7,823
Views
240
CrossRef citations to date
0
Altmetric
Perspective

Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising

&
Pages 13-32 | Published online: 10 Jan 2014

References

  • Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr. Drug Targets Inflamm. Allergy4, 281–286 (2005).
  • Pathological Basis of Disease. Ramzi VK, Contran S, Tucker C (Eds). W Saunders B, NY, USA 1999.
  • What Is Inflammation? Winyard PG, Blake DR, Evans CH (Eds). Birkhauser Verlag, Basel, Swizerland (2000).
  • Pattison DJ, Winyard PG. Dietary antioxidants in inflammatory arthritis: do they have any role in etiology or therapy? Nat. Clin. Pract. Rheumatol.4, 590–596 (2008).
  • Key Stages in the Acute Inflammatory Response and Their Relevance as Therapeutic Targets. Winyard PG, Willoughby D (Eds). Humana Press, NJ, USA (2003).
  • Li L, Hsu A, Moore PK. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation – a tale of three gases! Pharmacol. Ther.123, 386–400 (2009).
  • Pae HO, Lee YC, Jo EK, Chung HT. Subtle interplay of endogenous bioactive gases (NO, CO and H2S) in inflammation. Arch. Pharm. Res.32, 1155–1162 (2009).
  • Kaczorowski DJ, Zuckerbraun BS. Carbon monoxide: medicinal chemistry and biological effects. Curr. Med. Chem.14, 2720–2725 (2007).
  • Nitric Oxide and Inflammation. Salvemini D, Billiar TM, Vodovotz Y (Eds). Birkhauser Verlag, Basel, Swizerland (2001).
  • Laskin JD, Heck DE, Laskin DL. Multifunctional role of nitric oxide in inflammation. Trends Endocrinol. Metab.5, 377–382 (1994).
  • Li L, Bhatia M, Moore PK. Hydrogen sulphide – a novel mediator of inflammation? Curr. Opin. Pharmacol.6, 125–129 (2006).
  • Whiteman M, Moore PK. Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability? J. Cell. Mol. Med.13, 488–507 (2009).
  • Yang G, Wu L, Jiang B et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science322, 587–590 (2008).
  • Ali MY, Whiteman M, Low CM, Moore PK. Hydrogen sulphide reduces insulin secretion from HIT-T15 cells by a KATP channel-dependent pathway. J. Endocrinol.195, 105–112 (2007).
  • Yang W, Yang G, Jia X, Wu L, Wang R. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. J. Physiol.569, 519–531 (2005).
  • Smith HS. Hydrogen sulfide’s involvement in modulating nociception. Pain Physician12, 901–910 (2009).
  • Kimura H. Hydrogen sulfide as a neuromodulator. Mol. Neurobiol.26, 13–19 (2002).
  • Whiteman M, Gooding KM, Whatmore JL et al. Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia53, 1722–1726 (2010).
  • Jin HF, Liang C, Liang JM, Tang CS, Du JB. Effects of hydrogen sulfide on vascular inflammation in pulmonary hypertension induced by high pulmonary blood flow: experiment with rats. Zhonghua Yi Xue Za Zhi88, 2235–2239 (2008).
  • Mok YY, Atan MS, Ping CY et al. Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesis. Br. J. Pharmacol.143, 881–889 (2004).
  • Li L, Bhatia M, Zhu YZ et al. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J.19, 1196–1198 (2005).
  • Whiteman M, Haigh R, Tarr JM, Gooding KM, Shore AC, Winyard PG. Detection of hydrogen sulfide in plasma and knee-joint synovial fluid from rheumatoid arthritis patients: relation to clinical and laboratory measures of inflammation. Ann. NY Acad. Sci.1203, 146–150 (2010).
  • Martin GR, McKnight GW, Dicay MS, Coffin CS, Ferraz JG, Wallace JL. Hydrogen sulphide synthesis in the rat and mouse gastrointestinal tract. Dig. Liver Dis.42, 103–109 (2010).
  • Astiz ME, Rackow EC. Septic shock. Lancet351, 1501–1505 (1998).
  • Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP. The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA273, 117–123 (1995).
  • Gardiner SM, Kemp PA, March JE, Bennett T. Regional haemodynamic responses to infusion of lipopolysaccharide in conscious rats: effects of pre- or post-treatment with glibenclamide. Br. J. Pharmacol.128, 1772–1778 (1999).
  • Shi W, Cui N, Wu Z et al. Lipopolysaccharides up-regulate Kir6.1/SUR2B channel expression and enhance vascular KATP channel activity via NF-κB-dependent signaling. J. Biol. Chem.285, 3021–3029 (2010).
  • Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J.20, 6008–6016 (2001).
  • Hui Y, Du J, Tang C, Bin G, Jiang H. Changes in arterial hydrogen sulfide (H2S) content during septic shock and endotoxin shock in rats. J. Infect.47, 155–160 (2003).
  • Zhang H, Zhi L, Moore PK, Bhatia M. Role of hydrogen sulfide in cecal ligation and puncture-induced sepsis in the mouse. Am. J. Physiol. Lung Cell. Mol. Physiol.290, L1193–L1201 (2006).
  • Collin M, Anuar FB, Murch O, Bhatia M, Moore PK, Thiemermann C. Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia. Br. J. Pharmacol.146, 498–505 (2005).
  • Li L, Salto-Tellez M, Tan CH, Whiteman M, Moore PK. GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic. Biol. Med.47, 103–113 (2009).
  • Li L, Whiteman M, Guan YY et al. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation117, 2351–2360 (2008).
  • Ali MY, Ping CY, Mok YY et al. Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide? Br. J. Pharmacol.149, 625–634 (2006).
  • Mok YY, Moore PK. Hydrogen sulphide is pro-inflammatory in haemorrhagic shock. Inflamm. Res.57, 512–518 (2008).
  • Zhang H, Moochhala SM, Bhatia M. Endogenous hydrogen sulfide regulates inflammatory response by activating the ERK pathway in polymicrobial sepsis. J. Immunol.181, 4320–4331 (2008).
  • Zhang H, Zhi L, Moochhala S, Moore PK, Bhatia M. Hydrogen sulfide acts as an inflammatory mediator in cecal ligation and puncture-induced sepsis in mice by upregulating the production of cytokines and chemokines via NF-κB. Am. J. Physiol. Lung Cell. Mol. Physiol.292, L960–L971 (2007).
  • Bhatia M, Zhi L, Zhang H, Ng SW, Moore PK. Role of substance P in hydrogen sulfide-induced pulmonary inflammation in mice. Am. J. Physiol. Lung Cell. Mol. Physiol.291, L896–L904 (2006).
  • Inflammation Protocols: Carrageenan-Induced Paw Edema in the Rat and Mouse. Morris CJ (Ed.). Humana Press, NJ, USA (2003).
  • Bhatia M, Sidhapuriwala J, Moochhala SM, Moore PK. Hydrogen sulphide is a mediator of carrageenan-induced hindpaw oedema in the rat. Br. J. Pharmacol.145, 141–144 (2005).
  • Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J.20, 2118–2120 (2006).
  • Wallace JL, Granger DN. The cellular and molecular basis of gastric mucosal defense. FASEB J.10, 731–740 (1996).
  • Wallace JL. Prostaglandins. NSAIDs, and gastric mucosal protection: why doesn’t the stomach digest itself? Physiol. Rev.88, 1547–1565 (2008).
  • Sigthorsson G, Simpson RJ, Walley M et al. COX-1 and 2, intestinal integrity, and pathogenesis of nonsteroidal anti-inflammatory drug enteropathy in mice. Gastroenterology122, 1913–1923 (2002).
  • Fiorucci S, Antonelli E, Distrutti E et al. Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. Gastroenterology129, 1210–1224 (2005).
  • Wallace JL, Vong L, W McKnight. Dicay M, Martin GR. Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology137, 569–578, 578 e561 (2009).
  • Wallace JL, Dicay M, W McKnight. Martin GR. Hydrogen sulfide enhances ulcer healing in rats. FASEB J.21, 4070–4076 (2007).
  • Abeles RH, Walsh CT. Acetylenic enzyme inactivators. Inactivation of g-cystathionase, in vitro and in vivo, by propargylglycine. J. Am. Chem. Soc.95, 6124–6125 (1973).
  • Pfeffer M, Ressler C. β-cyanoalanine, an inhibitor of rat liver cystathionase. Biochem. Pharmacol.16, 2299–2308 (1967).
  • Tamizhselvi R, Moore PK, Bhatia M. Hydrogen sulfide acts as a mediator of inflammation in acute pancreatitis: in vitro studies using isolated mouse pancreatic acinar cells. J. Cell. Mol. Med.11, 315–326 (2007).
  • Tamizhselvi R, Moore PK, Bhatia M. Inhibition of hydrogen sulfide synthesis attenuates chemokine production and protects mice against acute pancreatitis and associated lung injury. Pancreas36, e24–e31 (2008).
  • Tamizhselvi R, Koh YH, Sun J, Zhang H, Bhatia M. Hydrogen sulfide induces ICAM-1 expression and neutrophil adhesion to cerulein-treated pancreatic acinar cells through NF-κB and Src-family kinases pathway. Exp. Cell. Res.316, 1625–1636 (2010).
  • Adhikari S, Bhatia M. H2S-induced pancreatic acinar cell apoptosis is mediated via JNK and p38 MAP kinase. J. Cell. Mol. Med.12, 1374–1383 (2008).
  • Cao Y, Adhikari S, Ang AD, Moore PK, Bhatia M. Mechanism of induction of pancreatic acinar cell apoptosis by hydrogen sulfide. Am. J. Physiol. Cell. Physiol.291, C503–C510 (2006).
  • Sidhapuriwala JN, Ng SW, Bhatia M. Effects of hydrogen sulfide on inflammation in cerulein-induced acute pancreatitis. J. Inflamm. (Lond.)6, 35 (2009).
  • Zhang J, Sio SW, Moochhala S, Bhatia M. Role of hydrogen sulfide in severe burn injury-induced inflammation in mice. Mol. Med.16, 417–424 (2010).
  • Esechie A, Kiss L, Olah G et al. Protective effect of hydrogen sulfide in a murine model of acute lung injury induced by combined burn and smoke inhalation. Clin. Sci. (Lond.)115, 91–97 (2008).
  • MD Barber RC, White DJ, Horton JW. Increasing percent burn is correlated with increasing inflammation in an adult rodent model. Shock30, 388–393 (2008).
  • Lopez A, Prior MG, Reiffenstein RJ, Goodwin LR. Peracute toxic effects of inhaled hydrogen sulfide and injected sodium hydrosulfide on the lungs of rats. Fundam. Appl. Toxicol.12, 367–373 (1989).
  • Lopez A, Prior M, Lillie LE, Gulayets C, Atwal OS. Histologic and ultrastructural alterations in lungs of rats exposed to sub-lethal concentrations of hydrogen sulfide. Vet. Pathol.25, 376–384 (1988).
  • Chen YH, Yao WZ, Geng B et al. Endogenous hydrogen sulfide in patients with COPD. Chest128, 3205–3211 (2005).
  • Chen YH, Yao WZ, Ding YL, Geng B, Lu M, Tang CS. Effect of theophylline on endogenous hydrogen sulfide production in patients with COPD. Pulm. Pharmacol. Ther.21, 40–46 (2008).
  • Bateman ED, Hurd SS, Barnes PJ et al. Global strategy for asthma management and prevention: GINA executive summary. Eur. Respir. J.31, 143–178 (2008).
  • Chen YH, Wu R, Geng B et al. Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. Cytokine45, 117–123 (2009).
  • Symmons D, Turner G, Webb R et al. The prevalence of rheumatoid arthritis in the United Kingdom: new estimates for a new century. Rheumatology (Oxford)41, 793–800 (2002).
  • Scott DL, Willoughby DA, Blake DR. Molecular insights into rheumatoid arthritis. Mol. Aspects Med.12, 341–394 (1991).
  • Kloesch B, Liszt M, Broell J. H2S transiently blocks IL-6 expression in rheumatoid arthritic fibroblast-like synoviocytes and deactivates p44/42 mitogen-activated protein kinase. Cell. Biol. Int.34, 477–484 (2010).
  • Whiteman M, Li L, Rose P, Tan CH, Parkinson DB, Moore PK. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid. Redox Signal.12, 1147–1154 (2010).
  • Andruski B, McCafferty DM, Ignacy T, Millen B, McDougall JJ. Leukocyte trafficking and pain behavioral responses to a hydrogen sulfide donor in acute monoarthritis. Am. J. Physiol. Regul. Integr. Comp. Physiol.295, R814–R820 (2008).
  • Bhatia M, Wong FL, Fu D, Lau HY, Moochhala SM, Moore PK. Role of hydrogen sulfide in acute pancreatitis and associated lung injury. FASEB J.19, 623–625 (2005).
  • Zhang H, Hegde A, Ng SW, Adhikari S, Moochhala SM, Bhatia M. Hydrogen sulfide up-regulates substance P in polymicrobial sepsis-associated lung injury. J. Immunol.179, 4153–4160 (2007).
  • Zhang H, Zhi L, Moochhala SM, Moore PK, Bhatia M. Endogenous hydrogen sulfide regulates leukocyte trafficking in cecal ligation and puncture-induced sepsis. J. Leukoc. Biol.82, 894–905 (2007).
  • Trevisani M, Patacchini R, Nicoletti P et al. Hydrogen sulfide causes vanilloid receptor 1-mediated neurogenic inflammation in the airways. Br. J. Pharmacol.145, 1123–1131 (2005).
  • Ang SF, Moochhala SM, Bhatia M. Hydrogen sulfidde promotes transient receptor potential vanilloid 1-mediated neurogenic inflammation in polymicrobial sepsis. Crit. Care Med.38, 619–628 (2010).
  • Patacchini R, Santicioli P, Giuliani S, Maggi CA. Pharmacological investigation of hydrogen sulfide (H2S) contractile activity in rat detrusor muscle. Eur. J. Pharmacol.509, 171–177 (2005).
  • Patacchini R, Santicioli P, Giuliani S, Maggi CA. Hydrogen sulfide (H2S) stimulates capsaicin-sensitive primary afferent neurons in the rat urinary bladder. Br. J. Pharmacol.142, 31–34 (2004).
  • Whiteman M, Cheung NS, Zhu YZ et al. Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem. Biophys. Res. Commun.326, 794–798 (2005).
  • Laggner H, Muellner MK, Schreier S et al. Hydrogen sulphide: a novel physiological inhibitor of LDL atherogenic modification by HOCl. Free Radic. Res.41, 741–747 (2007).
  • Whiteman M, Armstrong JS, Chu SH et al. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J. Neurochem.90, 765–768 (2004).
  • Whiteman M, Li L, Kostetski I et al. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem. Biophys. Res. Commun.343, 303–310 (2006).
  • Muellner MK, Schreier SM, Laggner H et al. Hydrogen sulfide destroys lipid hydroperoxides in oxidized LDL. Biochem. J.420, 277–281 (2009).
  • Schreier SM, Muellner MK, Steinkellner H et al. Hydrogen sulfide scavenges the cytotoxic lipid oxidation product 4-HNE. Neurotox. Res.17, 249–256 (2010).
  • Tyagi N, Moshal KS, Sen U et al. H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxid. Redox Signal.11, 25–33 (2009).
  • Muzaffar S, Shukla N, Bond M et al. Exogenous hydrogen sulfide inhibits superoxide formation. NOX-1 expression and Rac1 activity in human vascular smooth muscle cells. J. Vasc. Res.45, 521–528 (2008).
  • Jha S, Calvert JW, Duranski MR, Ramachandran A. Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: role of antioxidant and antiapoptotic signalling. Am. J. Physiol. Heart Circ. Physiol.295, H801–H806 (2008).
  • Liu YY, Bian JS. Hydrogen sulfide protects amyloid-β induced cell toxicity in microglia. J. Alzheimers Dis. (2010) (Epub ahead of print).
  • Yin WL, He JQ, Hu B, Jiang ZS, Tang XQ. Hydrogen sulfide inhibits MPP(+)-induced apoptosis in PC12 cells. Life Sci.85, 269–275 (2009).
  • Kimura Y, Dargusch R, Schubert D, Kimura H. Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid. Redox Signal.8, 661–670 (2006).
  • Kimura Y, Kimura H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J.18, 1165–1167 (2004).
  • Calvert JW, Jha S, Gundewar S et al. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ. Res.105, 365–374 (2009).
  • Calvert JW, Elston M, Nicholson CK et al. Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation122, 11–19 (2010).
  • Sun Q, Collins R, Huang S et al. Structural basis for the inhibition mechanism of human cystathionine γ-lyase, an enzyme responsible for the production of H2S. J. Biol. Chem.284, 3076–3085 (2009).
  • d’Emmanuele R, di Villa B, Sorrentino R et al. Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. Proc. Natl Acad. Sci. USA106, 4513–4518 (2009).
  • Stecyk JA, Skovgaard N, Nilsson GE, Wang T. Vasoactivity of hydrogen sulfide in normoxic and anoxic turtles (Trachemys scripta). Am. J. Physiol. Regul. Integr. Comp. Physiol.298, R1225–R1239 (2010).
  • Bucci M, Mirone V, Di Lorenzo A et al. Hydrogen sulphide is involved in testosterone vascular effect. Eur. Urol.56, 378–383 (2009).
  • Burnett G, Marcotte P, Walsh C. Mechanism-based inactivation of pig heart L-alanine transaminase by L-propargylglycine. Half-site reactivity. J. Biol. Chem.255, 3487–3491 (1980).
  • Jerebzoff S. Are there ultraradian rhythms at the molecular level? Biol. Rhythm Res.18, 9–16 (1997).
  • Subramanian RK, Kasumov T, Yang L et al. Reassessment of the mechanisms by which aminooxyacetate (AOA) inhibits gluconeogenesis (GNG) from lactate. FASEB J.21, 804–811 (2007).
  • Cho ES, Hovanec-Brown J, Tomanek RJ, Stegink LD. Propargylglycine infusion effects on tissue glutathione levels, plasma amino acid concentrations and tissue morphology in parenterally-fed growing rats. J. Nutr.121, 785–794 (1991).
  • Ochs RS, Harris RA. Aminooxyacetate inhibits gluconeogenesis by isolated chicken hepatocytes. Biochim. Biophys. Acta632, 260–269 (1980).
  • Stottrup NB, Lofgren B, Birkler RD et al. Inhibition of the malate–aspartate shuttle by pre-ischaemic aminooxyacetate loading of the heart induces cardioprotection. Cardiovasc. Res.88(2), 257–266 (2010)
  • Ubuku AT, Fujiwara M, Wrobel M. Inhibition of sulfate excretion by (aminooxy)acetate induced stimulation of taurine excretion in rats. Amino Acids8, 345–352 (2004).
  • Reg R. Aminooxyacetate is not an adequate differential inhibitor of aspartate aminotransferase isoenzymes. Clin. Chem.23, 1508–1509 (1977).
  • Girbes T, Alonso P. Inhibition of protein synthesis by (aminooxy)acetate in rat liver. Int. J. Biochem.8, 537–542 (1986).
  • Teraoka T, Ohta J, Abe T, Inoue H. Inhibition of sulfate-forming activity in rat liver mitochondria by (aminooxy)acetate. Amino Acids5, 245–251 (2004).
  • Laggner H, Hermann M, Sturm B, Gmeiner BM, Kapiotis S. Sulfite facilitates LDL lipid oxidation by transition metal ions: a pro-oxidant in wine? FEBS Lett.579, 6486–6492 (2005).
  • Kapiotis S, Hermann M, Exner M, Laggner H, Gmeiner BM. Copper- and magnesium protoporphyrin complexes inhibit oxidative modification of LDL induced by hemin, transition metal ions and tyrosyl radicals. Free Radic. Res.39, 1193–1202 (2005).
  • Konno R, Ikeda M, Yamaguchi K, Ueda Y, Niwa A. Nephrotoxicity of d-propargylglycine in mice. Arch. Toxicol.74, 473–479 (2000).
  • Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R. H2S biogenesis by human cystathionine γ-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J. Biol. Chem.284, 11601–11612 (2009).
  • Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R. Relative contributions of cystathionine β-synthase and g-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J. Biol. Chem.284, 22457–22466 (2009).
  • Fiorucci S, Orlandi S, Mencarelli A et al. Enhanced activity of a hydrogen sulphide-releasing derivative of mesalamine (ATB-429) in a mouse model of colitis. Br. J. Pharmacol.150, 996–1002 (2007).
  • Sodha NR, Clements RT, Feng J et al. The effects of therapeutic sulfide on myocardial apoptosis in response to ischemia–reperfusion injury. Eur. J. Cardiothorac. Surg.33, 906–913 (2008).
  • Simon F, Giudici R, Duy CN et al. Hemodynamic and metabolic effects of hydrogen sulfide during porcine ischemia/reperfusion injury. Shock30, 359–364 (2008).
  • Wallace JL. Building a better aspirin: gaseous solutions to a century-old problem. Br. J. Pharmacol.152, 421–428 (2007).
  • Wallace JL. Hydrogen sulfide-releasing anti-inflammatory drugs. Trends Pharmacol. Sci.28, 501–505 (2007).
  • Isenberg JS, Jia Y, Field L et al. Modulation of angiogenesis by dithiolethione-modified NSAIDs and valproic acid. Br. J. Pharmacol.151, 63–72 (2007).
  • Moody TW, Switzer C, Santana-Flores W et al. Dithiolethione modified valproate and diclofenac increase E-cadherin expression and decrease proliferation of non-small cell lung cancer cells. Lung Cancer68, 154–160 (2010).
  • Munday R, Munday CM. Selective induction of Phase II enzymes in the urinary bladder of rats by allyl isothiocyanate, a compound derived from Brassica vegetables. Nutr. Cancer44, 52–59 (2002).
  • Munday R, Munday CM. Induction of phase II enzymes by 3H-1,2-dithiole-3-thione: dose–response study in rats. Carcinogenesis25, 1721–1725 (2004).
  • Munday R, Zhang Y, Munday CM, Li J. Structure-activity relationships in the induction of Phase II enzymes by derivatives of 3H-1,2-dithiole-3-thione in rats. Chem. Biol. Interact.160, 115–122 (2006).
  • Kwak MK, Egner PA, Dolan PM et al. Role of phase 2 enzyme induction in chemoprotection by dithiolethiones. Mutat. Res.480, 305–315 (2001).
  • Kwak MK, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M, Kensler TW. Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1–Nrf2 pathway. Identification of novel gene clusters for cell survival. J. Biol. Chem.278, 8135–8145 (2003).
  • Baskar R, Sparatore A, Del Soldato P. Moore PK. Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative inhibit rat vascular smooth muscle cell proliferation. Eur. J. Pharmacol.594, 1–8 (2008).
  • Ishii I, Akahoshi N, Yamada H, Nakano S, Izumi T, Suematsu M. Cystathionine γ-lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J. Biol. Chem.285, 26358–26368 (2010).
  • Bhatia M, Sidhapuriwala JN, Ng SW, Tamizhselvi R, Moochhala SM. Pro-inflammatory effects of hydrogen sulphide on substance P in cerulein-induced acute pancreatitis. J. Cell. Mol. Med.12, 580–590 (2008).
  • Zhi L, Ang AD, Zhang H, Moore PK, Bhatia M. Hydrogen sulfide induces the synthesis of proinflammatory cytokines in human monocyte cell line U937 via the ERK–NF-κB pathway. J. Leukoc. Biol.81, 1322–1332 (2007).
  • Lee AT, Shah JJ, Li L, Cheng Y, Moore PK, Khanna S. A nociceptive-intensity-dependent role for hydrogen sulphide in the formalin model of persistent inflammatory pain. Neuroscience152, 89–96 (2008).
  • Cunha TM, Dal-Secco D, Verri WA Jr et al. Dual role of hydrogen sulfide in mechanical inflammatory hypernociception. Eur. J. Pharmacol.590, 127–135 (2008).
  • Bhatia M, Sidhapuriwala JN, Sparatore A, Moore PK. Treatment with H2S-releasing diclofenac protects mice against acute pancreatitis-associated lung injury. Shock29, 84–88 (2008).
  • Li T, Zhao B, Wang C et al. Regulatory effects of hydrogen sulfide on IL-6, IL-8 and IL-10 levels in the plasma and pulmonary tissue of rats with acute lung injury. Exp. Biol. Med. (Maywood)233, 1081–1087 (2008).
  • Li L, Rossoni G, Sparatore A, Lee LC, Del Soldato P, Moore PK. Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic. Biol. Med.42, 706–719 (2007).
  • Mariggio MA, Pettini F, Fumarulo R. Sulfide influence on polymorphonuclear functions: a possible role for Ca2+ involvement. Immunopharmacol. Immunotoxicol.19, 393–404 (1997).
  • Persson S, Claesson R, Carlsson J. Chemotaxis and degranulation of polymorphonuclear leukocytes in the presence of sulfide. Oral Microbiol. Immunol.8, 46–49 (1993).
  • Sidhapuriwala J, Li L, Sparatore A, Bhatia M, Moore PK. Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative, on carrageenan-induced hindpaw oedema formation in the rat. Eur. J. Pharmacol.569, 149–154 (2007).
  • Wallace JL, Caliendo G, Santagada V, Cirino G. Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346). Br. J. Pharmacol.159, 1236–1246 (2010).
  • Cho ES, Havanec-Brown J, Tomanek RJ. Propargylglycine infusion effects on tissue glutathione levels, plasma amino acid concentrations and tissue morphology in parentally-fed growing rats. J. Nutr.121, 785–794 (1991).
  • Jainyang Z, Machida Y, Sugahara K. Determination of D,L-propargyglycine and N-acetylpropargylglycine in urine and several tissues of D,L-propargylglycine-treated rats using liquid chromatography mass spectrometry. J. Chromatog. B660 (1994).
  • Stottrup NB, Lofgren B, Birkler RD et al. Inhibition of the malate–aspartate shuttle by pre-ischaemic aminooxyacetate loading of the heart induces cardioprotection. Cardiovasc. Res.88, 257–266 (2010).
  • Ubuku T, Abe T, Fujiwara M, Wrobe M. Inhibition of sulfate excretion by (aminooxy)acetate induced stimulation of taurine excretion in rats. Amino Acids8, 345–352 (2004).
  • Malaisse WJ, Malaisse-Lagae F, Sener A. The stimulus-secretion coupling of glucose-induced insulin release: effect of aminooxyacetate upon nutrient-stimulated insulin secretion. Endocrinology111, 392–397 (1982).
  • Gao Z, Young RA, Li G et al. Distinguishing features of leucine and α-ketoisocaproate sensing in pancreatic β-cells. Endocrinology144, 1949–1957 (2003).
  • Heissig H, Urban KA, Hastedt K, Zunkler BJ, Panten U. Mechanism of the insulin-releasing action of α-ketoisocaproate and related α-keto acid anions. Mol. Pharmacol.68, 1097–1105 (2005).
  • Arnett FC, Edworthy SM, Bloch DA et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum.31, 315–324 (1988).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.