • Muzaffar S, Shukla N, Bond M et al. Exogenous hydrogen sulfide inhibits superoxide formation, NOX-1 expression and Rac1 activity in human vascular smooth muscle cells. J. Vasc. Res.45(6), 521–528 (2008).
  • Whiteman M, Li L, Rose P, Tan CH, Parkinson DB, Moore PK. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid. Redox Signal.12(10), 1147–1154 (2010).
  • Jain SK, Bull R, Rains JL et al. Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation? Antioxid. Redox Signal.12(11), 1333–1337 (2010).
  • Li T, Zhao B, Wang C et al. Regulatory effects of hydrogen sulfide on IL-6, IL-8 and IL-10 levels in the plasma and pulmonary tissue of rats with acute lung injury. Exp. Biol. Med.233, 1081–1087 (2008).
  • Elrod JW, Calvert JW, Morrison J et al. Hydrogen sulphide attenuates myocardial ischemia–reperfusion injury by preservation of mitochondrial function. Proc. Natl Acad. Sci. USA104(39), 15560–15565 (2007).
  • Sen U, Mishra PK, Tyagi N, Tyagi SC. Homocysteine to hydrogen sulfide or hypertension. Cell. Biochem. Biophys.57(2–3), 49–58 (2010).
  • Zhang D, Jiang X, Fang P et al. Hyperhomocysteinemia promotes inflammatory monocyte generation and accelerates atherosclerosis in transgenic cystathionine β-synthase-deficient mice. Circulation120(19), 1893–1902 (2009).
  • Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL. Hydrogen sulphide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J.20, E1411–E1418 (2006).
  • Yusof M, Kamada K, Kalogeris T, Gaskin FS, Korthuis RJ. Hydrogen sulphide triggers late-phase preconditioning in postischemic small intestine by an NO- and p38 MAPK-dependent mechanism. Am. J. Physiol. Heart Circ. Physiol.296, H868–H876 (2009).
  • Yang G, Wu L, Jiang B et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science322(5901), 587–590 (2008).
  • Gupta S, Kühnisch J, Mustafa A et al. Mouse models of cystathionine β-synthase deficiency reveal significant threshold effects of hyperhomocysteinemia. FASEB J.23(3), 883–893 (2009).
  • Zhao W, Wang R. H2S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am. J. Physiol. Heart Circ. Physiol.283(2), H474–H480 (2002).
  • Laggner H, Hermann M, Esterbauer H et al. The novel gaseous vasorelaxant hydrogen sulfide inhibits angiotensin-converting enzyme activity of endothelial cells. J. Hypertens.25(10), 2100–2104 (2007).
  • Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun.237(3), 527–531 (1997).
  • Yong QC, Hu LF, Wang S, Huang D, Lee HS, Bian JS. Hydrogen sulfide interacts with nitric oxide in the heart – possible involvement of nitroxyl. Cardiovasc. Res.88(3), 482–491 (2010).
  • Oh GS, Pae HO, Lee BS et al. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic. Biol. Med.41(1), 106–119 (2006).
  • Kubo S, Doe I, Kurokawa Y, Nishikawa H, Kawabata A. Direct inhibition of endothelial nitric oxide synthase by hydrogen sulfide: contribution to dual modulation of vascular tension. Toxicology232(1–2), 138–146 (2007).
  • DeGraba TJ. Expression of inflammatory mediators and adhesion molecules in human atherosclerotic plaque. Neurology49(5 Suppl. 4), S15–S19 (1997).
  • Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis170(2), 191–203 (2003).
  • Clarke R, Daly L, Robinson K et al. Hyperhomocysteinemia: an independent risk factor for vascular disease. N. Engl. J. Med.324(17), 1149–1155 (1991).
  • Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA274(13), 1049–1057 (1995).
  • Eikelboom JW, Lonn E, Genest J Jr, Hankey G, Yusuf S. Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann. Intern. Med.131(5), 363–375 (1999).
  • Wang H, Jiang XH, Yang F et al. Hyperhomocysteinemia accelerates atherosclerosis in cystathionine β-synthase and apolipoprotein E double knock-out mice with and without dietary perturbation. Blood101(10), 3901–3907 (2003).
  • Dayal S, Bottiglieri T, Arning E et al. Endothelial dysfunction and elevation of S-adenosylhomocysteine in cystathionine β-synthase-deficient mice. Circ. Res.88, 1203–1209 (2001).
  • Eberhardt RT, Forgione MA, Cap A et al. Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia. J. Clin. Invest.106(4), 483–491 (2000).
  • Weiss N, Heydrick S, Zhang Y-Y, Cierl C, Cap A, Loscalzo J. Cellular redox state and endothelial dysfunction in mildly hyperhomocysteinemic cystathionine β-synthase-deficient mice. Arterioscler. Thromb. Vasc. Biol.2, 34–41 (2001).
  • Weiss N, Zhang Y-Y, Heydrick S, Bierl C, Loscalzo J. Overexpression of cellular glutathionine peroxidise rescues homocyst(e)ine-induced endothelial dysfunction. Proc. Natl Acad. Sci. USA98(22), 12503–12508 (2001).
  • Dickhout JG, Sood SK, Austin RC. Role of endoplasmic reticulum calcium disequilibria in the mechanism of homocysteine-induced ER stress. Antioxid. Redox Signal.9, 1863–1873 (2007).
  • Werstuck GH, Lentz SR, Dayal S et al. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J. Clin. Invest.107, 1263–1273 (2001).
  • Wei H, Zhang R, Jin H et al. Hydrogen sulfide attenuates hyperhomocysteinemia-induced cardiomyocytic endoplasmic reticulum stress in rats. Antioxid. Redox Signal.12(9), 1079–1091 (2010).
  • Zhou J, Lhotak S, Hilditch BA, Austin RC. Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apoplipoprotein E-deficient mice. Circulation111, 1814–1821 (2005).
  • Zulli A, Lau E, Wijaya BP et al. High dietary taurine reduces apoptosis and atherosclerosis in the left main coronary artery: association with reduced CCAAT/enhancer binding protein homologous protein and total plasma homocysteine but not lipidemia. Hypertension53, 1017–1022 (2009).
  • Sen U, Basu P, Abe OA et al. Hydrogen sulfide ameliorates hyperhomocysteinemia-associated chronic renal failure. Am. J. Physiol. Renal Physiol.2, F410–F419 (2009).
  • Tyagi N, Moshal KS, Sen U et al. H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxid. Redox Signal.11, 25–33 (2009).
  • Yang G, Yang W, Wu L, Wang R. H2S, endoplasmic reticulum stress, and apoptosis of insulin-secreting b cells. J. Biol. Chem.282(22), 16567–16576 (2007).
  • Yan SK, Chang T, Wang H, Wu L, Wang R, Meng QH. Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cells. Biochem. Biophys. Res. Commun.351(2), 485–491 (2006).
  • Calvert JW, Jha S, Gundewar S et al. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ. Res.105(4), 365–374 (2009).
  • Itoh K, Chiba T, Takahashi S et al. An Nrf2/small Maf heterodimer mediates the induction of Phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun.236(2), 313–322 (1997).
  • Zhu H, Itoh K, Yamamoto M, Zweier JL, Li Y. Role of Nrf2 signaling in regulation of antioxidants and Phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett.579(14), 3029–3036 (2005).
  • Benavides GA, Squadrito GL, Mills RW et al. Hydrogen sulfide mediates the vasoactivity of garlic. Proc. Natl Acad. Sci. USA104(46), 17977–17982 (2007).
  • Fisher CD, Augustine LM, Maher JM et al. Induction of drug-metabolizing enzymes by garlic and allyl sulfide compounds via activation of constitutive androstane receptor and nuclear factor E2-related factor 2. Drug Metab. Dispos.35(6), 995–1000 (2007).
  • Lonn E, Yusuf S, Arnold MJ et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N. Engl. J. Med.354(15), 1567–1577 (2006).
  • Clarke R, Halsey J, Lewington S et al. Effects of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals. Arch. Intern. Med.170(18), 1622–1631 (2010).
  • Du J, Hui Y, Cheung Y et al. The possible role of hydrogen sulfide as a smooth muscle cell proliferation inhibitor in rat cultured cells. Heart Vessels19(2), 75–80 (2004).
  • Yang G, Cao K, Wu L, Wang R. Cystathionine γ-lyase overexpression inhibits cell proliferation via a H2S-dependent modulation of ERK1/2 phosphorylation and p21Cip/WAK-1. J. Biol. Chem.279(47), 49199–49205 (2004).
  • Yang G, Wu L, Bryan S, Khaper N, Mani S, Wang R. Cystathionine γ-lyase deficiency and overproliferation of smooth muscle cells. Cardiovasc. Res.86(3), 487–495 (2010).
  • Baskar R, Sparatore A, Del Soldato P, Moore PK. Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative inhibit rat vascular smooth muscle cell proliferation. Eur. J. Pharmacol.594(1–3), 1–8 (2008).
  • Yang G, Wu L, Wang R. Pro-apoptotic effect of endogenous H2S on human aorta smooth muscle cells. FASEB J.20(3), 553–555 (2006).
  • Geng B, Chang L, Pan C et al. Endogenous hydrogen sulphide regulation of myocardial injury induced by isoproterenol. Biochem. Biophys. Res. Commun.318(3), 756–763 (2004).
  • Johansen D, Ytrehus K, Baxter GF. Exogenous hydrogen sulphide (H2S) protects against regional myocardial ischemia–reperfusion injury – evidence for a role of KATP channels. Basic Res. Cardiol.101(1), 53–60 (2006).
  • Bian JS, Yong QC, Pan TT et al. Role of hydrogen sulphide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J. Pharmacol. Exp. Ther.316(2), 670–678 (2006).
  • Abedin M, Tintut Y, Demer LL. Vascular calcification: mechanisms and clinical ramifications. Arterioscler. Thromb. Vasc. Biol.24(7), 1161–1170 (2004).
  • Wu SY, Pan CS, Geng B et al. Hydrogen sulfide ameliorates vascular calcification induced by vitamin D3 plus nicotine in rats. Acta Pharmacol. Sin.27(3), 299–306 (2006).
  • Li J, Chai S, Tang C, Du J. Homocysteine potentiates calcification of cultured rat aortic smooth muscle cells. Life Sci.74(4), 451–461 (2003).
  • Predmore BL, Alendy MJ, Ahmed KI, Leeuwenburgh C, Julian D. The hydrogen sulphide signalling system: changes during aging and the benefits of caloric restriction. Age32(4), 467–481 (2010).
  • Zhang X-H, Lowe D, Giles P, Fell S, Connock MJ, Maslin DJ. Gender may affect the action of garlic oil on plasma cholesterol and glucose levels of normal subjects. J. Nutr.131, 1471–1478 (2001).
  • Cai W-J, Wang M-J, Moore PK, Jin H-M, Yao T, Zhu Y-C. The novel proangiogenic effect of hydrogen sulphide is dependent on Akt phosphorylation. Cardiovasc. Res.76, 29–40 (2007).
  • Papapetropoulos A, Pyriochou A, Altaany Z et al. Hydrogen sulphide is an endogenous stimulator of angiogenesis. Proc. Natl Acad. Sci. USA106(51), 21972–21977 (2009).
  • Jacobs RL, House JD, Brosnan ME, Brosnan JT. Efects of streptozotocin-induced diabetes and of insulin treatment on homocysteine metabolism in the rat. Diabetes47, 1967–1970 (1998).
  • Yusuf M, Huat BT, Hsu A, Whiteman M, Bhatia M, Moore PK. Streptozotocin-induced diabetes in the rat is associated with enhanced tissue hydrogen sulphide biosynthesis. Biochem. Biophys. Res. Commun.333, 1146–1152 (2005).
  • Yang W, Yang G, Jia X, Wu L, Wang R. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. J. Physiol.569(2), 519–531 (2005).
  • Laggner H, Muellner MK, Schreier S et al. Hydrogen sulphide: a novel physiological inhibitor of LDL atherogenic modification by HOCl. Free Radic. Res.41(7), 741–747 (2007).
  • Jeney V, Komodi E, Nagy E et al. Supression of hemin-mediated oxidation of low-density lipoprotein and subsequent endothelial reactions by hydrogen sulphide (H2S). Free Radic. Res.46, 616–623 (2009).
  • Muellner MK, Schreier SM, Laggner H et al. Hydrogen sulphide destroys lipid hydroperoxides in oxidized LDL. Biochem. J.420, 277–281 (2009).
  • Li L, Salto-Tellez M, Tan CH, Whiteman M, Moore PK. GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic. Biol. Med.47(1), 103–113 (2009).
  • Yanfei W, Lin S, Junbao D, Chaoshu T. Impact of L-arginine on hydrogen sulphide/cystathionine-γ-lyase pathway in rats with high blood flow-induced pulmonary hypertension. Biochem. Biophys. Res. Commun.345, 851–857 (2006).
  • Derwall M, Westerkamp M, Lower C et al. Hydrogen sulphide does not increase resuscitability in a porcine model of prolonged cardiac arrest. Shock34(2), 190–195 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.