97
Views
5
CrossRef citations to date
0
Altmetric
Review

Regulation of cardiovascular TRP channel functions along the NO–cGMP–PKG axis

, , &
Pages 347-360 | Published online: 10 Jan 2014

References

  • Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol.4, 517–529 (2003).
  • Kranias EG, Bers DM. Calcium and cardiomyopathies. Subcell. Biochem.45, 523–537 (2007).
  • Ter Keurs HE, Boyden PA. Calcium and arrhythmogenesis. Physiol. Rev.87, 457–506 (2007).
  • Inoue R, Jian Z, Kawarabayashi Y. Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol. Ther.123, 371–385 (2009).
  • Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu. Rev. Physiol.68, 619–647 (2006).
  • Hofmann F, Feil R, Kleppisch T et al. Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol. Rev.86, 1–23 (2006).
  • Yetik-Anacak G, Catravas JD. Nitric oxide and the endothelium: history and impact on cardiovascular disease. Vascul. Pharmacol.45, 268–276 (2006).
  • Bian K, Doursout MF, Murad F. Vascular system: role of nitric oxide in cardiovascular diseases. J. Clin. Hypertens. (Greenwich)10, 304–310 (2008).
  • Kemp-Harper B, Schmidt HH. cGMP in the vasculature. Handb. Exp. Pharmacol.447–467 (2009).
  • Busse R, Fleming I. Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces. Trends Pharmacol. Sci.24, 24–29 (2003).
  • Faxon DP, Fuster V, Libby P et al. Atherosclerotic Vascular Disease Conference: Writing Group III: pathophysiology. Circulation109, 2617–2625 (2004).
  • Tsai EJ, Kass DA. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol. Ther.122, 216–238 (2009).
  • Inoue R, Jensen LJ, Shi J et al. Transient receptor potential channels in cardiovascular function and disease. Circ. Res.99, 119–131 (2006).
  • Kwan HY, Huang Y, Yao X. TRP channels in endothelial function and dysfunction. Biochim. Biophys. Acta1772, 907–914 (2007).
  • Dietrich A, Kalwa H, Gudermann T. TRPC channels in vascular cell function. Thrombosis Haemostasis103(2), 262–270 (2010).
  • Vassort G, Alvarez J. Transient receptor potential: a large family of new channels of which several are involved in cardiac arrhythmia. Can. J. Physiol. Pharmacol.87, 100–107 (2009).
  • Thorneloe KS, Nelson MT. Ion channels in smooth muscle: regulators of intracellular calcium and contractility. Can. J. Physiol. Pharmacol.83(3), 215–242 (2005).
  • Hardie RC, Minke B. Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci.16, 371–376 (1993).
  • Flockerzi V. An introduction on TRP channels. Handb. Exp. Pharmacol.1–19 (2007).
  • Hofmann T, Schaefer M, Schultz G et al. Subunit composition of mammalian transient receptor potential channels in living cells. Proc. Natl Acad. Sci USA99, 7461–7466 (2002).
  • Ambudkar IS, Ong HL, Liu X et al. TRPC1: the link between functionally distinct store-operated calcium channels. Cell Calcium42, 213–223 (2007).
  • Guibert C, Ducret T, Savineau JP. Voltage-independent calcium influx in smooth muscle. Prog. Biophys. Mol. Biol.98, 10–23 (2008).
  • Nilius B. TRP channels in disease. Biochim. Biophys. Acta1772, 805–812 (2007).
  • Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem. J.357, 593–615 (2001).
  • Bryan NS, Bian K, Murad F. Discovery of the nitric oxide signaling pathway and targets for drug development. Front. Biosci.14, 1–18 (2009).
  • Lincoln TM, Dey N, Sellak H. Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J. Appl. Physiol.91, 1421–1430 (2001).
  • Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr. Rev.27, 47–72 (2006).
  • Barnett CF, Machado RF. Sildenafil in the treatment of pulmonary hypertension. Vasc. Health Risk Manag.2, 411–422 (2006).
  • Burley DS, Ferdinandy P, Baxter GF. Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: opportunities and obstacles for survival signaling. Br. J. Pharmacol.152, 855–869 (2007).
  • Martinez-Ruiz A, Lamas S. Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences. Cardiovasc. Res.75, 220–228 (2007).
  • Hess DT, Matsumoto A, Kim SO et al. Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol.6, 150–166 (2005).
  • Ahern GP, Klyachko VA, Jackson MB. cGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO. Trends Neurosci.25, 510–517 (2002).
  • Takahashi S, Lin H, Geshi N et al. Nitric oxide-cGMP-protein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. J. Physiol.586, 4209–4223 (2008).
  • Yoshida T, Inoue R, Morii T et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat. Chem. Biol.2, 596–607 (2006).
  • Fukao M, Mason HS, Britton FC et al. Cyclic GMP-dependent protein kinase activates cloned BKCa channels expressed in mammalian cells by direct phosphorylation at serine 1072. J. Biol. Chem.274, 10927–10935 (1999).
  • Bolotina VM, Najibi S, Palacino JJ et al. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature368, 850–853 (1994).
  • Lang RJ, Watson MJ. Effects of nitric oxide donors, S-nitroso-L-cysteine and sodium nitroprusside, on the whole-cell and single channel currents in single myocytes of the guinea-pig proximal colon. Br. J. Pharmacol.123, 505–517 (1998).
  • Jian K, Chen M, Cao X et al. Nitric oxide modulation of voltage-gated calcium current by S-nitrosylation and cGMP pathway in cultured rat hippocampal neurons. Biochem. Biophys. Res. Commun.359, 481–485 (2007).
  • Tjong YW, Jian K, Li M et al. Elevated endogenous nitric oxide increases Ca2+ flux via L-type Ca2+ channels by S-nitrosylation in rat hippocampal neurons during severe hypoxia and in vitro ischemia. Free Radic. Biol. Med.42, 52–63 (2007).
  • Takahashi N, Mizuno Y, Kozai D et al. Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels (Austin)2, 287–298 (2008).
  • Miyamoto T, Dubin AE, Petrus MJ et al. TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice. PLoS ONE4, e7596 (2009).
  • Taylor-Clark TE, Ghatta S, Bettner W et al. Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1. Mol. Pharmacol.75, 820–829 (2009).
  • Kwan HY, Huang Y, Yao X. Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proc. Natl Acad. Sci USA101, 2625–2630 (2004).
  • Kwan HY, Huang Y, Yao X. Protein kinase C can inhibit TRPC3 channels indirectly via stimulating protein kinase G. J. Cell. Physiol.207, 315–321 (2006).
  • Koitabashi N, Aiba T, Hesketh GG et al. Cyclic GMP/PKG-dependent inhibition of TRPC6 channel activity and expression negatively regulates cardiomyocyte NFAT activation. Novel mechanism of cardiac stress modulation by PDE5 inhibition. J. Mol. Cell Cardiol.48(4), 713–724 (2009).
  • Yao X. TRPC, cGMP-dependent protein kinases and cytosolic Ca2+. Handb. Exp. Pharmacol.527–540 (2007).
  • Kuriyama H, Kitamura K, Itoh T et al. Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol. Rev.78, 811–920 (1998).
  • Bergdahl A, Gomez MF, Dreja K et al. Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated Ca2+ entry dependent on TRPC1. Circ. Res.93, 839–847 (2003).
  • Kunichika N, Yu Y, Remillard CV et al. Overexpression of TRPC1 enhances pulmonary vasoconstriction induced by capacitative Ca2+ entry. Am. J. Physiol. Lung Cell Mol. Physiol.287, L962–L969 (2004).
  • Hill AJ, Hinton JM, Cheng H et al. A TRPC-like non-selective cation current activated by α 1-adrenoceptors in rat mesenteric artery smooth muscle cells. Cell Calcium40, 29–40 (2006).
  • Inoue R, Okada T, Onoue H et al. The transient receptor potential protein homologue TRP6 is the essential component of vascular α1-adrenoceptor-activated Ca2+-permeable cation channel. Circ. Res.88, 325–332 (2001).
  • Jung S, Strotmann R, Schultz G et al. TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells. Am. J. Physiol. Cell Physiol.282, C347–C359 (2002).
  • Saleh SN, Albert AP, Peppiatt CM et al. Angiotensin II activates two cation conductances with distinct TRPC1 and TRPC6 channel properties in rabbit mesenteric artery myocytes. J. Physiol.577, 479–495 (2006).
  • Welsh DG, Morielli AD, Nelson MT et al. Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ. Res.90, 248–250 (2002).
  • Dietrich A, Kalwa H, Storch U et al. Pressure-induced and store-operated cation influx in vascular smooth muscle cells is independent of TRPC1. Pflugers Arch.455, 465–477 (2007).
  • Dietrich A, Mederos YSM, Gollasch M et al. Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol. Cell Biol.25, 6980–6989 (2005).
  • Reading SA, Earley S, Waldron BJ et al. TRPC3 mediates pyrimidine receptor-induced depolarization of cerebral arteries. Am. J. Physiol. Heart Circ. Physiol.288, H2055–H2061 (2005).
  • Liu D, Scholze A, Zhu Z et al. Increased transient receptor potential channel TRPC3 expression in spontaneously hypertensive rats. Am. J. Hypertens.18, 1503–1507 (2005).
  • Liu D, Scholze A, Zhu Z et al. Transient receptor potential channels in essential hypertension. J. Hypertens.24, 1105–1114 (2006).
  • Liu D, Yang D, He H et al. Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats. Hypertension53, 70–76 (2009).
  • Kita S, Arai Y, Iwamoto T. Vascular responses of smooth muscle-specific transgenic mice with TRPC3/TRPC6 genes. J. Pharmacol. Sci.,106(Suppl. 1), 115P (2008).
  • Bae YM, Kim A, Lee YJ et al. Enhancement of receptor-operated cation current and TRPC6 expression in arterial smooth muscle cells of deoxycorticosterone acetate-salt hypertensive rats. J. Hypertens.25, 809–817 (2007).
  • Weissmann N, Dietrich A, Fuchs B et al. Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc. Natl Acad. Sci USA103, 19093–19098 (2006).
  • Keseru B, Barbosa-Sicard E, Popp R et al. Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response. FASEB J.22, 4306–4315 (2008).
  • Szallasi A, Cortright DN, Blum CA et al. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat. Rev. Drug Discov.6, 357–372 (2007).
  • Earley S, Waldron BJ, Brayden JE. Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ. Res.95, 922–929 (2004).
  • Reading SA, Brayden JE. Central role of TRPM4 channels in cerebral blood flow regulation. Stroke38, 2322–2328 (2007).
  • Earley S, Heppner TJ, Nelson MT et al. TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ. Res.97, 1270–1279 (2005).
  • Zhang F, Jin S, Yi F et al. TRP-ML1 functions as a lysosomal NAADP-sensitive Ca2+ release channel in coronary arterial myocytes. J. Cell Mol. Med.13(9B), 3174–3185 (2009).
  • Freichel M, Suh SH, Pfeifer A et al. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat. Cell Biol.3, 121–127 (2001).
  • Kohler R, Heyken WT, Heinau P et al. Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arterioscler. Thromb. Vasc. Biol.26, 1495–1502 (2006).
  • Zhang DX, Mendoza SA, Bubolz AH et al. Transient receptor potential vanilloid type 4-deficient mice exhibit impaired endothelium-dependent relaxation induced by acetylcholine in vitro and in vivo. Hypertension53, 532–538 (2009).
  • Hartmannsgruber V, Heyken WT, Kacik M et al. Arterial response to shear stress critically depends on endothelial TRPV4 expression. PLoS ONE2, e827 (2007).
  • Mendoza SA, Fang J, Gutterman DD et al. TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am. J. Physiol. Heart Circ. Physiol.298, H466–H476 (2010).
  • Poblete IM, Orliac ML, Briones R et al. Anandamide elicits an acute release of nitric oxide through endothelial TRPV1 receptor activation in the rat arterial mesenteric bed. J. Physiol.568, 539–551 (2005).
  • AbouAlaiwi WA, Takahashi M, Mell BR et al. Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ. Res.104, 860–869 (2009).
  • Yi FX, Boeldt DS, Gifford SM et al. Pregnancy enhances sustained Ca2+ bursts and endothelial nitric oxide synthase activation in ovine uterine artery endothelial cells through increased connexin 43 function. Biol. Reprod.82(1), 66–75 (2010)
  • Wang D, Iversen J, Strandgaard S. Endothelium-dependent relaxation of small resistance vessels is impaired in patients with autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol.11, 1371–1376 (2000).
  • Wang D, Iversen J, Wilcox CS et al. Endothelial dysfunction and reduced nitric oxide in resistance arteries in autosomal-dominant polycystic kidney disease. Kidney Int.64, 1381–1388 (2003).
  • Wang Y, Wang DH. Neural control of blood pressure: focusing on capsaicin-sensitive sensory nerves. Cardiovasc. Hematol. Disord. Drug Targets7, 37–46 (2007).
  • Willette RN, Bao W, Nerurkar S et al. Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: part 2. J. Pharmacol. Exp. Ther.326, 443–452 (2008).
  • Pfeifer A, Klatt P, Massberg S et al. Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J.17, 3045–3051 (1998).
  • Koeppen M, Feil R, Siegl D et al. cGMP-dependent protein kinase mediates NO- but not acetylcholine-induced dilations in resistance vessels in vivo. Hypertension44, 952–955 (2004).
  • Sausbier M, Schubert R, Voigt V et al. Mechanisms of NO/cGMP-dependent vasorelaxation. Circ. Res.87, 825–830 (2000).
  • Surks HK, Mochizuki N, Kasai Y et al. Regulation of myosin phosphatase by a specific interaction with cGMP-dependent protein kinase Iα. Science286, 1583–1587 (1999).
  • Wooldridge AA, MacDonald JA, Erdodi F et al. Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of serine 695 in response to cyclic nucleotides. J. Biol. Chem.279, 34496–34504 (2004).
  • Schlossmann J, Ammendola A, Ashman K et al. Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Iβ. Nature404, 197–201 (2000).
  • Geiselhoringer A, Werner M, Sigl K et al. IRAG is essential for relaxation of receptor-triggered smooth muscle contraction by cGMP kinase. EMBO J.23, 4222–4231 (2004).
  • Raeymaekers L, Hofmann F, Casteels R. Cyclic GMP-dependent protein kinase phosphorylates phospholamban in isolated sarcoplasmic reticulum from cardiac and smooth muscle. Biochem. J.252, 269–273 (1988).
  • Karaki H, Ozaki H, Hori M et al. Calcium movements, distribution, and functions in smooth muscle. Pharmacol. Rev.49, 157–230 (1997).
  • Chen J, Crossland RF, Noorani MM et al. Inhibition of TRPC1/TRPC3 by PKG contributes to NO-mediated vasorelaxation. Am. J. Physiol. Heart Circ. Physiol.297, H417–H424 (2009).
  • Inoue R, Shi J. TRP channels in blood pressure regulation. In: TRP Channel in Health and Disease. Szallasi A (Ed.). Nova Science Publishers, NY, USA (2010) (In press).
  • Barlow CA, Rose P, Pulver-Kaste RA et al. Excitation–transcription coupling in smooth muscle. J. Physiol.570, 59–64 (2006).
  • Wamhoff BR, Bowles DK, Owens GK. Excitation–transcription coupling in arterial smooth muscle. Circ. Res.98, 868–878 (2006).
  • House SJ, Potier M, Bisaillon J et al. The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflugers Arch.456, 769–785 (2008).
  • Golovina VA, Platoshyn O, Bailey CL et al. Upregulated TRP and enhanced capacitative Ca2+ entry in human pulmonary artery myocytes during proliferation. Am. J. Physiol. Heart Circ. Physiol.280, H746–H755 (2001).
  • Yu Y, Sweeney M, Zhang S et al. PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am. J. Physiol. Cell Physiol.284, C316–C330 (2003).
  • Kunichika N, Landsberg JW, Yu Y et al. Bosentan inhibits transient receptor potential channel expression in pulmonary vascular myocytes. Am. J. Respir. Crit. Care Med.170, 1101–1107 (2004).
  • Zhang S, Remillard CV, Fantozzi I et al. ATP-induced mitogenesis is mediated by cyclic AMP response element-binding protein-enhanced TRPC4 expression and activity in human pulmonary artery smooth muscle cells. Am. J. Physiol. Cell Physiol.287, C1192–C1201 (2004).
  • Bergdahl A, Gomez MF, Wihlborg AK et al. Plasticity of TRPC expression in arterial smooth muscle: correlation with store-operated Ca2+ entry. Am. J. Physiol. Cell Physiol.288, C872–C880 (2005).
  • Wang J, Weigand L, Lu W et al. Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ. Res.98, 1528–1537 (2006).
  • Takahashi Y, Watanabe H, Murakami M et al. Involvement of transient receptor potential canonical 1 (TRPC1) in angiotensin II-induced vascular smooth muscle cell hypertrophy. Atherosclerosis195, 287–296 (2007).
  • Ambudkar IS. TRPC1: a core component of store-operated calcium channels. Biochem. Soc. Trans.35, 96–100 (2007).
  • Schlondorff J, Del Camino D, Carrasquillo R et al. TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. Am. J. Physiol. Cell Physiol.296, C558–C569 (2009).
  • Kumar B, Dreja K, Shah SS et al. Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ. Res.98, 557–563 (2006).
  • Yu Y, Fantozzi I, Remillard CV et al. Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc. Natl Acad. Sci USA101, 13861–13866 (2004).
  • Pilz RB, Casteel DE. Regulation of gene expression by cyclic GMP. Circ. Res.93, 1034–1046 (2003).
  • Lincoln TM, Wu X, Sellak H et al. Regulation of vascular smooth muscle cell phenotype by cyclic GMP and cyclic GMP-dependent protein kinase. Front. Biosci.11, 356–367 (2006).
  • Wang C, Li JF, Zhao L et al. Inhibition of SOC/Ca2+/NFAT pathway is involved in the anti-proliferative effect of sildenafil on pulmonary artery smooth muscle cells. Respir. Res.10, 123 (2009).
  • Lewis GD, Shah R, Shahzad K et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation116, 1555–1562 (2007).
  • Risau W. Mechanisms of angiogenesis. Nature386, 671–674 (1997).
  • Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature407, 249–257 (2000).
  • Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev.25, 581–611 (2004).
  • Kohn EC, Alessandro R, Spoonster J et al. Angiogenesis: role of calcium-mediated signal transduction. Proc. Natl Acad. Sci USA92, 1307–1311 (1995).
  • Cross MJ, Dixelius J, Matsumoto T et al. VEGF-receptor signal transduction. Trends Biochem. Sci.28, 488–494 (2003).
  • Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp. Cell Res.312, 549–560 (2006).
  • Pocock TM, Williams B, Curry FE et al. VEGF and ATP act by different mechanisms to increase microvascular permeability and endothelial [Ca2+]i. Am. J. Physiol. Heart Circ. Physiol.279, H1625–H1634 (2000).
  • Pocock TM, Foster RR, Bates DO. Evidence of a role for TRPC channels in VEGF-mediated increased vascular permeability in vivo. Am. J. Physiol. Heart Circ. Physiol.286, H1015–H1026 (2004).
  • Cheng HW, James AF, Foster RR et al. VEGF activates receptor-operated cation channels in human microvascular endothelial cells. Arterioscler. Thromb. Vasc. Biol.26, 1768–1776 (2006).
  • Ge R, Tai Y, Sun Y et al. Critical role of TRPC6 channels in VEGF-mediated angiogenesis. Cancer Lett.283, 43–51 (2009).
  • Hamdollah Zadeh MA, Glass CA, Magnussen A et al. VEGF-mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRPC6. Microcirculation15, 605–614 (2008).
  • Al-Ani B, Hewett PW, Ahmed S et al. The release of nitric oxide from S-nitrosothiols promotes angiogenesis. PLoS ONE1, e25 (2006).
  • Papapetropoulos A, Garcia-Cardena G, Madri JA et al. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J. Clin. Invest.100, 3131–3139 (1997).
  • Parenti A, Morbidelli L, Cui XL et al. Nitric oxide is an upstream signal of vascular endothelial growth factor-induced extracellular signal-regulated kinase1/2 activation in postcapillary endothelium. J. Biol. Chem.273, 4220–4226 (1998).
  • Hood J, Granger HJ. Protein kinase G mediates vascular endothelial growth factor-induced Raf-1 activation and proliferation in human endothelial cells. J. Biol. Chem.273, 23504–23508 (1998).
  • Cudmore M, Ahmad S, Al-Ani B et al. VEGF-E activates endothelial nitric oxide synthase to induce angiogenesis via cGMP and PKG-independent pathways. Biochem. Biophys. Res. Commun.345, 1275–1282 (2006).
  • Inoue K, Xiong ZG. Silencing TRPM7 promotes growth/proliferation and nitric oxide production of vascular endothelial cells via the ERK pathway. Cardiovasc. Res.83, 547–557 (2009).
  • Michel CC, Curry FE. Microvascular permeability. Physiol. Rev.79, 703–761 (1999).
  • Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol. Rev.86, 279–367 (2006).
  • Tiruppathi C, Ahmmed GU, Vogel SM et al. Ca2+ signaling, TRP channels, and endothelial permeability. Microcirculation13, 693–708 (2006).
  • Ahmmed GU, Malik AB. Functional role of TRPC channels in the regulation of endothelial permeability. Pflugers Arch.451, 131–142 (2005).
  • Paria BC, Malik AB, Kwiatek AM et al. Tumor necrosis factor-a induces nuclear factor-κB-dependent TRPC1 expression in endothelial cells. J. Biol. Chem.278, 37195–37203 (2003).
  • Paria BC, Vogel SM, Ahmmed GU et al. Tumor necrosis factor-a-induced TRPC1 expression amplifies store-operated Ca2+ influx and endothelial permeability. Am. J. Physiol. Lung Cell Mol. Physiol.287, L1303–L1313 (2004).
  • Tiruppathi C, Freichel M, Vogel SM et al. Impairment of store-operated Ca2+ entry in TRPC4-/- mice interferes with increase in lung microvascular permeability. Circ. Res.91, 70–76 (2002).
  • Bates DO, Curry FE. Vascular endothelial growth factor increases microvascular permeability via a Ca2+-dependent pathway. Am. J. Physiol.273, H687–H694 (1997).
  • Sabrane K, Kruse MN, Fabritz L et al. Vascular endothelium is critically involved in the hypotensive and hypovolemic actions of atrial natriuretic peptide. J. Clin. Invest.115, 1666–1674 (2005).
  • Klinger JR, Warburton R, Carino GP et al. Natriuretic peptides differentially attenuate thrombin-induced barrier dysfunction in pulmonary microvascular endothelial cells. Exp. Cell Res.312, 401–410 (2006).
  • Furst R, Bubik MF, Bihari P et al. Atrial natriuretic peptide protects against histamine-induced endothelial barrier dysfunction in vivo. Mol. Pharmacol.74, 1–8 (2008).
  • Yin J, Hoffmann J, Kaestle SM et al. Negative-feedback loop attenuates hydrostatic lung edema via a cGMP-dependent regulation of transient receptor potential vanilloid 4. Circ. Res.102, 966–974 (2008).
  • Fukumura D, Gohongi T, Kadambi A et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc. Natl Acad. Sci USA98, 2604–2609 (2001).
  • Surapisitchat J, Jeon KI, Yan C et al. Differential regulation of endothelial cell permeability by cGMP via phosphodiesterases 2 and 3. Circ. Res.101, 811–818 (2007).
  • Wang X, Pluznick JL, Settles DC et al. Association of VASP with TRPC4 in PKG-mediated inhibition of the store-operated calcium response in mesangial cells. Am. J. Physiol. Renal Physiol.293, F1768–F1776 (2007).
  • Jian MY, King JA, Al-Mehdi AB et al. High vascular pressure-induced lung injury requires P450 epoxygenase-dependent activation of TRPV4. Am. J. Respir. Cell Mol. Biol.38, 386–392 (2008).
  • Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol.7, 589–600 (2006).
  • Guinamard R, Bois P. Involvement of transient receptor potential proteins in cardiac hypertrophy. Biochim. Biophys. Acta1772, 885–894 (2007).
  • Nishida M, Kurose H. Roles of TRP channels in the development of cardiac hypertrophy. Naunyn Schmiedebergs Arch. Pharmacol.378, 395–406 (2008).
  • McKinsey TA, Olson EN. Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J. Clin. Invest.115, 538–546 (2005).
  • Kuwahara K, Wang Y, McAnally J et al. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J. Clin. Invest.116, 3114–3126 (2006).
  • Bush EW, Hood DB, Papst PJ et al. Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J. Biol. Chem.281, 33487–33496 (2006).
  • Nakayama H, Wilkin BJ, Bodi I et al. Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J.20, 1660–1670 (2006).
  • Onohara N, Nishida M, Inoue R et al. TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J.25, 5305–5316 (2006).
  • Brenner JS, Dolmetsch RE. TrpC3 regulates hypertrophy-associated gene expression without affecting myocyte beating or cell size. PLoS ONE2, e802 (2007).
  • Ohba T, Watanabe H, Murakami M et al. Upregulation of TRPC1 in the development of cardiac hypertrophy. J. Mol. Cell Cardiol.42, 498–507 (2007).
  • Ohba T, Watanabe H, Murakami M et al. Essential role of STIM1 in the development of cardiomyocyte hypertrophy. Biochem. Biophys. Res. Commun.389, 172–176 (2009).
  • Seth M, Zhang ZS, Mao L et al. TRPC1 channels are critical for hypertrophic signaling in the heart. Circ. Res.105, 1023–1030 (2009).
  • Vindis C, D’Angelo R, Mucher E et al. Essential role of TRPC1 channels in cardiomyoblasts hypertrophy mediated by 5-HT2A serotonin receptors. Biochem. Biophys. Res. Commun.391(1), 979–983 (2010).
  • Kiyonaka S, Kato K, Nishida M et al. Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc. Natl Acad. Sci USA106, 5400–5405 (2009).
  • Ohba T, Watanabe H, Takahashi Y et al. Regulatory role of neuron-restrictive silencing factor in expression of TRPC1. Biochem. Biophys. Res. Commun.351, 764–770 (2006).
  • Seth M, Sumbilla C, Mullen SP et al. Sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes. Proc. Natl Acad. Sci USA101, 16683–16688 (2004).
  • Liu Q, Wilkins BJ, Lee YJ et al. Direct interaction and reciprocal regulation between ASK1 and calcineurin-NFAT control cardiomyocyte death and growth. Mol.Cell. Biol.26, 3785–3797 (2006).
  • Yang KT, Chang WL, Yang PC et al. Activation of the transient receptor potential M2 channel and poly(ADP-ribose) polymerase is involved in oxidative stress-induced cardiomyocyte death. Cell Death Differ.13, 1815–1826 (2006).
  • Iwata Y, Katanosaka Y, Arai Y et al. A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel. J. Cell Biol.161, 957–967 (2003).
  • Satoh S, Tanaka H, Ueda Y et al. Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol. Cell Biochem.294, 205–215 (2007).
  • Shan D, Marchase RB, Chatham JC. Overexpression of TRPC3 increases apoptosis but not necrosis in response to ischemia-reperfusion in adult mouse cardiomyocytes. Am. J. Physiol. Cell Physiol.294, C833–C841 (2008).
  • Hara Y, Wakamori M, Ishii M et al. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol. Cell.9(1), 163–173 (2002).
  • Shimizu S. Role of oxidative stress sensitive TRPM2 channels in inflammatory diseases. J. Pharmacol. Sci.109, 39P (2009).
  • Fiedler B, Lohmann SM, Smolenski A et al. Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proc. Natl Acad. Sci USA99, 11363–11368 (2002).
  • Takimoto E, Koitabashi N, Hsu S et al. Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. J. Clin. Invest.119, 408–420 (2009).
  • Heineke J, Kempf T, Kraft T et al. Downregulation of cytoskeletal muscle LIM protein by nitric oxide: impact on cardiac myocyte hypertrophy. Circulation107, 1424–1432 (2003).
  • Nishida M, Watanabe K, Nakaya M et al. Phosphorylation of TRPC6 channels at THr69 is required for anti-hypertrophic effects of phosphodiesterase 5 inhibition. J. Biol. Chem.285(17), 13244–13253 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.