200
Views
17
CrossRef citations to date
0
Altmetric
Review

Hydrogen sulfide and the metabolic syndrome

, , &
Pages 63-73 | Published online: 10 Jan 2014

References

  • Wang R. Hydrogen sulfide: the third gasotransmitter in biology and medicine. Antioxid. Redox Signal.12(9), 1061–1064 (2010).
  • Gadalla MM, Snyder SH. Hydrogen sulfide as a gasotransmitter. J. Neurochem.113(1), 14–26 (2010).
  • Mustafa AK, Gadalla MM, Snyder SH. Signaling by gasotransmitters. Sci. Signal.2(68), re2 (2009).
  • Yang G, Wu L, Jiang B et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science322(5901), 587–590 (2008).
  • Aschner P. Metabolic syndrome as a risk factor for diabetes. Expert Rev. Cardiovasc. Ther.8(3), 407–412 (2010).
  • Mottillo S, Filion KB, Genest J et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J. Am. Coll. Cardiol.56(14), 1113–1132 (2010).
  • Weiss R. Metabolic syndrome in childhood – causes and effects. Endocr. Dev.19, 62–72 (2010).
  • Alberti KG, Zimmet P, Shaw J. The metabolic syndrome – a new worldwide definition. Lancet366(9491), 1059–1062 (2005).
  • Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA287(3), 356–359 (2002).
  • Wu L, Yang W, Jia X et al. Pancreatic islet overproduction of H2S and suppressed insulin release in Zucker diabetic rats. Lab. Invest.89(1), 59–67 (2009).
  • Yusuf M, Kwong Huat BT, Hsu A, Whiteman M, Bhatia M, Moore PK. Streptozotocin-induced diabetes in the rat is associated with enhanced tissue hydrogen sulfide biosynthesis. Biochem. Biophys. Res. Commun.333(4), 1146–1152 (2005).
  • Hargrove JL, Trotter JF, Ashline HC, Krishnamurti PV. Experimental diabetes increases the formation of sulfane by transsulfuration and inactivation of tyrosine aminotransferase in cytosols from rat liver. Metabolism38(7), 666–672 (1989).
  • Nieman KM, Rowling MJ, Garrow TA, Schalinske KL. Modulation of methyl group metabolism by streptozotocin-induced diabetes and all-trans-retinoic acid. J. Biol. Chem.279(44), 45708–45712 (2004).
  • Jacobs RL, House JD, Brosnan ME, Brosnan JT. Effects of streptozotocin-induced diabetes and of insulin treatment on homocysteine metabolism in the rat. Diabetes47(12), 1967–1970 (1998).
  • Gursu MF, Baydas G, Cikim G, Canatan H. Insulin increases homocysteine levels in a dose-dependent manner in diabetic rats. Arch. Med. Res.33(3), 305–307 (2002).
  • Schalinske KL. Interrelationship between diabetes and homocysteine metabolism: hormonal regulation of cystathionine β-synthase. Nutr. Rev.61(4), 136–138 (2003).
  • Yang W, Yang G, Jia X, Wu L, Wang R. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. J. Physiol.569(Pt 2), 519–531 (2005).
  • Ali MY, Whiteman M, Low CM, Moore PK. Hydrogen sulphide reduces insulin secretion from HIT-T15 cells by a KATP channel-dependent pathway. J. Endocrinol.195(1), 105–112 (2007).
  • Kaneko Y, Kimura Y, Kimura H, Niki I. L-cysteine inhibits insulin release from the pancreatic β-cell: possible involvement of metabolic production of hydrogen sulfide, a novel gasotransmitter. Diabetes55(5), 1391–1397 (2006).
  • Yang G, Yang W, Wu L, Wang R. H2S, endoplasmic reticulum stress, and apoptosis of insulin-secreting β cells. J. Biol. Chem.282(22), 16567–16576 (2007).
  • Kaneko Y, Kimura T, Taniguchi S et al. Glucose-induced production of hydrogen sulfide may protect the pancreatic β-cells from apoptotic cell death by high glucose. FEBS Lett.583(2), 377–382 (2009).
  • Cao Y, Adhikari S, Ang AD, Moore PK, Bhatia M. Mechanism of induction of pancreatic acinar cell apoptosis by hydrogen sulfide. Am. J. Physiol. Cell. Physiol.291(3), C503–C510 (2006).
  • Robertson RP, Harmon J, Tran PO, Poitout V. β-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in Type 2 diabetes. Diabetes53(Suppl. 1), S119–S124 (2004).
  • Robertson RP, Harmon JS. Diabetes, glucose toxicity, and oxidative stress: a case of double jeopardy for the pancreatic islet β cell. Free Radic. Biol. Med.41(2), 177–184 (2006).
  • Hayden LJ, Goeden H, Roth SH. Exposure to low levels of hydrogen sulfide elevates circulating glucose in maternal rats. J. Toxicol. Environ. Health31(1), 45–52 (1990).
  • Feng X, Chen Y, Zhao J, Tang C, Jiang Z, Geng B. Hydrogen sulfide from adipose tissue is a novel insulin resistance regulator. Biochem. Biophys. Res. Commun.380(1), 153–159 (2009).
  • Dhar A, Desai K, Kazachmov M, Yu P, Wu L. Methylglyoxal production in vascular smooth muscle cells from different metabolic precursors. Metabolism57(9), 1211–1220 (2008).
  • Wang H, Meng QH, Gordon JR, Khandwala H, Wu L. Proinflammatory and proapoptotic effects of methylglyoxal on neutrophils from patients with Type 2 diabetes mellitus. Clin. Biochem.40(16–17), 1232–1239 (2007).
  • McLellan AC, Thornalley PJ, Benn J, Sonksen PH. Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin. Sci. (Lond.)87(1), 21–29 (1994).
  • Desai KM, Wu L. Free radical generation by methylglyoxal in tissues. Drug Metabol. Drug Interact.23(1–2), 151–173 (2008).
  • Wang X, Desai K, Chang T, Wu L. Vascular methylglyoxal metabolism and the development of hypertension. J. Hypertens.23(8), 1565–1573 (2005).
  • Chang T, Wu L. Methylglyoxal, oxidative stress, and hypertension. Can. J. Physiol. Pharmacol.84(12), 1229–1238 (2006).
  • Bourajjaj M, Stehouwer CD, van Hinsbergh VW, Schalkwijk CG. Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus. Biochem. Soc. Trans.31(Pt 6), 1400–1402 (2003).
  • Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc. Diabetol.4(1), 5 (2005).
  • Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol.17(1), 24–38 (2003).
  • Hansel B, Giral P, Nobecourt E et al. Metabolic syndrome is associated with elevated oxidative stress and dysfunctional dense high-density lipoprotein particles displaying impaired antioxidative activity. J. Clin. Endocrinol. Metab.89(10), 4963–4971 (2004).
  • Furukawa S, Fujita T, Shimabukuro M et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest.114(12), 1752–1761 (2004).
  • Wang X, Jia X, Chang T, Desai K, Wu L. Attenuation of hypertension development by scavenging methylglyoxal in fructose-treated rats. J. Hypertens.26(4), 765–772 (2008).
  • Chang T, Untereiner A, Liu J, Wu L. Interaction of methylglyoxal and hydrogen sulfide in rat vascular smooth muscle cells. Antioxid. Redox Signal.12(9), 1093–1100 (2010).
  • Coppack SW. Adipose tissue changes in obesity. Biochem. Soc. Trans.33(Pt 5), 1049–1052 (2005).
  • Hajer GR, van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur. Heart J.29(24), 2959–2971 (2008).
  • Whiteman M, Cheung NS, Zhu YZ et al. Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem. Biophys. Res. Commun.326(4), 794–798 (2005).
  • Whiteman M, Armstrong JS, Chu SH et al. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J. Neurochem.90(3), 765–768 (2004).
  • Laggner H, Muellner MK, Schreier S et al. Hydrogen sulphide: a novel physiological inhibitor of LDL atherogenic modification by HOCl. Free Radic. Res.41(7), 741–747 (2007).
  • Muellner MK, Schreier SM, Laggner H et al. Hydrogen sulfide destroys lipid hydroperoxides in oxidized LDL. Biochem. J.420(2), 277–281 (2009).
  • Whiteman M, Gooding KM, Whatmore JL et al. Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia53(8), 1722–1726 (2010).
  • Jain SK, Bull R, Rains JL et al. Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation? Antioxid. Redox Signal.12(11), 1333–1337 (2010).
  • Zhi L, Ang AD, Zhang H, Moore PK, Bhatia M. Hydrogen sulfide induces the synthesis of proinflammatory cytokines in human monocyte cell line U937 via the ERK–NF-κB pathway. J. Leukoc. Biol.81(5), 1322–1332 (2007).
  • Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J.16(13), 1792–1798 (2002).
  • Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J.20(21), 6008–6016 (2001).
  • Cheng Y, Ndisang JF, Tang G, Cao K, Wang R. Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am. J. Physiol. Heart Circ. Physiol.287(5), H2316–H2323 (2004).
  • Rubanyi GM, Romero JC, Vanhoutte PM. Flow-induced release of endothelium-derived relaxing factor. Am. J. Physiol.250(6 Pt 2), H1145–H1149 (1986).
  • Shesely EG, Maeda N, Kim HS et al. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc. Natl Acad. Sci. USA93(23), 13176–13181 (1996).
  • Huang PL, Huang Z, Mashimo H et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature377(6546), 239–242 (1995).
  • Wang R. Hydrogen sulfide: a new EDRF. Kidney Int.76(7), 700–704 (2009).
  • Zhong G, Chen F, Cheng Y, Tang C, Du J. The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase. J. Hypertens.21(10), 1879–1885 (2003).
  • Okamoto K, Yamori Y, Ooshima A, Park C, Haebara H, Matsumoto M. Establishment of the inbred strain of the spontaneously hypertensive rat and genetic factors involved in hypertension. In: Spontaneous Hypertension: its Pathogenesis and Complications. Okamoto K (Ed.) Igaku Shoin, Tokyo, Japan, 1–8 (1972).
  • Ganten D, Lindpaintner K, Ganten U et al. Transgenic rats: new animal models in hypertension research. Invited lecture. Hypertension17(6 Pt 2), 843–855 (1991).
  • Du J, Yan H, Tang C. Endogenous H2S is involved in the development of spontaneous hypertension. Beijing Da Xue Xue Bao35(1), 102 (2003).
  • Yan H, Du JB, Tang CS. Changes of endogenous hydrogen sulfide (H2S) in hypertensive rats. Zhonghua Er Ke Za Zhi42(3), 172–175 (2004).
  • Zhao X, Zhang LK, Zhang CY et al. Regulatory effect of hydrogen sulfide on vascular collagen content in spontaneously hypertensive rats. Hypertens. Res.31(8), 1619–1630 (2008).
  • Lu M, Liu YH, Goh HS et al. Hydrogen sulfide inhibits plasma renin activity. J. Am. Soc. Nephrol.21(6), 993–1002 (2010).
  • Fang L, Zhao J, Chen Y et al. Hydrogen sulfide derived from periadventitial adipose tissue is a vasodilator. J. Hypertens.27(11), 2174–2185 (2009).
  • Takaoka M, Nagata D, Kihara S et al. Periadventitial adipose tissue plays a critical role in vascular remodeling. Circ. Res.105(9), 906–911 (2009).
  • Vela D, Buja LM, Madjid M et al. The role of periadventitial fat in atherosclerosis. Arch. Pathol. Lab. Med.131(3), 481–487 (2007).
  • Wang H, Jiang X, Yang F et al. Hyperhomocysteinemia accelerates atherosclerosis in cystathionine β-synthase and apolipoprotein E double knock-out mice with and without dietary perturbation. Blood101(10), 3901–3907 (2003).
  • Dayal S, Bottiglieri T, Arning E et al. Endothelial dysfunction and elevation of S-adenosylhomocysteine in cystathionine β-synthase-deficient mice. Circ. Res.88(11), 1203–1209 (2001).
  • Xiaohui L, Junbao D, Lin S et al. Down-regulation of endogenous hydrogen sulfide pathway in pulmonary hypertension and pulmonary vascular structural remodeling induced by high pulmonary blood flow in rats. Circ. J.69(11), 1418–1424 (2005).
  • Li X, Du J, Jin H, Geng B, Tang C. Sodium hydrosulfide alleviates pulmonary artery collagen remodeling in rats with high pulmonary blood flow. Heart Vessels23(6), 409–419 (2008).
  • Li W, Jin HF, Liu D et al. Hydrogen sulfide induces apoptosis of pulmonary artery smooth muscle cell in rats with pulmonary hypertension induced by high pulmonary blood flow. Chin. Med. J. (Engl.)122(24), 3032–3038 (2009).
  • Wei HL, Zhang CY, Jin HF, Tang CS, Du JB. Hydrogen sulfide regulates lung tissue-oxidized glutathione and total antioxidant capacity in hypoxic pulmonary hypertensive rats. Acta Pharmacol. Sin.29(6), 670–679 (2008).
  • Huang XL, Zhou XH, Wei P, Zhang XJ, Meng XY, Xian XH. Role of endogenous hydrogen sulfide in pulmonary hypertension induced by lipopolysaccharide. Sheng Li Xue Bao60(2), 211–215 (2008).
  • Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes37(12), 1595–1607 (1988).
  • Janka HU. Increased cardiovascular morbidity and mortality in diabetes mellitus: identification of the high risk patient. Diabetes Res. Clin. Pract.30(Suppl.), 85–88 (1996).
  • Milicevic Z, Raz I, Beattie SD et al. Natural history of cardiovascular disease in patients with diabetes: role of hyperglycemia. Diabetes Care31(Suppl. 2), S155–S160 (2008).
  • Sparatore A, Perrino E, Tazzari V et al. Pharmacological profile of a novel H2S-releasing aspirin. Free Radic. Biol. Med.46(5), 586–592 (2009).
  • Li L, Rossoni G, Sparatore A, Lee LC, Del Soldato P, Moore PK. Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic. Biol. Med.42(5), 706–719 (2007).
  • Baskar R, Sparatore A, Del Soldato P, Moore PK. Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative inhibit rat vascular smooth muscle cell proliferation. Eur. J. Pharmacol.594(1–3), 1–8 (2008).
  • Distrutti E, Sediari L, Mencarelli A et al. 5-amino-2-hydroxybenzoic acid 4-(5-thioxo-5H-[1,2]dithiol-3yl)-phenyl ester (ATB-429), a hydrogen sulfide-releasing derivative of mesalamine, exerts antinociceptive effects in a model of postinflammatory hypersensitivity. J. Pharmacol. Exp. Ther.319(1), 447–458 (2006).
  • Fiorucci S, Orlandi S, Mencarelli A et al. Enhanced activity of a hydrogen sulphide-releasing derivative of mesalamine (ATB-429) in a mouse model of colitis. Br. J. Pharmacol.150(8), 996–1002 (2007).
  • Wallace JL, Caliendo G, Santagada V, Cirino G. Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346). Br. J. Pharmacol.159(6), 1236–1246 (2010).
  • Muzaffar S, Jeremy JY, Sparatore A, Del Soldato P, Angelini GD, Shukla N. H2S-donating sildenafil (ACS6) inhibits superoxide formation and gp91phox expression in arterial endothelial cells: role of protein kinases A and G. Br. J. Pharmacol.155(7), 984–994 (2008).
  • Shukla N, Rossoni G, Hotston M et al. Effect of hydrogen sulphide-donating sildenafil (ACS6) on erectile function and oxidative stress in rabbit isolated corpus cavernosum and in hypertensive rats. BJU Int.103(11), 1522–1529 (2009).
  • Bannenberg GL, Vieira HL. Therapeutic applications of the gaseous mediators carbon monoxide and hydrogen sulfide. Expert Opin. Ther. Pat.19(5), 663–682 (2009).
  • Wagner F, Asfar P, Calzia E, Radermacher P, Szabo C. Bench-to-bedside review: Hydrogen sulphide – the third gaseous transmitter: applications for critical care. Crit. Care13(3), 213 (2009).
  • Wallace JL. Hydrogen sulfide-releasing anti-inflammatory drugs. Trends Pharmacol. Sci.28(10), 501–505 (2007).
  • Caliendo G, Cirino G, Santagada V, Wallace JL. Synthesis and biological effects of hydrogen sulfide (H2S): development of H2S-releasing drugs as pharmaceuticals. J. Med. Chem.53(17), 6275–6286 (2010).
  • Li L, Whiteman M, Guan YY et al. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation117(18), 2351–2360 (2008).

Patents

  • Scherrer U, Sparatore U. Hydrogen Sulfide Derivatives of Non-steroidal Anti-inflammatory Drugs. WO/2006/066894 (2006).
  • Sparatore A, Wallace JL. Renal–Urologic Drugs. EP1630164 A1 (2006).
  • Wallace JL, Cirino G, Santagada V, Caliendo G. 4-Hydroxythiobenzamide Derivatives of Drugs. 20090306412 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.