322
Views
36
CrossRef citations to date
0
Altmetric
Review

Current understanding of hepatic and intestinal OATP-mediated drug–drug interactions

, , &
Pages 729-742 | Published online: 10 Jan 2014

References

  • Caldwell J, Gardner I, Swales N. An introduction to drug disposition: the basic principles of absorption, distribution, metabolism, and excretion. Toxicol. Pathol.23(2), 102–114 (1995).
  • Reitman ML, Chu X, Cai X et al. Rifampin’s acute inhibitory and chronic inductive drug interactions: experimental and model-based approaches to drug0drug interaction trial design. Clin. Pharmacol. Ther.89(2), 234–242 (2011).
  • Suzuki H, Sugiyama Y. Transport of drugs across the hepatic sinusoidal membrane: sinusoidal drug influx and efflux in the liver. Semin. Liver Dis.20(3), 251–263 (2000).
  • Gottesman MM , Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem.62, 385–427 (1993).
  • Kullak-Ublick GA. Regulation of organic anion and drug transporters of the sinusoidal membrane. J. Hepatol.31(3), 563–573 (1999).
  • Muller M, Jansen PL. Molecular aspects of hepatobiliary transport. Am. J. Physiol.272(6 Pt 1), G1285–G1303 (1997).
  • Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res.11(7), 1156–1166 (2001).
  • Fredriksson R, Nordstrom KJ, Stephansson O, Hagglund MG, Schioth HB. The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families. FEBS Lett.582(27), 3811–3816 (2008).
  • Hagenbuch B. Drug uptake systems in liver and kidney: a historic perspective. Clin. Pharmacol. Ther.87(1), 39–47 (2010).
  • Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch.447(5), 653–665 (2004).
  • Ho RH, Tirona RG, Leake BF et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology130(6), 1793–1806 (2006).
  • Hirano M, Maeda K, Shitara Y, Sugiyama Y. Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J. Pharmacol. Exp. Ther.311(1), 139–146 (2004).
  • Kobayashi D, Nozawa T, Imai K, Nezu J, Tsuji A, Tamai I. Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. J. Pharmacol. Exp. Ther.306(2), 703–708 (2003).
  • Hsiang B, Zhu Y, Wang Z et al. A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J. Biol. Chem.274(52), 37161–37168 (1999).
  • Grube M, Kock K, Oswald S et al. Organic anion transporting polypeptide 2B1 is a high-affinity transporter for atorvastatin and is expressed in the human heart. Clin. Pharmacol. Ther.80(6), 607–620 (2006).
  • Liu L, Cui Y, Chung AY et al. Vectorial transport of enalapril by Oatp1a1/Mrp2 and OATP1B1 and OATP1B3/MRP2 in rat and human livers. J. Pharmacol. Exp. Ther.318(1), 395–402 (2006).
  • van de SE, van der Kruijssen CM, Wagenaar E et al. Methotrexate pharmacokinetics in transgenic mice with liver-specific expression of human organic anion-transporting polypeptide 1B1 (SLCO1B1). Drug Metab. Dispos.37(2), 277–281 (2009).
  • Smith NF, Acharya MR, Desai N, Figg WD, Sparreboom A. Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol. Ther.4(8), 815–818 (2005).
  • Abe T, Unno M, Onogawa T et al. LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology120(7), 1689–1699 (2001).
  • Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I. Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab. Dispos.33(3), 434–439 (2005).
  • Konig J, Cui Y, Nies AT, Keppler D. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J. Biol. Chem.275(30), 23161–23168 (2000).
  • Kullak-Ublick GA, Ismair MG, Stieger B et al. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology120(2), 525–533 (2001).
  • Tamai I, Nozawa T, Koshida M, Nezu J, Sai Y, Tsuji A. Functional characterization of human organic anion transporting polypeptide B (OATP-B) in comparison with liver-specific OATP-C. Pharm. Res.18(9), 1262–1269 (2001).
  • Niessen J, Jedlitschky G, Grube M et al. Human platelets express organic anion-transporting peptide 2B1, an uptake transporter for atorvastatin. Drug Metab. Dispos.37(5), 1129–1137 (2009).
  • St Pierre MV, Hagenbuch B, Ugele B, Meier PJ, Stallmach T. Characterization of an organic anion-transporting polypeptide (OATP-B) in human placenta. J. Clin. Endocrinol. Metab.87(4), 1856–1863 (2002).
  • Bronger H, Konig J, Kopplow K et al. ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood–tumor barrier. Cancer Res.65(24), 11419–11428 (2005).
  • Briz O, Serrano MA, MacIas RI, Gonzalez-Gallego J, Marin JJ. Role of organic anion-transporting polypeptides, OATP-A, OATP-C and OATP-8, in the human placenta-maternal liver tandem excretory pathway for foetal bilirubin. Biochem. J.371(Pt 3), 897–905 (2003).
  • Lee W, Belkhiri A, Lockhart AC et al. Overexpression of OATP1B3 confers apoptotic resistance in colon cancer. Cancer Res.68(24), 10315–10323 (2008).
  • Hamada A, Sissung T, Price DK et al. Effect of SLCO1B3 haplotype on testosterone transport and clinical outcome in caucasian patients with androgen-independent prostatic cancer. Clin. Cancer Res.14(11), 3312–3318 (2008).
  • Wen X, Wang JS, Backman JT, Kivisto KT, Neuvonen PJ. Gemfibrozil is a potent inhibitor of human cytochrome P450 2C9. Drug Metab. Dispos.29(11), 1359–1361 (2001).
  • Wang JS, Neuvonen M, Wen X, Backman JT, Neuvonen PJ. Gemfibrozil inhibits CYP2C8-mediated cerivastatin metabolism in human liver microsomes. Drug Metab. Dispos.30(12), 1352–1356 (2002).
  • Wacher VJ, Silverman JA, Zhang Y, Benet LZ. Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J. Pharm. Sci.87(11), 1322–1330 (1998).
  • Foxwell BM, Mackie A, Ling V, Ryffel B. Identification of the multidrug resistance-related P-glycoprotein as a cyclosporine binding protein. Mol. Pharmacol.36(4), 543–546 (1989).
  • Tang F, Horie K, Borchardt RT. Are MDCK cells transfected with the human MRP2 gene a good model of the human intestinal mucosa? Pharm. Res.19(6), 773–779 (2002).
  • Tirona RG, Leake BF, Wolkoff AW, Kim RB. Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. J. Pharmacol. Exp. Ther.304(1), 223–228 (2003).
  • Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology36(1), 164–172 (2002).
  • Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer SA. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Invest.102(5), 1016–1023 (1998).
  • Bertilsson G, Heidrich J, Svensson K et al. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc. Natl Acad. Sci. USA95(21), 12208–12213 (1998).
  • Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J. Biol. Chem.276(18), 14581–14587 (2001).
  • Meyer zu Schwabedissen HE, Kim RB. Hepatic OATP1B transporters and nuclear receptors PXR and CAR: interplay, regulation of drug disposition genes, and single nucleotide polymorphisms. Mol. Pharm.6(6), 1644–1661 (2009).
  • Tirona RG, Leake BF, Merino G, Kim RB. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European– and African–Americans. J. Biol. Chem.276(38), 35669–35675 (2001).
  • Chung JY, Cho JY, Yu KS et al. Effect of OATP1B1 (SLCO1B1) variant alleles on the pharmacokinetics of pitavastatin in healthy volunteers. Clin. Pharmacol. Ther.78(4), 342–350 (2005).
  • Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet. Genomics16(12), 873–879 (2006).
  • Niemi M, Schaeffeler E, Lang T et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics14(7), 429–440 (2004).
  • Mwinyi J, Johne A, Bauer S, Roots I, Gerloff T. Evidence for inverse effects of OATP-C (SLC21A6) 5 and 1b haplotypes on pravastatin kinetics. Clin. Pharmacol. Ther.75(5), 415–421 (2004).
  • Niemi M, Backman JT, Kajosaari LI et al. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin. Pharmacol. Ther.77(6), 468–478 (2005).
  • Zhang W, He YJ, Han CT et al. Effect of SLCO1B1 genetic polymorphism on the pharmacokinetics of nateglinide. Br. J. Clin. Pharmacol.62(5), 567–572 (2006).
  • Katz DA, Carr R, Grimm DR et al. Organic anion transporting polypeptide 1B1 activity classified by SLCO1B1 genotype influences atrasentan pharmacokinetics. Clin. Pharmacol. Ther.79(3), 186–196 (2006).
  • Hirano M, Maeda K, Shitara Y, Sugiyama Y. Drug–drug interaction between pitavastatin and various drugs via OATP1B1. Drug Metab. Dispos.34(7), 1229–1236 (2006).
  • Ogilvie BW, Zhang D, Li W et al. Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug–drug interactions. Drug Metab. Dispos.34(1), 191–197 (2006).
  • Shitara Y, Hirano M, Sato H, Sugiyama Y. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug–drug interaction between cerivastatin and gemfibrozil. J. Pharmacol. Exp. Ther.311(1), 228–236 (2004).
  • Prueksaritanont T, Zhao JJ, Ma B et al. Mechanistic studies on metabolic interactions between gemfibrozil and statins. J. Pharmacol. Exp. Ther.301(3), 1042–1051 (2002).
  • Andrejak M, Gras V, Caron J. [Severe muscle disorders associated with statins: analysis of cases notified in France up to the end of February 2002 and data concerning the risk profile of cerivastatin]. Therapie60(3), 299–304 (2005).
  • Muck W. Clinical pharmacokinetics of cerivastatin. Clin. Pharmacokinet.39(2), 99–116 (2000).
  • Shitara Y, Itoh T, Sato H, Li AP, Sugiyama Y. Inhibition of transporter-mediated hepatic uptake as a mechanism for drug-drug interaction between cerivastatin and cyclosporin A. J. Pharmacol. Exp. Ther.304(2), 610–616 (2003).
  • Backman JT, Kyrklund C, Neuvonen M, Neuvonen PJ. Gemfibrozil greatly increases plasma concentrations of cerivastatin. Clin. Pharmacol. Ther.72(6), 685–691 (2002).
  • Noe J, Portmann R, Brun ME, Funk C. Substrate-dependent drug-drug interactions between gemfibrozil, fluvastatin and other organic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab. Dispos.35(8), 1308–1314 (2007).
  • Vickers S, Duncan CA, Chen IW, Rosegay A, Duggan DE. Metabolic disposition studies on simvastatin, a cholesterol-lowering prodrug. Drug Metab. Dispos.18(2), 138–145 (1990).
  • Prueksaritanont T, Gorham LM, Ma B et al. In vitro metabolism of simvastatin in humans [SBT] identification of metabolizing enzymes and effect of the drug on hepatic P450s. Drug Metab. Dispos.25(10), 1191–1199 (1997).
  • Kantola T, Kivisto KT, Neuvonen PJ. Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin. Pharmacol. Ther.64(2), 177–182 (1998).
  • Lilja JJ, Kivisto KT, Neuvonen PJ. Grapefruit juice-simvastatin interaction: effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors. Clin. Pharmacol. Ther.64(5), 477–483 (1998).
  • Backman JT, Kyrklund C, Kivisto KT, Wang JS, Neuvonen PJ. Plasma concentrations of active simvastatin acid are increased by gemfibrozil. Clin. Pharmacol. Ther.68(2), 122–129 (2000).
  • Schneck DW, Birmingham BK, Zalikowski JA et al. The effect of gemfibrozil on the pharmacokinetics of rosuvastatin. Clin. Pharmacol. Ther.75(5), 455–463 (2004).
  • Kyrklund C, Backman JT, Neuvonen M, Neuvonen PJ. Gemfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance. Clin. Pharmacol. Ther.73(6), 538–544 (2003).
  • Whitfield LR, Porcari AR, Alvey C, Abel R, Bullen W, Hartman D. Effect of gemfibrozil and fenofibrate on the pharmacokinetics of atorvastatin. J. Clin. Pharmacol.51(3), 378–388 (2011).
  • Backman JT, Luurila H, Neuvonen M, Neuvonen PJ. Rifampin markedly decreases and gemfibrozil increases the plasma concentrations of atorvastatin and its metabolites. Clin. Pharmacol. Ther.78(2), 154–167 (2005).
  • Spence JD, Munoz CE, Hendricks L, Latchinian L, Khouri HE. Pharmacokinetics of the combination of fluvastatin and gemfibrozil. Am. J. Cardiol.76(2), 80A–83A (1995).
  • Niemi M, Pasanen MK, Neuvonen PJ. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin. Pharmacol. Ther.80(4), 356–366 (2006).
  • Ieiri I, Higuchi S, Sugiyama Y. Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opin. Drug Metab. Toxicol.5(7), 703–729 (2009).
  • Hinton LK, Galetin A, Houston JB. Multiple inhibition mechanisms and prediction of drug-drug interactions: status of metabolism and transporter models as exemplified by gemfibrozil–drug interactions. Pharm. Res.25(5), 1063–1074 (2008).
  • Niemi M, Backman JT, Neuvonen M, Neuvonen PJ. Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics and pharmacodynamics of repaglinide: potentially hazardous interaction between gemfibrozil and repaglinide. Diabetologia46(3), 347–351 (2003).
  • Bachmakov I, Glaeser H, Fromm MF, Konig J. Interaction of oral antidiabetic drugs with hepatic uptake transporters: focus on organic anion transporting polypeptides and organic cation transporter 1. Diabetes57(6), 1463–1469 (2008).
  • Kalliokoski A, Backman JT, Kurkinen KJ, Neuvonen PJ, Niemi M. Effects of gemfibrozil and atorvastatin on the pharmacokinetics of repaglinide in relation to SLCO1B1 polymorphism. Clin. Pharmacol. Ther.84(4), 488–496 (2008).
  • Bidstrup TB, Damkier P, Olsen AK, Ekblom M, Karlsson A, Brosen K. The impact of CYP2C8 polymorphism and grapefruit juice on the pharmacokinetics of repaglinide. Br. J. Clin. Pharmacol.61(1), 49–57 (2006).
  • Tomalik-Scharte D, Fuhr U, Hellmich M et al. Effect of the CYP2C8 genotype on the pharmacokinetics and pharmacodynamics of repaglinide. Drug Metab. Dispos.39(5), 927–932 (2011).
  • Backman JT, Honkalammi J, Neuvonen M et al. CYP2C8 activity recovers within 96 hours after gemfibrozil dosing: estimation of CYP2C8 half-life using repaglinide as an in vivo probe. Drug Metab. Dispos.37(12), 2359–2366 (2009).
  • Kalliokoski A, Neuvonen M, Neuvonen PJ, Niemi M. Different effects of SLCO1B1 polymorphism on the pharmacokinetics and pharmacodynamics of repaglinide and nateglinide. J. Clin. Pharmacol.48(3), 311–321 (2008).
  • Niemi M, Backman JT, Juntti-Patinen L, Neuvonen M, Neuvonen PJ. Coadministration of gemfibrozil and itraconazole has only a minor effect on the pharmacokinetics of the CYP2C9 and CYP3A4 substrate nateglinide. Br. J. Clin. Pharmacol.60(2), 208–217 (2005).
  • Yamazaki M, Li B, Louie SW et al. Effects of fibrates on human organic anion-transporting polypeptide 1B1-, multidrug resistance protein 2- and P-glycoprotein-mediated transport. Xenobiotica35(7), 737–753 (2005).
  • Shitara Y. Clinical importance of OATP1B1 and OATP1B3 in drug–drug interactions. Drug Metab. Pharmacokinet.26(3), 220–227 (2011).
  • Muck W, Mai I, Fritsche L et al. Increase in cerivastatin systemic exposure after single and multiple dosing in cyclosporine-treated kidney transplant recipients. Clin. Pharmacol. Ther.65(3), 251–261 (1999).
  • Campana C, Iacona I, Regazzi MB et al. Efficacy and pharmacokinetics of simvastatin in heart transplant recipients. Ann. Pharmacother.29(3), 235–239 (1995).
  • Meier C, Stey C, Brack T, Maggiorini M, Risti B, Krahenbuhl S. [Rhabdomyolysis in patients treated with simvastatin and cyclosporin: role of the hepatic cytochrome P450 enzyme system activity]. Schweiz. Med. Wochenschr.125(27–28), 1342–1346 (1995).
  • Segaert MF, De Soete C, Vandewiele I, Verbanck J. Drug-interaction-induced rhabdomyolysis. Nephrol. Dial. Transplant.11(9), 1846–1847 (1996).
  • Wombolt DG, Jackson A, Punn R, Smith S, McCune TR, Williams PB. Case report: rhabdomyolysis induced by mibefradil in a patient treated with cyclosporine and simvastatin. J. Clin. Pharmacol.39(3), 310–312 (1999).
  • Vlahakos DV, Manginas A, Chilidou D, Zamanika C, Alivizatos PA. Itraconazole-induced rhabdomyolysis and acute renal failure in a heart transplant recipient treated with simvastatin and cyclosporine. Transplantation73(12), 1962–1964 (2002).
  • Gumprecht J, Zychma M, Grzeszczak W et al. Simvastatin-induced rhabdomyolysis in a CsA-treated renal transplant recipient. Med. Sci. Monit.9(9), CS89–CS91 (2003).
  • Simonson SG, Raza A, Martin PD et al. Rosuvastatin pharmacokinetics in heart transplant recipients administered an antirejection regimen including cyclosporine. Clin. Pharmacol. Ther.76(2), 167–177 (2004).
  • Park JW, Siekmeier R, Merz M et al. Pharmacokinetics of pravastatin in heart-transplant patients taking cyclosporin A. Int. J. Clin. Pharmacol. Ther.40(10), 439–450 (2002).
  • Hedman M, Neuvonen PJ, Neuvonen M, Holmberg C, Antikainen M. Pharmacokinetics and pharmacodynamics of pravastatin in pediatric and adolescent cardiac transplant recipients on a regimen of triple immunosuppression. Clin. Pharmacol. Ther.75(1), 101–109 (2004).
  • Hermann M, Asberg A, Christensen H, Holdaas H, Hartmann A, Reubsaet JL. Substantially elevated levels of atorvastatin and metabolites in cyclosporine-treated renal transplant recipients. Clin. Pharmacol. Ther.76(4), 388–391 (2004).
  • Asberg A, Hartmann A, Fjeldsa E, Bergan S, Holdaas H. Bilateral pharmacokinetic interaction between cyclosporine A and atorvastatin in renal transplant recipients. Am. J. Transplant.1(4), 382–386 (2001).
  • Park JW, Siekmeier R, Lattke P et al. Pharmacokinetics and pharmacodynamics of fluvastatin in heart transplant recipients taking cyclosporine A. J. Cardiovasc. Pharmacol. Ther.6(4), 351–361 (2001).
  • Spence R, Mandagere A, Richards DB, Magee MH, Dufton C, Boinpally R. Potential for pharmacokinetic interactions between ambrisentan and cyclosporine. Clin. Pharmacol. Ther.88(4), 513–520 (2010).
  • Binet I, Wallnofer A, Weber C, Jones R, Thiel G. Renal hemodynamics and pharmacokinetics of bosentan with and without cyclosporine A. Kidney Int.57(1), 224–231 (2000).
  • Treiber A, Schneiter R, Hausler S, Stieger B. Bosentan is a substrate of human OATP1B1 and OATP1B3: inhibition of hepatic uptake as the common mechanism of its interactions with cyclosporin A, rifampicin, and sildenafil. Drug Metab. Dispos.35(8), 1400–1407 (2007).
  • Richards DB, Walker GA, Mandagere A, Magee MH, Henderson LS. Effect of ketoconazole on the pharmacokinetic profile of ambrisentan. J. Clin. Pharmacol.49(6), 719–724 (2009).
  • Weiss J, Herzog M, Haefeli WE. Differential modulation of the expression of important drug metabolising enzymes and transporters by endothelin-1 receptor antagonists ambrisentan and bosentan in vitro. Eur. J. Pharmacol.660(2–3), 298–304 (2011).
  • Kajosaari LI, Niemi M, Neuvonen M, Laitila J, Neuvonen PJ, Backman JT. Cyclosporine markedly raises the plasma concentrations of repaglinide. Clin. Pharmacol. Ther.78(4), 388–399 (2005).
  • Chester JD, Joel SP, Cheeseman SL et al. Phase I and pharmacokinetic study of intravenous irinotecan plus oral ciclosporin in patients with fuorouracil-refractory metastatic colon cancer. J. Clin. Oncol.21(6), 1125–1132 (2003).
  • Konig J, Glaeser H, Keiser M, Mandery K, Klotz U, Fromm MF. Role of organic anion transporting polypeptides (OATPs) for cellular mesalazine (5-aminosalicylic acid) uptake. Drug Metab. Dispos.39(6), 1097–1102 (2011).
  • Wu X, Whitfield LR, Stewart BH. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter. Pharm. Res.17(2), 209–215 (2000).
  • Li J, Volpe DA, Wang Y et al. Use of transporter knockdown Caco-2 cells to investigate the in vitro efflux of statin drugs. Drug Metab. Dispos.39(7), 1196–1202 (2011).
  • Keskitalo JE, Kurkinen KJ, Neuvonen M, Backman JT, Neuvonen PJ, Niemi M. No significant effect of ABCB1 haplotypes on the pharmacokinetics of fluvastatin, pravastatin, lovastatin, and rosuvastatin. Br. J. Clin. Pharmacol.68(2), 207–213 (2009).
  • He YJ, Zhang W, Chen Y et al. Rifampicin alters atorvastatin plasma concentration on the basis of SLCO1B1 521T>C polymorphism. Clin. Chim. Acta405(1–2), 49–52 (2009).
  • Zaher H, Meyer zu Schwabedissen HE, Tirona RG et al. Targeted disruption of murine organic anion-transporting polypeptide 1b2 (Oatp1b2/Slco1b2) significantly alters disposition of prototypical drug substrates pravastatin and rifampin. Mol. Pharmacol.74(2), 320–329 (2008).
  • Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol. Pharmacol.49(2), 311–318 (1996).
  • van Giersbergen PL, Treiber A, Schneiter R, Dietrich H, Dingemanse J. Inhibitory and inductive effects of rifampin on the pharmacokinetics of bosentan in healthy subjects. Clin. Pharmacol. Ther.81(3), 414–419 (2007).
  • Lau YY, Huang Y, Frassetto L, Benet LZ. Effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin. Pharmacol. Ther.81(2), 194–204 (2007).
  • Bergman E, Hedeland M, Bondesson U, Lennernas H. The effect of acute administration of rifampicin and imatinib on the enterohepatic transport of rosuvastatin in vivo. Xenobiotica40(8), 558–568 (2010).
  • Kyrklund C, Backman JT, Kivisto KT, Neuvonen M, Laitila J, Neuvonen PJ. Rifampin greatly reduces plasma simvastatin and simvastatin acid concentrations. Clin. Pharmacol. Ther.68(6), 592–597 (2000).
  • Kyrklund C, Backman JT, Neuvonen M, Neuvonen PJ. Effect of rifampicin on pravastatin pharmacokinetics in healthy subjects. Br. J. Clin. Pharmacol.57(2), 181–187 (2004).
  • Niemi M, Backman JT, Neuvonen M, Neuvonen PJ. Effect of rifampicin on the pharmacokinetics and pharmacodynamics of nateglinide in healthy subjects. Br. J. Clin. Pharmacol.56(4), 427–432 (2003).
  • Zhang W, Deng S, Chen XP et al. Pharmacokinetics of rosuvastatin when coadministered with rifampicin in healthy males: a randomized, single-blind, placebo-controlled, crossover study. Clin. Ther.30(7), 1283–1289 (2008).
  • Niemi M, Kivisto KT, Diczfalusy U et al. Effect of SLCO1B1 polymorphism on induction of CYP3A4 by rifampicin. Pharmacogenet. Genomics16(8), 565–568 (2006).
  • Pascolo L, Cupelli F, Anelli PL et al. Molecular mechanisms for the hepatic uptake of magnetic resonance imaging contrast agents. Biochem. Biophys. Res. Commun.257(3), 746–752 (1999).
  • Leonhardt M, Keiser M, Oswald S et al. Hepatic uptake of the magnetic resonance imaging contrast agent Gd-EOB-DTPA: role of human organic anion transporters. Drug Metab. Dispos.38(7), 1024–1028 (2010).
  • Tsuboyama T, Onishi H, Kim T et al. Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic acid-enhanced MR imaging – correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology255(3), 824–833 (2010).
  • Kato N, Yokawa T, Tamura A, Heshiki A, Ebert W, Weinmann HJ. Gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid interaction with clinical drugs in rats. Invest. Radiol.37(12), 680–684 (2002).
  • Huppertz A, Breuer J, Fels LM et al. Evaluation of possible drug-drug interaction between gadoxetic acid and erythromycin as an inhibitor of organic anion transporting peptides (OATP). J. Magn. Reson. Imaging33(2), 409–416 (2011).
  • Seithel A, Eberl S, Singer K et al. The influence of macrolide antibiotics on the uptake of organic anions and drugs mediated by OATP1B1 and OATP1B3. Drug Metab. Dispos.35(5), 779–786 (2007).
  • Kopplow K, Letschert K, Konig J, Walter B, Keppler D. Human hepatobiliary transport of organic anions analyzed by quadruple-transfected cells. Mol. Pharmacol.68(4), 1031–1038 (2005).
  • Vaidyanathan S, Camenisch G, Schuetz H et al. Pharmacokinetics of the oral direct renin inhibitor aliskiren in combination with digoxin, atorvastatin, and ketoconazole in healthy subjects: the role of P-glycoprotein in the disposition of aliskiren. J. Clin. Pharmacol.48(11), 1323–1338 (2008).
  • Seki S, Kobayashi M, Itagaki S, Hirano T, Iseki K. Contribution of organic anion transporting polypeptide OATP2B1 to amiodarone accumulation in lung epithelial cells. Biochim. Biophys. Acta1788(5), 911–917 (2009).
  • Satoh H, Yamashita F, Tsujimoto M et al. Citrus juices inhibit the function of human organic anion-transporting polypeptide OATP-B. Drug Metab. Dispos.33(4), 518–523 (2005).
  • Letschert K, Faulstich H, Keller D, Keppler D. Molecular characterization and inhibition of amanitin uptake into human hepatocytes. Toxicol. Sci.91(1), 140–149 (2006).
  • Staessen JA, Li Y, Richart T. Oral renin inhibitors. Lancet368(9545), 1449–1456 (2006).
  • Vaidyanathan S, Jarugula V, Dieterich HA, Howard D, Dole WP. Clinical pharmacokinetics and pharmacodynamics of aliskiren. Clin. Pharmacokinet.47(8), 515–531 (2008).
  • Vaidyanathan S, Jin Y, Schiller H, Jensen C. Aliskiren, a novel oral renin inhibitor, has no interaction with cytochrome P450 isoenzymes in vitro. Basic Res. Pharmacol. Toxicol.97(Suppl. 1), 239 (2005).
  • Dieterle W, Corynen S, Vaidyanathan S, Mann J. Pharmacokinetic interactions of the oral renin inhibitor aliskiren with lovastatin, atenolol, celecoxib and cimetidine. Int. J. Clin. Pharmacol. Ther.43(11), 527–535 (2005).
  • Waldmeier F, Glaenzel U, Wirz B et al. Absorption, distribution, metabolism, and elimination of the direct renin inhibitor aliskiren in healthy volunteers. Drug Metab. Dispos.35(8), 1418–1428 (2007).
  • Rebello S, Compain S, Feng A, Hariry S, Dieterich HA, Jarugula V. Effect of cyclosporine on the pharmacokinetics of aliskiren in healthy subjects. J. Clin. Pharmacol. DOI: 10.1177/0091270010385934 (2011) (Epub ahead of print).
  • Tapaninen T, Neuvonen PJ, Niemi M. Rifampicin reduces the plasma concentrations and the renin-inhibiting effect of aliskiren. Eur. J. Clin. Pharmacol.66(5), 497–502 (2010).
  • Tapaninen T, Neuvonen PJ, Niemi M. Orange and apple juice greatly reduce the plasma concentrations of the OATP2B1 substrate aliskiren. Br. J. Clin. Pharmacol.71(5), 718–726 (2011).
  • Mougey EB, Feng H, Castro M, Irvin CG, Lima JJ. Absorption of montelukast is transporter mediated: a common variant of OATP2B1 is associated with reduced plasma concentrations and poor response. Pharmacogenet. Genomics19(2), 129–138 (2009).
  • Zhao JJ, Rogers JD, Holland SD et al. Pharmacokinetics and bioavailability of montelukast sodium (MK-0476) in healthy young and elderly volunteers. Biopharm. Drug Dispos.18(9), 769–777 (1997).
  • Mougey EB, Lang JE, Wen X, Lima JJ. Effect of citrus juice and SLCO2B1 genotype on the pharmacokinetics of montelukast. J. Clin. Pharmacol.51(5), 751–760 (2010).
  • Karonen T, Filppula A, Laitila J, Niemi M, Neuvonen PJ, Backman JT. Gemfibrozil markedly increases the plasma concentrations of montelukast: a previously unrecognized role for CYP2C8 in the metabolism of montelukast. Clin. Pharmacol. Ther.88(2), 223–230 (2010).
  • Filppula AM, Laitila J, Neuvonen PJ, Backman JT. Reevaluation of the microsomal metabolism of montelukast: major contribution by CYP2C8 at clinically relevant concentrations. Drug Metab. Dispos.39(5), 904–911 (2011).
  • Zheng HX, Huang Y, Frassetto LA, Benet LZ. Elucidating rifampin’s inducing and inhibiting effects on glyburide pharmacokinetics and blood glucose in healthy volunteers: unmasking the differential effects of enzyme induction and transporter inhibition for a drug and its primary metabolite. Clin. Pharmacol. Ther.85(1), 78–85 (2009).
  • Lilja JJ, Niemi M, Fredrikson H, Neuvonen PJ. Effects of clarithromycin and grapefruit juice on the pharmacokinetics of glibenclamide. Br. J. Clin. Pharmacol.63(6), 732–740 (2007).
  • Zahno A, Brecht K, Morand R et al. The role of CYP3A4 in amiodarone-associated toxicity on HepG2 cells. Biochem. Pharmacol.81(3), 432–441 (2011).
  • Ohyama K, Nakajima M, Nakamura S, Shimada N, Yamazaki H, Yokoi T. A significant role of human cytochrome P450 2C8 in amiodarone N-deethylation: an approach to predict the contribution with relative activity factor. Drug Metab. Dispos.28(11), 1303–1310 (2000).
  • Libersa CC, Brique SA, Motte KB et al. Dramatic inhibition of amiodarone metabolism induced by grapefruit juice. Br. J. Clin. Pharmacol.49(4), 373–378 (2000).
  • Zarembski DG, Fischer SA, Santucci PA, Porter MT, Costanzo MR, Trohman RG. Impact of rifampin on serum amiodarone concentrations in a patient with congenital heart disease. Pharmacotherapy19(2), 249–251 (1999).
  • Roten L, Schoenenberger RA, Krahenbuhl S, Schlienger RG. Rhabdomyolysis in association with simvastatin and amiodarone. Ann. Pharmacother.38(6), 978–981 (2004).
  • Knauer MJ, Urquhart BL, Meyer zu Schwabedissen HE et al. Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circ. Res.106(2), 297–306 (2010).
  • Kalliokoski A, Neuvonen M, Neuvonen PJ, Niemi M. No significant effect of SLCO1B1 polymorphism on the pharmacokinetics of rosiglitazone and pioglitazone. Br. J. Clin. Pharmacol.65(1), 78–86 (2008).
  • Bachmakov L, Glaeser H, Fromm MF, Konig J. Interaction of oral antidiabetic drugs with hepatic uptake transporters – focus on organic anion transporting polypeptides and organic cation transporter 1. Diabetes57(6), 1463–1469 (2008).
  • Giacomini KM, Huang SM, Tweedie DJ et al. Membrane transporters in drug development. Nat. Rev. Drug Discov.9(3), 215–236 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.