58
Views
12
CrossRef citations to date
0
Altmetric
Review

Imaging genetics: implications for research on variable antidepressant drug response

, , &
Pages 471-489 | Published online: 10 Jan 2014

References

  • Wong ML, Licinio J. Research and treatment approaches to depression. Nat. Rev. Neurosci.2(5), 343–351 (2001).
  • Melander H, Salmonson T, Abadie E, Van Zwieten-Boot B. A regulatory apologia – a review of placebo-controlled studies in regulatory submissions of new-generation antidepressants. Eur. Neuropsychopharmacol.18(9), 623–627 (2008).
  • Cipriani A, Furukawa TA, Salanti G et al. Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet373(9665), 746–758 (2009).
  • Kirsch I, Deacon BJ, Huedo-Medina TB, Scoboria A, Moore TJ, Johnson BT. Initial severity and antidepressant benefits: a meta-analysis of data submitted to the food and drug administration. PLoS Med.5(2), e45 (2008).
  • Trivedi MH, Rush AJ, Wisniewski SR et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am. J. Psychiatry163(1), 28–40 (2006).
  • Moncrieff J, Kirsch I. Efficacy of antidepressants in adults. BMJ331(7509), 155–157 (2005).
  • Seeringer A, Kirchheiner J. Pharmacogenetics-guided dose modifications of antidepressants. Clin. Lab. Med.28(4), 619–626 (2008).
  • Weinshilboum R. Inheritance and drug response. N. Engl. J. Med.348(6), 529–537 (2003).
  • Roden DM, George AL Jr. The genetic basis of variability in drug responses. Nat. Rev. Drug Discov.1(1), 37–44 (2002).
  • Kato M, Serretti A. Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol. Psychiatry15(5), 473–500 (2008).
  • Schosser A, Kasper S. The role of pharmacogenetics in the treatment of depression and anxiety disorders. Int. Clin. Psychopharmacol.24(6), 277–288 (2009).
  • Horstmann S, Binder EB. Pharmacogenomics of antidepressant drugs. Pharmacol. Ther.124(1), 57–73 (2009).
  • Arranz MJ, Kapur S. Pharmacogenetics in psychiatry: are we ready for widespread clinical use? Schizophr. Bull.34(6), 1130–1144 (2008).
  • Holsboer F. How can we realize the promise of personalized antidepressant medicines? Nat. Rev. Neurosci.9(8), 638–646 (2008).
  • Anderson IM, Mckie S, Elliott R, Williams SR, Deakin JF. Assessing human 5-ht function in vivo with pharmacoMRI. Neuropharmacology55(6), 1029–1037 (2008).
  • Scharinger C, Rabl U, Sitte HH, Pezawas L. Imaging genetics of mood disorders. Neuroimage DOI: doi:10.1016/j.neuroimage.2010.02.019 (2010) (Epub ahead of print).
  • Savitz JB, Drevets WC. Imaging phenotypes of major depressive disorder: genetic correlates. Neuroscience164(1), 300–330 (2009).
  • Logothetis NK. The ins and outs of fMRI signals. Nat. Neurosci.10(10), 1230–1232 (2007).
  • Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. Neuroimage37(4), 1083–1090 (2007).
  • Poldrack RA, Fletcher PC, Henson RN, Worsley KJ, Brett M, Nichols TE. Guidelines for reporting an fMRI study. Neuroimage40(2), 409–414 (2008).
  • Bandettini PA. What’s new in neuroimaging methods? Ann. N. Y. Acad. Sci.1156, 260–293 (2009).
  • Ashburner J, Friston KJ. Voxel-based morphometry – the methods. Neuroimage11(6 Pt 1), 805–821 (2000).
  • Ridgway GR, Henley SM, Rohrer JD, Scahill RI, Warren JD, Fox NC. Ten simple rules for reporting voxel-based morphometry studies. Neuroimage40(4), 1429–1435 (2008).
  • Sexton CE, Mackay CE, Ebmeier KP. A systematic review of diffusion tensor imaging studies in affective disorders. Biol. Psychiatry66(9), 814–823 (2009).
  • Meyer-Lindenberg A. Neural connectivity as an intermediate phenotype: brain networks under genetic control. Hum. Brain Mapp.30(7), 1938–1946 (2009).
  • Ledoux J. The amygdala. Curr. Biol.17(20), R868–R874 (2007).
  • Anand A, Shekhar A. Brain imaging studies in mood and anxiety disorders: special emphasis on the amygdala. Ann. N. Y. Acad. Sci.985, 370–388 (2003).
  • Sehlmeyer C, Schoning S, Zwitserlood P et al. Human fear conditioning and extinction in neuroimaging: a systematic review. PLoS ONE4(6), E5865 (2009).
  • Mckie S, Del-Ben C, Elliott R et al. Neuronal effects of acute citalopram detected by pharmacoMRI. Psychopharmacology (Berl.)180(4), 680–686 (2005).
  • Bigos KL, Pollock BG, Aizenstein HJ, Fisher PM, Bies RR, Hariri AR. Acute 5-HT reuptake blockade potentiates human amygdala reactivity. Neuropsychopharmacology33(13), 3221–3225 (2008).
  • Del-Ben CM, Deakin JF, Mckie S et al. The effect of citalopram pretreatment on neuronal responses to neuropsychological tasks in normal volunteers: an fMRI study. Neuropsychopharmacology30(9), 1724–1734 (2005).
  • Bhagwagar Z, Cowen PJ, Goodwin GM, Harmer CJ. Normalization of enhanced fear recognition by acute ssri treatment in subjects with a previous history of depression. Am. J. Psychiatry161(1), 166–168 (2004).
  • Browning M, Reid C, Cowen PJ, Goodwin GM, Harmer CJ. A single dose of citalopram increases fear recognition in healthy subjects. J. Psychopharmacol.21(7), 684–690 (2007).
  • Hetrick S, Merry S, Mckenzie J, Sindahl P, Proctor M. Selective serotonin reuptake inhibitors (ssris) for depressive disorders in children and adolescents. Cochrane Database Syst. Rev. (3), CD004851 (2007).
  • Burghardt NS, Sullivan GM, Mcewen BS, Gorman JM, Ledoux JE. The selective serotonin reuptake inhibitor citalopram increases fear after acute treatment but reduces fear with chronic treatment: a comparison with tianeptine. Biol. Psychiatry55(12), 1171–1178 (2004).
  • Burghardt NS, Bush DE, Mcewen BS, Ledoux JE. Acute selective serotonin reuptake inhibitors increase conditioned fear expression: blockade with a 5-HT(2c) receptor antagonist. Biol. Psychiatry62(10), 1111–1118 (2007).
  • Harmer CJ, Shelley NC, Cowen PJ, Goodwin GM. Increased positive versus negative affective perception and memory in healthy volunteers following selective serotonin and norepinephrine reuptake inhibition. Am. J. Psychiatry161(7), 1256–1263 (2004).
  • Harmer CJ, Mackay CE, Reid CB, Cowen PJ, Goodwin GM. Antidepressant drug treatment modifies the neural processing of nonconscious threat cues. Biol. Psychiatry59(9), 816–820 (2006).
  • Arce E, Simmons AN, Lovero KL, Stein MB, Paulus MP. Escitalopram effects on insula and amygdala BOLD activation during emotional processing. Psychopharmacology (Berl.)196(4), 661–672 (2008).
  • Windischberger C, Lanzenberger R, Holik A et al. Area-specific modulation of neural activation comparing escitalopram and citalopram revealed by pharmaco-fMRI: a randomized cross-over study. Neuroimage49(2), 1161–1170 (2010).
  • Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using pet measures of regional glucose metabolism. Eur. Neuropsychopharmacol.12(6), 527–544 (2002).
  • Paulus MP, Feinstein JS, Castillo G, Simmons AN, Stein MB. Dose-dependent decrease of activation in bilateral amygdala and insula by lorazepam during emotion processing. Arch. Gen. Psychiatry62(3), 282–288 (2005).
  • Fu CH, Williams SC, Cleare AJ et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch. Gen. Psychiatry61(9), 877–889 (2004).
  • Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol. Psychiatry50(9), 651–658 (2001).
  • Anand A, Li Y, Wang Y, Gardner K, Lowe MJ. Reciprocal effects of antidepressant treatment on activity and connectivity of the mood regulating circuit: an fMRI study. J. Neuropsychiatry Clin. Neurosci.19(3), 274–282 (2007).
  • Robertson B, Wang L, Diaz MT et al. Effect of bupropion extended release on negative emotion processing in major depressive disorder: a pilot functional magnetic resonance imaging study. J. Clin. Psychiatry68(2), 261–267 (2007).
  • Mcclure EB, Adler A, Monk CS et al. FMRI predictors of treatment outcome in pediatric anxiety disorders. Psychopharmacology (Berl.)191(1), 97–105 (2007).
  • Canli T, Cooney RE, Goldin P et al. Amygdala reactivity to emotional faces predicts improvement in major depression. Neuroreport16(12), 1267–1270 (2005).
  • Dannlowski U, Ohrmann P, Bauer J et al. 5-HTTLPR biases amygdala activity in response to masked facial expressions in major depression. Neuropsychopharmacology33(2), 418–424 (2008).
  • Vogt BA. Cingulate Neurobiology and Disease. Oxford University Press, London, UK (2009).
  • Drevets WC, Price JL, Simpson JR Jr. et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature386(6627), 824–827 (1997).
  • Ongur D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc. Natl Acad. Sci. USA95(22), 13290–13295 (1998).
  • Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: news from mouse molecular genetics. Nat. Rev. Neurosci.4(12), 1002–1012 (2003).
  • Kranz GS, Kasper S, Lanzenberger R. Reward and the serotonergic system. Neuroscience166(4), 1023–1035 (2010).
  • Rose EJ, Simonotto E, Spencer EP, Ebmeier KP. The effects of escitalopram on working memory and brain activity in healthy adults during performance of the n-back task. Psychopharmacology (Berl.)185(3), 339–347 (2006).
  • Brody AL, Saxena S, Stoessel P et al. Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy: preliminary findings. Arch. Gen. Psychiatry58(7), 631–640 (2001).
  • Goldapple K, Segal Z, Garson C et al. Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch. Gen. Psychiatry61(1), 34–41 (2004).
  • Bauer M, London ED, Rasgon N et al. Supraphysiological doses of levothyroxine alter regional cerebral metabolism and improve mood in bipolar depression. Mol. Psychiatry10(5), 456–469 (2005).
  • Mayberg HS, Brannan SK, Mahurin RK et al. Cingulate function in depression: a potential predictor of treatment response. Neuroreport8(4), 1057–1061 (1997).
  • Mayberg HS, Brannan SK, Tekell JL et al. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol. Psychiatry48(8), 830–843 (2000).
  • Kennedy SH, Konarski JZ, Segal ZV et al. Differences in brain glucose metabolism between responders to cbt and venlafaxine in a 16-week randomized controlled trial. Am. J. Psychiatry164(5), 778–788 (2007).
  • Davidson RJ, Irwin W, Anderle MJ, Kalin NH. The neural substrates of affective processing in depressed patients treated with venlafaxine. Am. J. Psychiatry160(1), 64–75 (2003).
  • Chen CH, Ridler K, Suckling J et al. Brain imaging correlates of depressive symptom severity and predictors of symptom improvement after antidepressant treatment. Biol. Psychiatry62(5), 407–414 (2007).
  • Costafreda SG, Chu C, Ashburner J, Fu CH. Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS ONE4(7), E6353 (2009).
  • Walsh ND, Williams SC, Brammer MJ et al. A longitudinal functional magnetic resonance imaging study of verbal working memory in depression after antidepressant therapy. Biol. Psychiatry62(11), 1236–1243 (2007).
  • Rolls ET, Grabenhorst F. The orbitofrontal cortex and beyond: from affect to decision-making. Prog. Neurobiol.86(3), 216–244 (2008).
  • Rushworth MF, Behrens TE, Rudebeck PH, Walton ME. Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends Cogn. Sci.11(4), 168–176 (2007).
  • Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct. Funct.213(1–2), 93–118 (2008).
  • Mccabe C, Mishor Z, Cowen PJ, Harmer CJ. Diminished neural processing of aversive and rewarding stimuli during selective serotonin reuptake inhibitor treatment. Biol. Psychiatry67(5), 439–445
  • Brody AL, Saxena S, Silverman DH et al. Brain metabolic changes in major depressive disorder from pre- to post-treatment with paroxetine. Psychiatry Res.91(3), 127–139 (1999).
  • Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol. Psychiatry54(5), 504–514 (2003).
  • Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol. Psychiatry54(5), 515–528 (2003).
  • Koolschijn PC, Van Haren NE, Lensvelt-Mulders GJ, Hulshoff Pol HE, Kahn RS. Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum. Brain Mapp.30(11), 3719–3735 (2009).
  • Videbech P, Ravnkilde B. Hippocampal volume and depression: a meta-analysis of MRI studies. Am. J. Psychiatry161(11), 1957–1966 (2004).
  • Mcewen BS. Plasticity of the hippocampus: adaptation to chronic stress and allostatic load. Ann. N. Y. Acad. Sci.933, 265–277 (2001).
  • Kasper S, Mcewen BS. Neurobiological and clinical effects of the antidepressant tianeptine. CNS Drugs22(1), 15–26 (2008).
  • Kennedy SH, Evans KR, Kruger S et al. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am. J. Psychiatry158(6), 899–905 (2001).
  • Aihara M, Ida I, Yuuki N et al. HPA axis dysfunction in unmedicated major depressive disorder and its normalization by pharmacotherapy correlates with alteration of neural activity in prefrontal cortex and limbic/paralimbic regions. Psychiatry Res.155(3), 245–256 (2007).
  • Fu CH, Williams SC, Brammer MJ et al. Neural responses to happy facial expressions in major depression following antidepressant treatment. Am. J. Psychiatry164(4), 599–607 (2007).
  • Macqueen GM, Yucel K, Taylor VH, Macdonald K, Joffe R. Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder. Biol. Psychiatry64(10), 880–883 (2008).
  • Frodl T, Jager M, Smajstrlova I et al. Effect of hippocampal and amygdala volumes on clinical outcomes in major depression: a 3-year prospective magnetic resonance imaging study. J. Psychiatry Neurosci.33(5), 423–430 (2008).
  • Kronmuller KT, Pantel J, Kohler S et al. Hippocampal volume and 2-year outcome in depression. Br. J. Psychiatry192(6), 472–473 (2008).
  • Vakili K, Pillay SS, Lafer B et al. Hippocampal volume in primary unipolar major depression: a magnetic resonance imaging study. Biol. Psychiatry47(12), 1087–1090 (2000).
  • Frodl TS, Koutsouleris N, Bottlender R et al. Depression-related variation in brain morphology over 3 years: effects of stress? Arch. Gen. Psychiatry65(10), 1156–1165 (2008).
  • Ressler KJ, Mayberg HS. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat. Neurosci.10(9), 1116–1124 (2007).
  • Wang F, Kalmar JH, He Y et al. Functional and structural connectivity between the perigenual anterior cingulate and amygdala in bipolar disorder. Biol. Psychiatry66(5), 516–521 (2009).
  • Anand A, Li Y, Wang Y et al. Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol. Psychiatry57(10), 1079–1088 (2005).
  • Pezawas L, Meyer-Lindenberg A, Drabant EM et al.5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat. Neurosci.8(6), 828–834 (2005).
  • Chen CH, Suckling J, Ooi C et al. Functional coupling of the amygdala in depressed patients treated with antidepressant medication. Neuropsychopharmacology33(8), 1909–1918 (2008).
  • Cremers HR, Demenescu LR, Aleman A et al. Neuroticism modulates amygdala–prefrontal connectivity in response to negative emotional facial expressions. Neuroimage49(1), 963–970 (2010).
  • Kim MJ, Whalen PJ. The structural integrity of an amygdala–prefrontal pathway predicts trait anxiety. J. Neurosci.29(37), 11614–11618 (2009).
  • Nebert DW, Zhang G, Vesell ES. From human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions. Drug Metab. Rev.40(2), 187–224 (2008).
  • Kirchheiner J, Seeringer A, Godoy AL et al. CYP2D6 in the brain: genotype effects on resting brain perfusion. Mol. Psychiatry DOI: 10.1038/mp.2010.42 (2010) (Epub ahead of print).
  • Bauer M, Whybrow PC, Angst J, Versiani M, Moller HJ. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of unipolar depressive disorders, part 1: acute and continuation treatment of major depressive disorder. World J. Biol. Psychiatry3(1), 5–43 (2002).
  • Heils A, Teufel A, Petri S et al. Allelic variation of human serotonin transporter gene expression. J. Neurochem.66(6), 2621–2624 (1996).
  • Lesch KP, Bengel D, Heils A et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science274(5292), 1527–1531 (1996).
  • Caspi A, Sugden K, Moffitt TE et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science301(5631), 386–389 (2003).
  • Kunugi H, Hattori M, Kato T et al. Serotonin transporter gene polymorphisms: ethnic difference and possible association with bipolar affective disorder. Mol. Psychiatry2(6), 457–462 (1997).
  • Canli T, Lesch KP. Long story short: the serotonin transporter in emotion regulation and social cognition. Nat. Neurosci.10(9), 1103–1109 (2007).
  • Kalbitzer J, Frokjaer VG, Erritzoe D et al. The personality trait openness is related to cerebral 5-HTT levels. Neuroimage45(2), 280–285 (2009).
  • Praschak-Rieder N, Kennedy J, Wilson AA et al. Novel 5-HTTLPR allele associates with higher serotonin transporter binding in putamen: a [(11)c] DASB positron emission tomography study. Biol. Psychiatry62(4), 327–331 (2007).
  • Reimold M, Smolka MN, Schumann G et al. Midbrain serotonin transporter binding potential measured with [11c]DASB is affected by serotonin transporter genotype. J. Neural. Transm.114(5), 635–639 (2007).
  • Parsey RV, Hastings RS, Oquendo MA et al. Effect of a triallelic functional polymorphism of the serotonin-transporter-linked promoter region on expression of serotonin transporter in the human brain. Am. J. Psychiatry163(1), 48–51 (2006).
  • Murthy NV, Selvaraj S, Cowen PJ et al. Serotonin transporter polymorphisms (SLC6A4 insertion/deletion and rs25531) do not affect the availability of 5-HTT to [(11)c] DASB binding in the living human brain. Neuroimage52(1), 50–54 (2010).
  • Van Dyck CH, Malison RT, Staley JK et al. Central serotonin transporter availability measured with [123i]β-CIT SPECT in relation to serotonin transporter genotype. Am. J. Psychiatry161(3), 525–531 (2004).
  • Shioe K, Ichimiya T, Suhara T et al. No association between genotype of the promoter region of serotonin transporter gene and serotonin transporter binding in human brain measured by pet. Synapse48(4), 184–188 (2003).
  • Mann JJ, Huang YY, Underwood MD et al. A serotonin transporter gene promoter polymorphism (5-HTTLPR ) and prefrontal cortical binding in major depression and suicide. Arch. Gen. Psychiatry57(8), 729–738 (2000).
  • Kalbitzer J, Erritzoe D, Holst KK et al. Seasonal changes in brain serotonin transporter binding in short serotonin transporter linked polymorphic region-allele carriers but not in long-allele homozygotes. Biol. Psychiatry67(11), 1033–1039 (2010).
  • Meyer JH. Imaging the serotonin transporter during major depressive disorder and antidepressant treatment. J. Psychiatry Neurosci.32(2), 86–102 (2007).
  • Sibille E, Lewis DA. Sert-ainly involved in depression, but when? Am. J. Psychiatry163(1), 8–11 (2006).
  • Homberg JR, Schubert D, Gaspar P. New perspectives on the neurodevelopmental effects of ssris. Trends Pharmacol. Sci.31(2), 60–65 (2010).
  • Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA. Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science306(5697), 879–881 (2004).
  • Serretti A, Kato M, De Ronchi D, Kinoshita T. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR ) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol. Psychiatry12(3), 247–257 (2007).
  • Smeraldi E, Zanardi R, Benedetti F, Di Bella D, Perez J, Catalano M. Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol. Psychiatry3(6), 508–511 (1998).
  • Serretti A, Cusin C, Rossini D, Artioli P, Dotoli D, Zanardi R. Further evidence of a combined effect of SERTPR and TPH on SSRIS response in mood disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet.129B(1), 36–40 (2004).
  • Kato M, Ikenaga Y, Wakeno M et al. Controlled clinical comparison of paroxetine and fluvoxamine considering the serotonin transporter promoter polymorphism. Int. Clin. Psychopharmacol.20(3), 151–156 (2005).
  • Kato M, Fukuda T, Wakeno M et al. Effects of the serotonin type 2a, 3a and 3b receptor and the serotonin transporter genes on paroxetine and fluvoxamine efficacy and adverse drug reactions in depressed japanese patients. Neuropsychobiology53(4), 186–195 (2006).
  • Zanardi R, Serretti A, Rossini D et al. Factors affecting fluvoxamine antidepressant activity: influence of pindolol and 5-HTTLPR in delusional and nondelusional depression. Biol. Psychiatry50(5), 323–330 (2001).
  • Pollock BG, Ferrell RE, Mulsant BH et al. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology23(5), 587–590 (2000).
  • Zanardi R, Benedetti F, Di Bella D, Catalano M, Smeraldi E. Efficacy of paroxetine in depression is influenced by a functional polymorphism within the promoter of the serotonin transporter gene. J. Clin. Psychopharmacol.20(1), 105–107 (2000).
  • Murphy Gm JR, Hollander SB, Rodrigues HE, Kremer C, Schatzberg AF. Effects of the serotonin transporter gene promoter polymorphism on mirtazapine and paroxetine efficacy and adverse events in geriatric major depression. Arch. Gen. Psychiatry61(11), 1163–1169 (2004).
  • Bozina N, Peles AM, Sagud M, Bilusic H, Jakovljevic M. Association study of paroxetine therapeutic response with SERT gene polymorphisms in patients with major depressive disorder. World J. Biol. Psychiatry9(3), 190–197 (2008).
  • Rausch JL, Johnson ME, Fei YJ et al. Initial conditions of serotonin transporter kinetics and genotype: influence on ssri treatment trial outcome. Biol. Psychiatry51(9), 723–732 (2002).
  • Yu YW, Tsai SJ, Chen TJ, Lin CH, Hong CJ. Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressant response in major depressive disorders. Mol. Psychiatry7(10), 1115–1119 (2002).
  • Joyce PR, Mulder RT, Luty SE et al. Age-dependent antidepressant pharmacogenomics: polymorphisms of the serotonin transporter and γ protein β3 subunit as predictors of response to fluoxetine and nortriptyline. Int. J. Neuropsychopharmacol.6(4), 339–346 (2003).
  • Hong CJ, Chen TJ, Yu YW, Tsai SJ. Response to fluoxetine and serotonin 1A receptor (c-1019g) polymorphism in Taiwan Chinese major depressive disorder. Pharmacogenomics J.6(1), 27–33 (2006).
  • Arias B, Catalan R, Gasto C, Gutierrez B, Fananas L: 5-HTTLPR polymorphism of the serotonin transporter gene predicts non-remission in major depression patients treated with citalopram in a 12-weeks follow up study. J. Clin. Psychopharmacol.23(6), 563–567 (2003).
  • Huezo-Diaz P, Uher R, Smith R et al. Moderation of antidepressant response by the serotonin transporter gene. Br. J. Psychiatry195(1), 30–38 (2009).
  • Durham LK, Webb SM, Milos PM, Clary CM, Seymour AB. The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population with major depressive disorder. Psychopharmacology (Berl.)174(4), 525–529 (2004).
  • Lee MS, Lee HY, Lee HJ, Ryu SH. Serotonin transporter promoter gene polymorphism and long-term outcome of antidepressant treatment. Psychiatr. Genet.14(2), 111–115 (2004).
  • Wilkie MJ, Smith G, Day RK et al. Polymorphisms in the SLC6A4 and HTR2A genes influence treatment outcome following antidepressant therapy. Pharmacogenomics J.9(1), 61–70 (2009).
  • Kim DK, Lim SW, Lee S et al. Serotonin transporter gene polymorphism and antidepressant response. Neuroreport11(1), 215–219 (2000).
  • Yoshida K, Ito K, Sato K et al. Influence of the serotonin transporter gene-linked polymorphic region on the antidepressant response to fluvoxamine in japanese depressed patients. Prog. Neuropsychopharmacol. Biol. Psychiatry26(2), 383–386 (2002).
  • Kang RH, Wong ML, Choi MJ, Paik JW, Lee MS. Association study of the serotonin transporter promoter polymorphism and mirtazapine antidepressant response in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry31(6), 1317–1321 (2007).
  • Kim H, Lim SW, Kim S et al. Monoamine transporter gene polymorphisms and antidepressant response in koreans with late-life depression. JAMA296(13), 1609–1618 (2006).
  • Yoshida K, Takahashi H, Higuchi H et al. Prediction of antidepressant response to milnacipran by norepinephrine transporter gene polymorphisms. Am. J. Psychiatry161(9), 1575–1580 (2004).
  • Dogan O, Yuksel N, Ergun MA et al. Serotonin transporter gene polymorphisms and sertraline response in major depression patients. Genet. Test12(2), 225–231 (2008).
  • Kraft JB, Slager SL, Mcgrath PJ, Hamilton SP. Sequence analysis of the serotonin transporter and associations with antidepressant response. Biol. Psychiatry58(5), 374–381 (2005).
  • Hu XZ, Rush AJ, Charney D et al. Association between a functional serotonin transporter promoter polymorphism and citalopram treatment in adult outpatients with major depression. Arch. Gen. Psychiatry64(7), 783–792 (2007).
  • Mrazek DA, Rush AJ, Biernacka JM et al. Slc6a4 variation and citalopram response. Am. J. Med. Genet. B Neuropsychiatr. Genet.150B(3), 341–351 (2009).
  • Maron E, Tammiste A, Kallassalu K et al. Serotonin transporter promoter region polymorphisms do not influence treatment response to escitalopram in patients with major depression. Eur. Neuropsychopharmacol.19(6), 451–456 (2009).
  • Minov C, Baghai TC, Schule C et al. Serotonin-2α-receptor and -transporter polymorphisms: lack of association in patients with major depression. Neurosci. Lett.303(2), 119–122 (2001).
  • Kirchheiner J, Nickchen K, Sasse J, Bauer M, Roots I, Brockmoller J. A 40-basepair vntr polymorphism in the dopamine transporter (dat1 ) gene and the rapid response to antidepressant treatment. Pharmacogenomics J.7(1), 48–55 (2007).
  • Perlis RH, Mischoulon D, Smoller JW et al. Serotonin transporter polymorphisms and adverse effects with fluoxetine treatment. Biol. Psychiatry54(9), 879–883 (2003).
  • Popp J, Leucht S, Heres S, Steimer W. Serotonin transporter polymorphisms and side effects in antidepressant therapy – a pilot study. Pharmacogenomics7(2), 159–166 (2006).
  • Smits K, Smits L, Peeters F et al. Serotonin transporter polymorphisms and the occurrence of adverse events during treatment with selective serotonin reuptake inhibitors. Int. Clin. Psychopharmacol.22(3), 137–143 (2007).
  • Takahashi H, Yoshida K, Ito K et al. No association between the serotonergic polymorphisms and incidence of nausea induced by fluvoxamine treatment. Eur. Neuropsychopharmacol.12(5), 477–481 (2002).
  • Yu YW, Tsai SJ, Liou YJ, Hong CJ, Chen TJ. Association study of two serotonin 1a receptor gene polymorphisms and fluoxetine treatment response in chinese major depressive disorders. Eur. Neuropsychopharmacol.16(7), 498–503 (2006).
  • Tanaka M, Kobayashi D, Murakami Y et al. Genetic polymorphisms in the 5-hydroxytryptamine type 3b receptor gene and paroxetine-induced nausea. Int. J. Neuropsychopharmacol.11(2), 261–267 (2008).
  • Ogilvie AD, Battersby S, Bubb VJ et al. Polymorphism in serotonin transporter gene associated with susceptibility to major depression. Lancet347(9003), 731–733 (1996).
  • Hu XZ, Lipsky RH, Zhu G et al. Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. Am. J. Hum. Genet.78(5), 815–826 (2006).
  • Hranilovic D, Stefulj J, Schwab S et al. Serotonin transporter promoter and intron 2 polymorphisms: relationship between allelic variants and gene expression. Biol. Psychiatry55(11), 1090–1094 (2004).
  • Smits KM, Smits LJ, Schouten JS, Stelma FF, Nelemans P, Prins MH. Influence of SERTPR and STin2 in the serotonin transporter gene on the effect of selective serotonin reuptake inhibitors in depression: a systematic review. Mol. Psychiatry9(5), 433–441 (2004).
  • Andersen J, Taboureau O, Hansen KB et al. Location of the antidepressant binding site in the serotonin transporter: importance of ser-438 in recognition of citalopram and tricyclic antidepressants. J. Biol. Chem.284(15), 10276–10284 (2009).
  • Tavoulari S, Forrest LR, Rudnick G. Fluoxetine (prozac) binding to serotonin transporter is modulated by chloride and conformational changes. J. Neurosci.29(30), 9635–9643 (2009).
  • Brown SM, Hariri AR. Neuroimaging studies of serotonin gene polymorphisms: exploring the interplay of genes, brain, and behavior. Cogn. Affect. Behav. Neurosci.6(1), 44–52 (2006).
  • Munafo MR, Brown SM, Hariri AR. Serotonin transporter (5-HTTLPR ) genotype and amygdala activation: a meta-analysis. Biol. Psychiatry63(9), 852–857 (2008).
  • Hariri AR, Drabant EM, Munoz KE et al. A susceptibility gene for affective disorders and the response of the human amygdala. Arch. Gen. Psychiatry62(2), 146–152 (2005).
  • Bertolino A, Arciero G, Rubino V et al. Variation of human amygdala response during threatening stimuli as a function of 5´HTTLPR genotype and personality style. Biol. Psychiatry57(12), 1517–1525 (2005).
  • Canli T, Omura K, Haas BW, Fallgatter A, Constable RT, Lesch KP. Beyond affect: a role for genetic variation of the serotonin transporter in neural activation during a cognitive attention task. Proc. Natl Acad. Sci. USA102(34), 12224–12229 (2005).
  • Canli T, Qiu M, Omura K et al. Neural correlates of epigenesis. Proc. Natl Acad. Sci. USA103(43), 16033–16038 (2006).
  • Friedel E, Schlagenhauf F, Sterzer P et al.5-HTT genotype effect on prefrontal-amygdala coupling differs between major depression and controls. Psychopharmacology (Berl.)205(2), 261–271 (2009).
  • Dannlowski U, Konrad C, Kugel H et al. Emotion specific modulation of automatic amygdala responses by 5-HTTLPR genotype. Neuroimage DOI: 10.1016 (2009).
  • Hariri AR, Mattay VS, Tessitore A et al. Serotonin transporter genetic variation and the response of the human amygdala. Science297(5580), 400–403 (2002).
  • Heinz A, Braus DF, Smolka MN et al. Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nat. Neurosci.8(1), 20–21 (2005).
  • Rao H, Gillihan SJ, Wang J et al. Genetic variation in serotonin transporter alters resting brain function in healthy individuals. Biol. Psychiatry62(6), 600–606 (2007).
  • Smolka MN, Buhler M, Schumann G et al. Gene–gene effects on central processing of aversive stimuli. Mol. Psychiatry12(3), 307–317 (2007).
  • Williams LM, Gatt JM, Schofield PR, Olivieri G, Peduto A, Gordon E. ‘Negativity bias’ in risk for depression and anxiety: brain-body fear circuitry correlates, 5-HTT-LPR and early life stress. Neuroimage47(3), 804–814 (2009).
  • Dannlowski U, Ohrmann P, Bauer J et al. Serotonergic genes modulate amygdala activity in major depression. Genes Brain Behav.6(7), 672–676 (2007).
  • Graff-Guerrero A, De La Fuente-Sandoval C, Camarena B et al. Frontal and limbic metabolic differences in subjects selected according to genetic variation of the SLC6A4 gene polymorphism. Neuroimage25(4), 1197–1204 (2005).
  • Fukudo S, Kanazawa M, Mizuno T et al. Impact of serotonin transporter gene polymorphism on brain activation by colorectal distention. Neuroimage47(3), 946–951 (2009).
  • Passamonti L, Cerasa A, Gioia MC et al. Genetically dependent modulation of serotonergic inactivation in the human prefrontal cortex. Neuroimage40(3), 1264–1273 (2008).
  • Roiser JP, De Martino B, Tan GC et al. A genetically mediated bias in decision making driven by failure of amygdala control. J. Neurosci.29(18), 5985–5991 (2009).
  • Shah MP, Wang F, Kalmar JH et al. Role of variation in the serotonin transporter protein gene (SLC6A4 ) in trait disturbances in the ventral anterior cingulate in bipolar disorder. Neuropsychopharmacology34(5), 1301–1310 (2009).
  • Frodl T, Koutsouleris N, Bottlender R et al. Reduced gray matter brain volumes are associated with variants of the serotonin transporter gene in major depression. Mol. Psychiatry13(12), 1093–1101 (2008).
  • Jedema HP, Gianaros PJ, Greer PJ et al. Cognitive impact of genetic variation of the serotonin transporter in primates is associated with differences in brain morphology rather than serotonin neurotransmission. Mol. Psychiatry15(5), 512–122 (2009).
  • Benedetti F, Bernasconi A, Blasi V et al. Neural and genetic correlates of antidepressant response to sleep deprivation: a functional magnetic resonance imaging study of moral valence decision in bipolar depression. Arch. Gen. Psychiatry64(2), 179–187 (2007).
  • Pacheco J, Beevers CG, Benavides C, Mcgeary J, Stice E, Schnyer DM. Frontal-limbic white matter pathway associations with the serotonin transporter gene promoter region (5-HTTLPR ) polymorphism. J. Neurosci.29(19), 6229–6233 (2009).
  • Lemonde S, Turecki G, Bakish D et al. Impaired repression at a 5-hydroxytryptamine 1a receptor gene polymorphism associated with major depression and suicide. J. Neurosci.23(25), 8788–8799 (2003).
  • Neff CD, Abkevich V, Packer JC et al. Evidence for HTRLA and LHPP as interacting genetic risk factors in major depression. Mol. Psychiatry14(6), 621–630 (2009).
  • Savitz J, Lucki I, Drevets WC. 5-HT(1A) receptor function in major depressive disorder. Prog. Neurobiol.88(1), 17–31 (2009).
  • Gross C, Zhuang X, Stark K et al. Serotonin 1a receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature416(6879), 396–400 (2002).
  • Zanettini C, Carola V, Lo Iacono L, Moles A, Gross C, D’amato FR. Postnatal handling reverses social anxiety in serotonin receptor 1a knockout mice. Genes Brain Behav.9(1), 26–32 (2010).
  • Lemonde S, Du L, Bakish D, Hrdina P, Albert PR. Association of the C(-1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int. J. Neuropsychopharmacol.7(4), 501–506 (2004).
  • Parsey RV, Olvet DM, Oquendo MA, Huang YY, Ogden RT, Mann JJ. Higher 5-HT1A receptor binding potential during a major depressive episode predicts poor treatment response: preliminary data from a naturalistic study. Neuropsychopharmacology31(8), 1745–1749 (2006).
  • Kato M, Fukuda T, Wakeno M et al. Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.150B(1), 115–123 (2009).
  • Baune BT, Hohoff C, Roehrs T, Deckert J, Arolt V, Domschke K. Serotonin receptor 1A-1019C/G variant: impact on antidepressant pharmacoresponse in melancholic depression? Neurosci. Lett.436(2), 111–115 (2008).
  • Arias B, Catalan R, Gasto C, Gutierrez B, Fananas L. Evidence for a combined genetic effect of the 5-HT(1A) receptor and serotonin transporter genes in the clinical outcome of major depressive patients treated with citalopram. J. Psychopharmacol.19(2), 166–172 (2005).
  • Anttila S, Huuhka K, Huuhka M et al. Interaction between 5-HT1A and BDNF genotypes increases the risk of treatment-resistant depression. J. Neural. Transm.114(8), 1065–1068 (2007).
  • Peters EJ, Slager SL, Mcgrath PJ, Knowles JA, Hamilton SP. Investigation of serotonin-related genes in antidepressant response. Mol. Psychiatry9(9), 879–889 (2004).
  • Serretti A, Artioli P, Lorenzi C, Pirovano A, Tubazio V, Zanardi R. The C(-1019)G polymorphism of the 5-HT1A gene promoter and antidepressant response in mood disorders: preliminary findings. Int. J. Neuropsychopharmacol.7(4), 453–460 (2004).
  • Levin GM, Bowles TM, Ehret MJ et al. Assessment of human serotonin 1a receptor polymorphisms and SSRI responsiveness. Mol. Diagn. Ther.11(3), 155–160 (2007).
  • Lin E, Chen PS, Chang HH et al. Interaction of serotonin-related genes affects short-term antidepressant response in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry33(7), 1167–1172 (2009).
  • Fakra E, Hyde LW, Gorka A et al. Effects of HTR1A C(-1019)G on amygdala reactivity and trait anxiety. Arch. Gen. Psychiatry66(1), 33–40 (2009).
  • Lee BT, Ham BJ. Serotonergic genes and amygdala activity in response to negative affective facial stimuli in korean women. Genes Brain Behav.7(8), 899–905 (2008).
  • Sabol SZ, Hu S, Hamer D. A functional polymorphism in the monoamine oxidase A gene promoter. Hum. Genet.103(3), 273–279 (1998).
  • Cusin C, Serretti A, Zanardi R et al. Influence of monoamine oxidase a and serotonin receptor 2a polymorphisms in SSRI antidepressant activity. Int. J. Neuropsychopharmacol.5(1), 27–35 (2002).
  • Muller DJ, Schulze TG, Macciardi F et al. Moclobemide response in depressed patients: association study with a functional polymorphism in the monoamine oxidase a promoter. Pharmacopsychiatry35(4), 157–158 (2002).
  • Yoshida K, Naito S, Takahashi H et al. Monoamine oxidase: a gene polymorphism, tryptophan hydroxylase gene polymorphism and antidepressant response to fluvoxamine in japanese patients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry26(7–8), 1279–1283 (2002).
  • Yu YW, Tsai SJ, Hong CJ, Chen TJ, Chen MC, Yang CW. Association study of a monoamine oxidase a gene promoter polymorphism with major depressive disorder and antidepressant response. Neuropsychopharmacology30(9), 1719–1723 (2005).
  • Lee BT, Ham BJ. Monoamine oxidase A-UVNTR genotype affects limbic brain activity in response to affective facial stimuli. Neuroreport19(5), 515–519 (2008).
  • Meyer-Lindenberg A, Buckholtz JW, Kolachana B et al. Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc. Natl Acad. Sci. USA103(16), 6269–6274 (2006).
  • Cerasa A, Gioia MC, Labate A et al.Mao a vntr polymorphism and variation in human morphology: a VBM study. Neuroreport19(11), 1107–1110 (2008).
  • Buckholtz JW, Callicott JH, Kolachana B et al. Genetic variation in MAOA modulates ventromedial prefrontal circuitry mediating individual differences in human personality. Mol. Psychiatry13(3), 313–324 (2008).
  • Dannlowski U, Ohrmann P, Konrad C et al. Reduced amygdala–prefrontal coupling in major depression: association with maoa genotype and illness severity. Int. J. Neuropsychopharmacol.12(1), 11–22 (2009).
  • Craddock N, Owen MJ, O’Donovan MC. The catechol-O -methyl transferase (COMT ) gene as a candidate for psychiatric phenotypes: evidence and lessons. Mol. Psychiatry11(5), 446–458 (2006).
  • Tunbridge EM, Harrison PJ, Weinberger DR. Catechol-O -methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol. Psychiatry60(2), 141–151 (2006).
  • Krugel LK, Biele G, Mohr PN, Li SC, Heekeren HR. Genetic variation in dopaminergic neuromodulation influences the ability to rapidly and flexibly adapt decisions. Proc. Natl Acad. Sci. USA106(42), 17951–17956 (2009).
  • Stein DJ. Depression, anhedonia, and psychomotor symptoms: the role of dopaminergic neurocircuitry. CNS Spectr.13(7), 561–565 (2008).
  • Baune BT, Hohoff C, Berger K et al. Association of the COMT Val158Met variant with antidepressant treatment response in major depression. Neuropsychopharmacology33(4), 924–932 (2008).
  • Benedetti F, Colombo C, Pirovano A, Marino E, Smeraldi E. The catechol-O -methyltransferase Val(108/158)Met polymorphism affects antidepressant response to paroxetine in a naturalistic setting. Psychopharmacology (Berl.)203(1), 155–160 (2009).
  • Yoshida K, Higuchi H, Takahashi H et al. Influence of the tyrosine hydroxylase Val81Met polymorphism and catechol-O -methyltransferase Val158Met polymorphism on the antidepressant effect of milnacipran. Hum. Psychopharmacol.23(2), 121–128 (2008).
  • Tsai SJ, Gau YT, Hong CJ, Liou YJ, Yu YW, Chen TJ. Sexually dimorphic effect of catechol-O -methyltransferase Val158Met polymorphism on clinical response to fluoxetine in major depressive patients. J. Affect. Disord.113(1–2), 183–187 (2009).
  • Szegedi A, Rujescu D, Tadic A et al. The catechol-O -methyltransferase Val108/158Met polymorphism affects short-term treatment response to mirtazapine, but not to paroxetine in major depression. Pharmacogenomics J.5(1), 49–53 (2005).
  • Arias B, Serretti A, Lorenzi C, Gasto C, Catalan R, Fananas L. Analysis of COMT gene (Val 158 Met polymorphism) in the clinical response to ssris in depressive patients of european origin. J. Affect. Disord.90(2–3), 251–256 (2006).
  • Perlis RH, Fijal B, Adams DH, Sutton VK, Trivedi MH, Houston JP. Variation in catechol-O -methyltransferase is associated with duloxetine response in a clinical trial for major depressive disorder. Biol. Psychiatry65(9), 785–791 (2009).
  • Secher A, Bukh J, Bock C et al. Antidepressive-drug-induced bodyweight gain is associated with polymorphisms in genes coding for COMT and TPH1. Int. Clin. Psychopharmacol.24(4), 199–203 (2009).
  • Taylor WD, Zuchner S, Payne ME et al. The COMT Val158Met polymorphism and temporal lobe morphometry in healthy adults. Psychiatry Res.155(2), 173–177 (2007).
  • Cerasa A, Gioia MC, Labate A, Liguori M, Lanza P, Quattrone A. Impact of catechol-O -methyltransferase Val(108/158)Met genotype on hippocampal and prefrontal gray matter volume. Neuroreport19(4), 405–408 (2008).
  • Ehrlich S, Morrow EM, Roffman JL et al. The COMT Val108/158Met polymorphism and medial temporal lobe volumetry in patients with schizophrenia and healthy adults. Neuroimage DOI: 10.1016/j.neuroimage.2009.12.046 (2009) (Epub ahead of print).
  • Williams LM, Gatt JM, Grieve SM et al. COMT Val(108/158)Met polymorphism effects on emotional brain function and negativity bias. Neuroimage (2010).
  • Smolka MN, Schumann G, Wrase J et al. Catechol-O -methyltransferase Val158Met genotype affects processing of emotional stimuli in the amygdala and prefrontal cortex. J. Neurosci.25(4), 836–842 (2005).
  • Drabant EM, Hariri AR, Meyer-Lindenberg A et al. Catechol O -methyltransferase Val158Met genotype and neural mechanisms related to affective arousal and regulation. Arch. Gen. Psychiatry63(12), 1396–1406 (2006).
  • Kempton MJ, Haldane M, Jogia J et al. The effects of gender and COMT Val158Met polymorphism on fearful facial affect recognition: a fMRI study. Int. J. Neuropsychopharmacol.12(3), 371–381 (2009).
  • Pomarol-Clotet E, Fatjo-Vilas M, Mckenna PJ et al. COMT Val158Met polymorphism in relation to activation and de-activation in the prefrontal cortex: a study in patients with schizophrenia and healthy subjects. Neuroimage DOI: 10.1016/j.neuroimage.2010.04.018 (2010) (Epub ahead of print).
  • Bishop SJ, Cohen JD, Fossella J, Casey BJ, Farah MJ. COMT genotype influences prefrontal response to emotional distraction. Cogn. Affect. Behav. Neurosci.6(1), 62–70 (2006).
  • Dreher JC, Kohn P, Kolachana B, Weinberger DR, Berman KF. Variation in dopamine genes influences responsivity of the human reward system. Proc. Natl Acad. Sci. USA106(2), 617–622 (2009).
  • Krach S, Jansen A, Krug A et al.COMT genotype and its role on hippocampal-prefrontal regions in declarative memory. Neuroimage DOI: 10.1016/j.neuroimage.2009.12.090 (2010).
  • Honea R, Verchinski BA, Pezawas L et al. Impact of interacting functional variants in COMT on regional gray matter volume in human brain. Neuroimage45(1), 44–51 (2009).
  • Ohnishi T, Hashimoto R, Mori T et al. The association between the Val158Met polymorphism of the catechol-O -methyl transferase gene and morphological abnormalities of the brain in chronic schizophrenia. Brain129(Pt 2), 399–410 (2006).
  • Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat. Rev. Neurosci.6(8), 603–614 (2005).
  • Hu Y, Russek SJ. BDNF and the diseased nervous system: a delicate balance between adaptive and pathological processes of gene regulation. J. Neurochem.105(1), 1–17 (2008).
  • Stein DJ, Daniels WM, Savitz J, Harvey BH. Brain-derived neurotrophic factor: the neurotrophin hypothesis of psychopathology. CNS Spectr.13(11), 945–949 (2008).
  • Kozisek ME, Middlemas D, Bylund DB. Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacol. Ther.117(1), 30–51 (2008).
  • Castren E. Is mood chemistry? Nat. Rev. Neurosci.6(3), 241–246 (2005).
  • Groves JO. Is it time to reassess the BDNF hypothesis of depression? Mol. Psychiatry12(12), 1079–1088 (2007).
  • Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat. Neurosci.10(9), 1089–1093 (2007).
  • Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci.9(4), 519–525 (2006).
  • Licinio J, Dong C, Wong ML. Novel sequence variations in the brain-derived neurotrophic factor gene and association with major depression and antidepressant treatment response. Arch. Gen. Psychiatry66(5), 488–497 (2009).
  • Egan MF, Kojima M, Callicott JH et al. The BDNF Val66Met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell112(2), 257–269 (2003).
  • Chen L, Lawlor DA, Lewis SJ et al. Genetic association study of BDNF in depression: finding from two cohort studies and a meta-analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(6), 814–821 (2008).
  • Verhagen M, Van Der Meij A, van Deurzen PA et al. Meta-analysis of the VDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Mol. Psychiatry15(3), 260–271 (2010).
  • Lopez-Leon S, Janssens AC, Gonzalez-Zuloeta Ladd AM et al. Meta-analyses of genetic studies on major depressive disorder. Mol. Psychiatry13(8), 772–785 (2008).
  • Frustaci A, Pozzi G, Gianfagna F, Manzoli L, Boccia S. Meta-analysis of the brain-derived neurotrophic factor gene (BDNF ) Val66Met polymorphism in anxiety disorders and anxiety-related personality traits. Neuropsychobiology58(3–4), 163–170 (2008).
  • Saarelainen T, Hendolin P, Lucas G et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J. Neurosci.23(1), 349–357 (2003).
  • Wilkie MJ, Smith D, Reid IC et al. A splice site polymorphism in the γ-protein β subunit influences antidepressant efficacy in depression. Pharmacogenet. Genomics17(3), 207–215 (2007).
  • Yoshida K, Higuchi H, Kamata M et al. The G196A polymorphism of the brain-derived neurotrophic factor gene and the antidepressant effect of milnacipran and fluvoxamine. J. Psychopharmacol.21(6), 650–656 (2007).
  • Gratacos M, Soria V, Urretavizcaya M et al. A brain-derived neurotrophic factor (BDNF) haplotype is associated with antidepressant treatment outcome in mood disorders. Pharmacogenomics J.8(2), 101–112 (2008).
  • Rajewska-Rager A, Skibinska M, Szczepankiewicz A et al. [Association between polymorphisms of Val66Met in the BDNF gene and the response to escitalopram and nortriptyline treatment in the light of the neurodevelopmental hypothesis of depression]. Psychiatr. Pol.42(6), 915–923 (2008).
  • Domschke K, Lawford B, Laje G et al. Brain-derived neurotrophic factor (BDNF ) gene: no major impact on antidepressant treatment response. Int. J. Neuropsychopharmacol.13(1), 93–101 (2010).
  • Choi MJ, Kang RH, Lim SW, Oh KS, Lee MS. Brain-derived neurotrophic factor gene polymorphism (Val66Met) and citalopram response in major depressive disorder. Brain Res.1118(1), 176–182 (2006).
  • Tsai SJ, Cheng CY, Yu YW, Chen TJ, Hong CJ. Association study of a brain-derived neurotrophic-factor genetic polymorphism and major depressive disorders, symptomatology, and antidepressant response. Am. J. Med. Genet. B Neuropsychiatr. Genet.123B(1), 19–22 (2003).
  • Masui T, Hashimoto R, Kusumi I et al. Lithium response and Val66Met polymorphism of the brain-derived neurotrophic factor gene in japanese patients with bipolar disorder. Psychiatr. Genet.16(2), 49–50 (2006).
  • Zou YF, Ye DQ, Feng XL, Su H, Pan FM, Liao FF. Meta-analysis of BDNF Val66Met polymorphism association with treatment response in patients with major depressive disorder. Eur. Neuropsychopharmacol. DOI: 10.1016/j.euroneuro.2009.12.005 (2010) (Epub ahead of print).
  • Chen ZY, Jing D, Bath KG et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science314(5796), 140–143 (2006).
  • Frodl T, Schule C, Schmitt G et al. Association of the brain-derived neurotrophic factor Val66Met polymorphism with reduced hippocampal volumes in major depression. Arch. Gen. Psychiatry64(4), 410–416 (2007).
  • Matsuo K, Walss-Bass C, Nery FG et al. Neuronal correlates of brain-derived neurotrophic factor Val66Met polymorphism and morphometric abnormalities in bipolar disorder. Neuropsychopharmacology34(8), 1904–1913 (2009).
  • Pezawas L, Verchinski BA, Mattay VS et al. The brain-derived neurotrophic factor Val66Met polymorphism and variation in human cortical morphology. J. Neurosci.24(45), 10099–10102 (2004).
  • Schofield PR, Williams LM, Paul RH et al. Disturbances in selective information processing associated with the BDNF Val66Met polymorphism: evidence from cognition, the p300 and fronto-hippocampal systems. Biol. Psychol.80(2), 176–188 (2009).
  • Montag C, Weber B, Fliessbach K, Elger C, Reuter M. The BDNF Val66Met polymorphism impacts parahippocampal and amygdala volume in healthy humans: incremental support for a genetic risk factor for depression. Psychol. Med.39(11), 1831–1839 (2009).
  • Chepenik LG, Fredericks C, Papademetris X et al. Effects of the brain-derived neurotrophic growth factor Val66Met variation on hippocampus morphology in bipolar disorder. Neuropsychopharmacology34(4), 944–951 (2009).
  • Bueller JA, Aftab M, Sen S, Gomez-Hassan D, Burmeister M, Zubieta JK. BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biol. Psychiatry59(9), 812–815 (2006).
  • Szeszko PR, Lipsky R, Mentschel C et al. Brain-derived neurotrophic factor Val66Met polymorphism and volume of the hippocampal formation. Mol. Psychiatry10(7), 631–636 (2005).
  • Jessen F, Schuhmacher A, Von Widdern O et al. No association of the Val66Met polymorphism of the brain-derived neurotrophic factor with hippocampal volume in major depression. Psychiatr. Genet.19(2), 99–101 (2009).
  • Koolschijn PC, van Haren NE, Bakker SC, Hoogendoorn ML, Pol HE, Kahn RS. Effects of brain-derived neurotrophic factor Val66Met polymorphism on hippocampal volume change in schizophrenia. Hippocampus DOI: 10.1002/hipo.20699 (2009) (Epub ahead of print).
  • Joffe RT, Gatt JM, Kemp AH et al. Brain derived neurotrophic factor Val66Met polymorphism, the five factor model of personality and hippocampal volume: implications for depressive illness. Hum. Brain Mapp.30(4), 1246–1256 (2009).
  • Hashimoto R, Moriguchi Y, Yamashita F et al. Dose-dependent effect of the Val66Met polymorphism of the brain-derived neurotrophic factor gene on memory-related hippocampal activity. Neurosci. Res.61(4), 360–367 (2008).
  • Hariri AR, Goldberg TE, Mattay VS et al. Brain-derived neurotrophic factor Val66Met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J. Neurosci.23(17), 6690–6694 (2003).
  • Monteggia LM, Barrot M, Powell CM et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc. Natl Acad. Sci. USA101(29), 10827–10832 (2004).
  • Heldt SA, Stanek L, Chhatwal JP, Ressler KJ. Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol. Psychiatry12(7), 656–670 (2007).
  • Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM. Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol. Psychiatry63(7), 642–649 (2008).
  • Sublette ME, Baca-Garcia E, Parsey RV et al. Effect of BDNF Val66Met polymorphism on age-related amygdala volume changes in healthy subjects. Prog. Neuropsychopharmacol. Biol. Psychiatry32(7), 1652–1655 (2008).
  • Nemoto K, Ohnishi T, Mori T et al. The Val66Met polymorphism of the brain-derived neurotrophic factor gene affects age-related brain morphology. Neurosci. Lett.397(1–2), 25–29 (2006).
  • Gasic GP, Smoller JW, Perlis RH et al. BDNF, relative preference, and reward circuitry responses to emotional communication. Am. J. Med. Genet. B. Neuropsychiatr. Genet.150B(6), 762–781 (2009).
  • Soliman F, Glatt CE, Bath KG et al. A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science327(5967), 863–866 (2010).
  • Montag C, Reuter M, Newport B, Elger C, Weber B. The BDNF Val66Met polymorphism affects amygdala activity in response to emotional stimuli: evidence from a genetic imaging study. Neuroimage42(4), 1554–1559 (2008).
  • Logothetis NK. What we can do and what we cannot do with fMRI. Nature453(7197), 869–878 (2008).
  • Riley BP, Mcguffin P. Linkage and associated studies of schizophrenia. Am. J. Med. Genet.97(1), 23–44 (2000).
  • Menzel S. Genetic and molecular analyses of complex metabolic disorders: genetic linkage. Ann. N. Y. Acad. Sci.967, 249–257 (2002).
  • Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science322(5903), 881–888 (2008).
  • Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet.33(2), 177–182 (2003).
  • Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic association studies. Genet. Med.4(2), 45–61 (2002).
  • Garriock HA, Hamilton SP. Genetic studies of drug response and side effects in the STAR*D study, part 1. J. Clin. Psychiatry70(8), 1186–1187 (2009).
  • Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature455(7215), 894–902 (2008).
  • Lesch KP. Gene-environment interaction and the genetics of depression. J. Psychiatry Neurosci.29(3), 174–184 (2004).
  • Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry160(4), 636–645 (2003).
  • Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat. Rev. Neurosci.7(10), 818–827 (2006).
  • Flint J, Munafo MR. The endophenotype concept in psychiatric genetics. Psychol. Med.37(2), 163–180 (2007).
  • Mier D, Kirsch P, Meyer-Lindenberg A. Neural substrates of pleiotropic action of genetic variation in COMT : a meta-analysis. Mol. Psychiatry DOI: 0.1038/mp.2009.36 (2009) (Epub ahead of print).
  • Huettel SA, Song AW, Mccarthy G. Functional Magnetic Resoncance Imaging. Sinauer Associates, Inc., MA. USA (2009).
  • Meyer-Lindenberg A, Nicodemus KK, Egan MF, Callicott JH, Mattay V, Weinberger DR. False positives in imaging genetics. Neuroimage40, 655–661 (2008).
  • Frodl T, Meisenzahl EM, Zetzsche T et al. Larger amygdala volumes in first depressive episode as compared to recurrent major depression and healthy control subjects. Biol. Psychiatry53(4), 338–344 (2003).
  • Kronmuller KT, Schroder J, Kohler S et al. Hippocampal volume in first episode and recurrent depression. Psychiatry Res.174(1), 62–66 (2009).
  • Neumeister A, Wood S, Bonne O et al. Reduced hippocampal volume in unmedicated, remitted patients with major depression versus control subjects. Biol. Psychiatry57(8), 935–937 (2005).
  • Burmeister M, Mcinnis MG, Zollner S. Psychiatric genetics: progress amid controversy. Nat. Rev. Genet.9(7), 527–540 (2008).
  • Della Pasqua O, Santen GW, Danhof M. The missing link between clinical endpoints and drug targets in depression. Trends Pharmacol. Sci.31(4), 144–152 (2010).
  • Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry59(12), 1116–1127 (2006).
  • Pezawas L, Meyer-Lindenberg A, Goldman AL et al. Evidence of biologic epistasis between BDNF and SLC6A4 and implications for depression. Mol. Psychiatry13(7), 709–716 (2008).
  • Canli T, Congdon E, Todd Constable R, Lesch KP. Additive effects of serotonin transporter and tryptophan hydroxylase-2 gene variation on neural correlates of affective processing. Biol. Psychol.79(1), 118–125 (2008).
  • Gatt JM, Nemeroff CB, Dobson-Stone C et al. Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Mol. Psychiatry14(7), 681–695 (2009).
  • Meyer-Lindenberg A, Nichols T, Callicott JH et al. Impact of complex genetic variation in COMT on human brain function. Mol. Psychiatry11(9), 867–877, 797 (2006).
  • Ising M, Lucae S, Binder EB et al. A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Arch. Gen. Psychiatry66(9), 966–975 (2009).
  • Garriock HA, Kraft JB, Shyn SI et al. A genomewide association study of citalopram response in major depressive disorder. Biol. Psychiatry67(2), 133–138 (2010).
  • Mcmahon FJ, Akula N, Schulze TG et al. Meta-analysis of genome-wide association data identifies a risk locus for major mood disorders on 3p21.1. Nat. Genet.42(2), 128–131 (2010).
  • Shyn SI, Shi J, Kraft JB et al. Novel loci for major depression identified by genome-wide association study of sequenced treatment alternatives to relieve depression and meta-analysis of three studies. Mol. Psychiatry DOI: 10.1038/mp.2009.125 (2009) (Epub ahead of print).
  • Shi J, Potash JB, Knowles JA et al. Genome-wide association study of recurrent early-onset major depressive disorder. Mol. Psychiatry DOI: 10.1038/mp.2009.124 (2010) (Epub ahead of print).
  • Muglia P, Tozzi F, Galwey NW et al. Genome-wide association study of recurrent major depressive disorder in two european case–control cohorts. Mol. Psychiatry15(6), 589–601 (2010).
  • Mcmahon FJ. Pioneering first steps and cautious conclusions. Biol. Psychiatry67(2), 99–100 (2010).
  • Esslinger C, Walter H, Kirsch P et al. Neural mechanisms of a genome-wide supported psychosis variant. Science324(5927), 605 (2009).
  • Walter H, Schnell K, Erk S et al. Effects of a genome-wide supported psychosis risk variant on neural activation during a theory-of-mind task. Mol. Psychiatry DOI: 10.1038/mp.2010.18 (2010) (Epub ahead of print).
  • Stein JL, Hua X, Lee S et al. Voxelwise genome-wide association study (vGWAS). Neuroimage DOI: 10.1016/j.neuroimage.2010.02.032 (2010) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.