596
Views
76
CrossRef citations to date
0
Altmetric
Review

Inflammation-mediated changes in drug transporter expression/activity: implications for therapeutic drug response

, &
Pages 69-89 | Published online: 10 Jan 2014

References

  • Kindt T, Goldsby RA, Osborne BA. Kuby Immunology (6th Edition). WH Freeman and Company, NY, USA (2007).
  • Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med.340(6), 448–454 (1999).
  • Chrousos GP. The hypothalamic–pituitary–adrenal axis and immune-mediated inflammation. N. Engl. J. Med.332(20), 1351–1362 (1995).
  • Dienstag JL. Hepatitis B virus infection. N. Engl. J. Med.359(14), 1486–1500 (2008).
  • Schofield L, Grau GE. Immunological processes in malaria pathogenesis. Nat. Rev. Immunol.5(9), 722–735 (2005).
  • Naud J, Michaud J, Leblond FA, Lefrancois S, Bonnardeaux A, Pichette V. Effects of chronic renal failure on liver drug transporters. Drug Metab. Dispos.36(1), 124–128 (2007).
  • O’Dell JR. Therapeutic strategies for rheumatoid arthritis. N. Engl. J. Med.350(25), 2591–2602 (2004).
  • Nestle FO, Kaplan DH, Barker J. Psoriasis. N. Engl. J. Med.361(5), 496–509 (2009).
  • Horwitz BJ, Fisher RS. The irritable bowel syndrome. N. Engl. J. Med.344(24), 1846–1850 (2001).
  • Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J. Clin. Invest.121(6), 2111–2117 (2011).
  • Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol.11(2), 98–107 (2011).
  • Slaviero KA, Clarke SJ, Rivory LP. Inflammatory response: an unrecognised source of variability in the pharmacokinetics and pharmacodynamics of cancer chemotherapy. Lancet Oncol.4(4), 224–232 (2003).
  • Ruot B, Bechereau F, Bayle G, Breuille D, Obled C. The response of liver albumin synthesis to infection in rats varies with the phase of the inflammatory process. Clin. Sci. (Lond.)102(1), 107–114 (2002).
  • Moshage HJ, Janssen JA, Franssen JH, Hafkenscheid JC, Yap SH. Study of the molecular mechanism of decreased liver synthesis of albumin in inflammation. J. Clin. Invest.79(6), 1635–1641 (1987).
  • Don BR, Kaysen G. Serum albumin: relationship to inflammation and nutrition. Semin. Dial.17(6), 432–437 (2004).
  • Morgan ET, Goralski KB, Piquette-Miller M et al. Regulation of drug-metabolizing enzymes and transporters in infection, inflammation, and cancer. Drug Metab. Dispos.36(2), 205–216 (2008).
  • Morgan ET. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin. Pharmacol. Ther.85(4), 434–438 (2009).
  • Giacomini KM, Huang SM, Tweedie DJ et al. Membrane transporters in drug development. Nat. Rev. Drug Discov.9(3), 215–236 (2010).
  • Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacolog. Rev.62(1), 1–96 (2010).
  • Klaassen CD, Lu H. Xenobiotic transporters: ascribing function from gene knockout and mutation studies. Toxicol. Sci.101(2), 186–196 (2008).
  • Petrovic V, Teng S, Piquette-Miller M. Regulation of drug transporters during infection and inflammation. Mol. Intervent.7(2), 99–111 (2007).
  • Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. J. Natl Cancer Inst.92(16), 1295–1302 (2000).
  • Higgins CF, Linton KJ. Structural biology. The xyz of ABC transporters. Science293(5536), 1782–1784 (2001).
  • Mannering GJ, Renton KW, El Azhary R, Deloria LB. Effects of interferon-inducing agents on hepatic cytochrome P-450 drug metabolizing systems. Ann. NY Acad. Sci.350, 314–331 (1980).
  • Klein I, Sarkadi B, Varadi A. An inventory of the human ABC proteins. Biochim. Biophys. Acta1461(2), 237–262 (1999).
  • Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res.11(7), 1156–1166 (2001).
  • Cordon-Cardo C, O’Brien JP, Boccia J, Casals D, Bertino JR, Melamed MR. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J. Histochem. Cytochem.38(9), 1277–1287 (1990).
  • Richaud-Patin Y, Soto-Vega E, Jakez-Ocampo J, Llorente L. P-glycoprotein in autoimmune diseases. Autoimmun. Rev.3(3), 188–192 (2004).
  • Turriziani O, Gianotti N, Falasca F et al. Expression levels of MDR1, MRP1, MRP4, and MRP5 in peripheral blood mononuclear cells from HIV infected patients failing antiretroviral therapy. J. Med. Virol.80(5), 766–771 (2008).
  • Watkins PB. The barrier function of CYP3A4 and P-glycoprotein in the small bowel. Adv. Drug Deliv. Rev.27(2–3), 161–170 (1997).
  • Ayrton A, Morgan P. Role of transport proteins in drug absorption, distribution and excretion. Xenobiotica31(8–9), 469–497 (2001).
  • Tanigawara Y. Role of P-glycoprotein in drug disposition. Ther. Drug Monit.22(1), 137–140 (2000).
  • Slitt AL, Allen K, Morrone J et al. Regulation of transporter expression in mouse liver, kidney, and intestine during extrahepatic cholestasis. Biochim. Biophys. Acta1768(3), 637–647 (2007).
  • Keppler D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb. Exp. Pharmacol. (201), 299–323 (2011).
  • Gao M, Loe DW, Grant CE, Cole SP, Deeley RG. Reconstitution of ATP-dependent leukotriene C4 transport by co-expression of both half-molecules of human multidrug resistance protein in insect cells. J. Biol. Chem.271(44), 27782–27787 (1996).
  • Eckford PD, Sharom FJ. ABC efflux pump-based resistance to chemotherapy drugs. Chem. Rev.109(7), 2989–3011 (2009).
  • Hinoshita E, Taguchi K, Inokuchi A et al. Decreased expression of an ATP-binding cassette transporter, MRP2, in human livers with hepatitis C virus infection. J. Hepatol.35(6), 765–773 (2001).
  • Borst P, Zelcer N, Van De Wetering K. MRP2 and 3 in health and disease. Cancer Lett.234(1), 51–61 (2006).
  • Ozvegy C, Litman T, Szakacs G et al. Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells. Biochem. Biophys. Res. Commun.285(1), 111–117 (2001).
  • Schwabedissen HE, Kroemer HK. In vitro and in vivo evidence for the importance of breast cancer resistance protein transporters (BCRP/MXR/ABCP/ABCG2). Handb. Exp. Pharmacol. (201), 325–371 (2011).
  • Maliepaard M, Van Gastelen MA, De Jong LA et al. Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res.59(18), 4559–4563 (1999).
  • Maliepaard M, Scheffer GL, Faneyte IF et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res.61(8), 3458–3464 (2001).
  • Langmann T, Mauerer R, Zahn A et al. Real-time reverse transcription-PCR expression profiling of the complete human ATP-binding cassette transporter superfamily in various tissues. Clin. Chem.49(2), 230–238 (2003).
  • Burger H, Nooter K. Pharmacokinetic resistance to imatinib mesylate: role of the ABC drug pumps ABCG2 (BCRP) and ABCB1 (MDR1) in the oral bioavailability of imatinib. Cell Cycle3(12), 1502–1505 (2004).
  • Englund G, Rorsman F, Rönnblom A et al. Regional levels of drug transporters along the human intestinal tract: co-expression of ABC and SLC transporters and comparison with Caco-2 cells. Eur. J. Pharm. Sci.29(3–4), 269–277 (2006).
  • Elferink RPJO, Groen AK. Mechanisms of biliary lipid secretion and their role in lipid homeostasis. Semin. Liver Dis.20(3), 293–305 (2000).
  • Fickert P, Fuchsbichler A, Wagner M et al. Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology127(1), 261–274 (2004).
  • Mauad TH, Van Nieuwkerk CM, Dingemans KP et al. Mice with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am. J. Pathol.145(5), 1237–1245 (1994).
  • Stapelbroek JM, Van Erpecum KJ, Klomp LW, Houwen RH. Liver disease associated with canalicular transport defects: current and future therapies. J. Hepatol.52(2), 258–271 (2010).
  • Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflgers Arch. Eur. J. Physiol.447(5), 465–468 (2004).
  • Konig J. Uptake transporters of the human OATP family: molecular characteristics, substrates, their role in drug–drug interactions, and functional consequences of polymorphisms. Handb. Exp. Pharmacol.201, 1–28 (2011).
  • Fahrmayr C, Fromm MF, Konig J. Hepatic OATP and OCT uptake transporters: their role for drug–drug interactions and pharmacogenetic aspects. Drug Metab. Rev.42(3), 380–401 (2010).
  • Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br. J. Pharmacol.158(3), 693–705 (2009).
  • Burckhardt G, Burckhardt BC. In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb. Exp. Pharmacol. (201), 29–104 (2011).
  • Hagenbuch B, Gui C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica38(7–8), 778–801 (2008).
  • Svoboda M, Riha J, Wlcek K, Jaeger W, Thalhammer T. Organic anion transporting polypeptides (OATPs): regulation of expression and function. Curr. Drug Metab.12(2), 139–153 (2011).
  • Leuthold S, Hagenbuch B, Mohebbi N, Wagner CA, Meier PJ, Stieger B. Mechanisms of pH-gradient driven transport mediated by organic anion polypeptide transporters. Am. J. Physiol. Cell Physiol.296(3), C570–C582 (2009).
  • Wright SH. Role of organic cation transporters in the renal handling of therapeutic agents and xenobiotics. Toxicol. Appl. Pharmacol.204(3), 309–319 (2005).
  • Ciarimboli G. Organic cation transporters. Xenobiotica38(7–8), 936–971 (2008).
  • Nigam SK, Bush KT, Bhatnagar V. Drug and toxicant handling by the OAT organic anion transporters in the kidney and other tissues. Nat. Clin. Pract. Nephrol.3(8), 443–448 (2007).
  • Rizwan AN, Burckhardt G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm. Res.24(3), 450–470 (2007).
  • Nies AT, Koepsell H, Damme K, Schwab M. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb. Exp. Pharmacol. (201), 105–167 (2011).
  • Ciarimboli G. Role of organic cation transporters in drug-induced toxicity. Exp. Opin. Drug Metab. Toxicol.7(2), 159–174 (2011).
  • Fortier ME, Kent S, Ashdown H, Poole S, Boksa P, Luheshi GN. The viral mimic, polyinosinic:polycytidylic acid, induces fever in rats via an interleukin-1-dependent mechanism. Am. J. Physiol. Regul. Integr. Comp. Physiol.287(4), R759–R766 (2004).
  • Siewert E, Bort R, Kluge R, Heinrich PC, Castell J, Jover R. Hepatic cytochrome P450 down-regulation during aseptic inflammation in the mouse is interleukin 6 dependent. Hepatology32(1), 49–55 (2000).
  • Renton KW. Alteration of drug biotransformation and elimination during infection and inflammation. Pharmacol. Ther.92(2–3), 147–163 (2001).
  • Shedlofsky SI, Israel BC, Tosheva R, Blouin RA. Endotoxin depresses hepatic cytochrome P450-mediated drug metabolism in women. Br. J. Clin. Pharmacol.43(6), 627–632 (1997).
  • Shedlofsky SI, Israel BC, Mcclain CJ, Hill DB, Blouin RA. Endotoxin administration to humans inhibits hepatic cytochrome P450-mediated drug metabolism. J. Clin. Invest.94(6), 2209–2214 (1994).
  • Poloyac SM, Tosheva RT, Gardner BM, Shedlofsky SI, Blouin RA. The effect of endotoxin administration on the pharmacokinetics of chlorzoxazone in humans. Clin. Pharmacol. Ther.66(6), 554–562 (1999).
  • Roe AL, Warren G, Hou G, Howard G, Shedlofsky SI, Blouin RA. The effect of high dose endotoxin on CYP3A2 expression in the rat. Pharm. Res.15(10), 1603–1608 (1998).
  • Piquette-Miller M, Pak A, Kim H, Anari R, Shahzamani A. Decreased expression and activity of P-glycoprotein in rat liver during acute inflammation. Pharm. Res.15(5), 706–711 (1998).
  • Sukhai M, Yong A, Kalitsky J, Piquette-Miller M. Inflammation and interleukin-6 mediate reductions in the hepatic expression and transcription of the Mdr1a and Mdr1b genes. Mol. Cell Biol. Res. Commun.4(4), 248–256 (2000).
  • Cherrington NJ, Slitt AL, Li N, Klaassen CD. Lipopolysaccharide-mediated regulation of hepatic transporter mRNA levels in rats. Drug Metab. Dispos.32(7), 734–741 (2004).
  • Hartmann G, Kim H, Piquette-Miller M. Regulation of the hepatic multidrug resistance gene expression by endotoxin and inflammatory cytokines in mice. Int. Immunopharmacol.1(2), 189–199 (2001).
  • Vos TA, Hooiveld GJ, Koning H et al. Up-regulation of the multidrug resistance genes, Mrp1 and Mdr1b, and down-regulation of the organic anion transporter, Mrp2, and the bile salt transporter, Spgp, in endotoxemic rat liver. Hepatology28(6), 1637–1644 (1998).
  • Goralski KB, Hartmann G, Piquette-Miller M, Renton KW. Downregulation of Mdr1a expression in the brain and liver during CNS inflammation alters the in vivo disposition of digoxin. Br. J. Pharmacol.139(1), 35–48 (2003).
  • Hartmann G, Vassileva V, Piquette-Miller M. Impact of endotoxin-induced changes in P-glycoprotein expression on disposition of doxorubicin in mice. Drug Metab. Dispos.33(6), 820–828 (2005).
  • Wang JH, Scollard DA, Teng S, Reilly RM, Piquette-Miller M. Detection of P-glycoprotein activity in endotoxemic rats by 99mTc-sestamibi imaging. J. Nucl. Med.46(9), 1537–1545 (2005).
  • Hidemura K, Zhao YL, Ito K et al. Shiga-like toxin II impairs hepatobiliary transport of doxorubicin in rats by down-regulation of hepatic P glycoprotein and multidrug resistance-associated protein Mrp2. Antimicrob. Agents Chemother.47(5), 1636–1642 (2003).
  • Lee G, Piquette-Miller M. Influence of IL-6 on MDR and MRP-mediated multidrug resistance in human hepatoma cells. Can. J. Physiol. Pharmacol.79(10), 876–884 (2001).
  • Miyoshi M, Nadai M, Nitta A et al. Role of tumor necrosis factor-α in down-regulation of hepatic cytochrome P450 and P-glycoprotein by endotoxin. Eur. J. Pharmacol.507(1–3), 229–237 (2005).
  • Kalitsky-Szirtes J, Shayeganpour A, Brocks DR, Piquette-Miller M. Suppression of drug-metabolizing enzymes and efflux transporters in the intestine of endotoxin-treated rats. Drug Metab. Dispos.32(1), 20–27 (2004).
  • Blokzijl H, Vander Borght S, Bok LI et al. Decreased P-glycoprotein (P-gp/MDR1) expression in inflamed human intestinal epithelium is independent of PXR protein levels. Inflamm. Bowel Dis.13(6), 710–720 (2007).
  • Belliard AM, Lacour B, Farinotti R, Leroy C. Effect of tumor necrosis factor-α and interferon-γ on intestinal P-glycoprotein expression, activity, and localization in Caco-2 cells. J. Pharmaceut. Sci.93(6), 1524–1536 (2004).
  • Buyse M, Radeva G, Bado A, Farinotti R. Intestinal inflammation induces adaptation of P-glycoprotein expression and activity. Biochem. Pharmacol.69(12), 1745–1754 (2005).
  • Zhao YL, Du J, Kanazawa H et al. Effect of endotoxin on doxorubicin transport across blood–brain barrier and P-glycoprotein function in mice. Eur. J. Pharmacol.445(1–2), 115–123 (2002).
  • Ronaldson PT, Bendayan R. HIV-1 viral envelope glycoprotein gp120 triggers an inflammatory response in cultured rat astrocytes and regulates the functional expression of P-glycoprotein. Mol. Pharmacol.70(3), 1087–1098 (2006).
  • Poller B, Drewe J, Krahenbuhl S, Huwyler J, Gutmann H. Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood–brain barrier. Cell Mol. Neurobiol.30(1), 63–70 (2010).
  • Ando H, Nishio Y, Ito K et al. Effect of endotoxin on P-glycoprotein-mediated biliary and renal excretion of rhodamine-123 in rats. Antimicrob. Agents Chemother.45(12), 3462–3467 (2001).
  • Heemskerk S, Van Koppen A, Van Den Broek L et al. Nitric oxide differentially regulates renal ATP-binding cassette transporters during endotoxemia. Pflugers Arch.454(2), 321–334 (2007).
  • Evseenko DA, Paxton JW, Keelan JA. Independent regulation of apical and basolateral drug transporter expression and function in placental trophoblasts by cytokines, steroids, and growth factors. Drug Metab. Dispos.35(4), 595–601 (2007).
  • Chen YH, Wang JP, Wang H et al. Lipopolysaccharide treatment downregulates the expression of the pregnane X receptor, cyp3a11 and Mdr1a genes in mouse placenta. Toxicology211(3), 242–252 (2005).
  • Petrovic V, Wang JH, Piquette-Miller M. Effect of endotoxin on the expression of placental drug transporters and glyburide disposition in pregnant rats. Drug Metab. Dispos.36(9), 1944–1950 (2008).
  • Petrovic V, Piquette-Miller M. Impact of polyinosinic/polycytidylic acid on placental and hepatobiliary drug transporters in pregnant rats. Drug Metab. Dispos.38(10), 1760–1766 (2010).
  • Mason CW, Buhimschi IA, Buhimschi CS, Dong Y, Weiner CP, Swaan PW. ATP-binding cassette transporter expression in human placenta as a function of pregnancy condition. Drug Metab. Dispos.39(6), 1000–1007 (2011).
  • Vee ML, Lecureur V, Stieger B, Fardel O. Regulation of drug transporter expression in human hepatocytes exposed to the proinflammatory cytokines tumor necrosis factor-α or interleukin-6. Drug Metab. Dispos.37(3), 685–693 (2009).
  • Le Vee M, Jouan E, Moreau A, Fardel O. Regulation of drug transporter mRNA expression by interferon-γ in primary human hepatocytes. Fundam. Clin. Pharmacol.25(1), 99–103 (2011).
  • Von Wedel-Parlow M, Wolte P, Galla HJ. Regulation of major efflux transporters under inflammatory conditions at the blood–brain barrier in vitro. J. Neurochem.111(1), 111–118 (2009).
  • Hartmann G, Cheung AK, Piquette-Miller M. Inflammatory cytokines, but not bile acids, regulate expression of murine hepatic anion transporters in endotoxemia. J. Pharmacol. Exp. Ther.303(1), 273–281 (2002).
  • Nakamura J, Nishida T, Hayashi K et al. Kupffer cell-mediated down regulation of rat hepatic CMOAT/MRP2 gene expression. Biochem. Biophys. Res. Commun.255(1), 143–149 (1999).
  • Tang W, Yi C, Kalitsky J, Piquette-Miller M. Endotoxin downregulates hepatic expression of P-glycoprotein and MRP2 in 2-acetylaminofluorene-treated rats. Mol. Cell Biol. Res. Commun.4(2), 90–97 (2000).
  • Diao L, Li N, Brayman TG, Hotz KJ, Lai Y. Regulation of MRP2/ABCC2 and BSEP/ABCB11 expression in sandwich cultured human and rat hepatocytes exposed to inflammatory cytokines TNF-α, IL-6, and IL-1β. J. Biol. Chem.285(41), 31185–31192 (2010).
  • Le Vee M, Gripon P, Stieger B, Fardel O. Down-regulation of organic anion transporter expression in human hepatocytes exposed to the proinflammatory cytokine interleukin 1β. Drug Metab. Dispos.36(2), 217–222 (2008).
  • Donner MG, Keppler D. Up-regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic rat liver. Hepatology34(2), 351–359 (2001).
  • Fardel O, Le Vee M. Regulation of human hepatic drug transporter expression by pro-inflammatory cytokines. Exp. Opin. Drug Metabol. Toxicol.5(12), 1469–1481 (2009).
  • Siewert E, Dietrich CG, Lammert F et al. Interleukin-6 regulates hepatic transporters during acute-phase response. Biochem. Biophys. Res. Commun.322(1), 232–238 (2004).
  • Jaisue S, Gerber JP, Davey AK. Pharmacokinetics of fexofenadine following LPS administration to rats. Xenobiotica40(11), 743–750 (2010).
  • Yang H, Plosch T, Lisman T et al. Inflammation mediated down-regulation of hepatobiliary transporters contributes to intrahepatic cholestasis and liver damage in murine biliary atresia. Pediatr. Res.66(4), 380–385 (2009).
  • Lawrence RC, Felson DT, Helmick CG et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum.58(1), 26–35 (2008).
  • Helmick CG, Felson DT, Lawrence RC et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum.58(1), 15–25 (2008).
  • Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med.344(12), 907–916 (2001).
  • Symmons DP, Gabriel SE. Epidemiology of CVD in rheumatic disease, with a focus on RA and SLE. Nat. Rev. Rheumatol.7(7), 399–408 (2011).
  • Van Der Heijden JW, Dijkmans BA, Scheper RJ, Jansen G. Drug insight: resistance to methotrexate and other disease-modifying antirheumatic drugs – from bench to bedside. Nat. Clin. Pract. Rheumatol.3(1), 26–34 (2007).
  • Williams RO, Feldmann M, Maini RN. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc. Natl Acad. Sci. USA89(20), 9784–9788 (1992).
  • Hung DY, Siebert GA, Chang P et al. Hepatic pharmacokinetics of propranolol in rats with adjuvant-induced systemic inflammation. Am. J. Physiol. Gastrointest. Liver Physiol.290(2), G343–G351 (2006).
  • Wang Y, Fang Y, Huang W et al. Effect of sinomenine on cytokine expression of macrophages and synoviocytes in adjuvant arthritis rats. J. Ethnopharmacol.98(1–2), 37–43 (2005).
  • Shibata NSH, Minouchi T, Yamaji A. Pharmacokinetics of cyclosporin A after intravenous administration to rats in various disease states. Biol. Pharm. Bull.16(11), 1130–1135 (1993).
  • Piquette-Miller M, Jamali F. Effect of adjuvant arthritis on the disposition of acebutolol enantiomer in rats. Agents Actions37, 290–296 (1992).
  • Piquette-Miller M, Jamali F. Selective effect of adjuvant arthritis on the disposition of propranolol enantiomers in rats detected using a stereospecific HPLC assay. Pharm. Res.10(2), 294–299 (1993).
  • Dipasquale G, Welaj P, Rassaert CL. Prolonged pentobarbital sleeping time in adjuvant-induced polyarthritic rats. Res. Commun. Chem. Pathol. Pharmacol.9(2), 253–264 (1974).
  • Sanada H, Sekimoto M, Kamoshita A, Degawa M. Changes in expression of hepatic cytochrome P450 subfamily enzymes during development of adjuvant-induced arthritis in rats. J. Toxicol. Sci.36(2), 181–190 (2011).
  • Ling S. Effect of early phase adjuvant arthritis on hepatic p450 enzymes and pharmacokinetics of verapamil: an alternative approach to the use of an animal model of inflammation for pharmacokinetic studies. Drug Metab. Dispos.33(4), 579–586 (2005).
  • Whitehouse MW, Beck FJ. Impaired drug metabolism in rats with adjuvant-induced arthritis: a brief review. Drug Metab. Dispos.1(1), 251–255 (1973).
  • Ferrari L, Jouzeau JY, Gillet P et al. Interleukin-1 β differentially represses drug-metabolizing enzymes in arthritic female rats. J. Pharmacol. Exp. Ther.264(2), 1012–1020 (1993).
  • Meunier CJ, Verbeeck RK. Glucuronidation of R- and S-ketoprofen, acetaminophen, and diflunisal by liver microsomes of adjuvant-induced arthritic rats. Drug Metab. Dispos.27(1), 26–31 (1999).
  • Achira M, Totsuka R, Fujimura H, Kume T. Tissue-specific regulation of expression and activity of P-glycoprotein in adjuvant arthritis rats. Eur. J. Pharm. Sci.16(1–2), 29–36 (2002).
  • Uno S, Uraki M, Ito A et al. Changes in mRNA expression of ABC and SLC transporters in liver and intestines of the adjuvant-induced arthritis rat. Biopharm. Drug Dispos.30(1), 49–54 (2009).
  • Uno S, Kawase A, Tsuji A, Tanino T, Iwaki M. Decreased intestinal CYP3A and P-glycoprotein activities in rats with adjuvant arthritis. Drug Metab. Pharmacokinet.22(4), 313–321 (2007).
  • Anthony DD, Haqqi TM. Collagen-induced arthritis in mice: an animal model to study the pathogenesis of rheumatoid arthritis. Clin. Exp. Rheumatol.17(2), 240–244 (1999).
  • Kawase A, Tsunokuni Y, Iwaki M. Effects of alterations in CAR on bilirubin detoxification in mouse collagen-induced arthritis. Drug Metab. Dispos.35(2), 256–261 (2006).
  • Kawase A, Yoshida I, Tsunokuni Y, Iwaki M. Decreased PXR and CAR inhibit transporter and CYP mRNA levels in the liver and intestine of mice with collagen-induced arthritis. Xenobiotica37(4), 366–374 (2007).
  • Mayo PR, Skeith K, Russell AS, Jamali F. Decreased dromotropic response to verapamil despite pronounced increased drug concentration in rheumatoid arthritis. Br. J. Clin. Pharmacol.50(6), 605–613 (2000).
  • Schmith VD, Foss JF. Inflammation: planning for a source of pharmacokinetic/pharmacodynamic variability in translational studies. Clin. Pharmacol. Ther.87(4), 488–491 (2010).
  • Abraham C, Cho JH. Inflammatory bowel disease. N. Engl. J. Med.361(21), 2066–2078 (2009).
  • Loftus EV Jr, Sandborn WJ. Epidemiology of inflammatory bowel disease. Gastroenterol. Clin. N. Am.31(1), 1–20 (2002).
  • Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol.3(7), 521–533 (2003).
  • Yan Y, Kolachala V, Dalmasso G et al. Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis. PLoS One4(6), e6073 (2009).
  • Raddatz D, Bockemuhl M, Ramadori G. Quantitative measurement of cytokine mRNA in inflammatory bowel disease: relation to clinical and endoscopic activity and outcome. Eur. J. Gastroenterol. Hepatol.17(5), 547–557 (2005).
  • Choung RS, Locke GR 3rd. Epidemiology of IBS. Gastroenterol. Clin. N. Am.40(1), 1–10 (2011).
  • Cosnes J, Gower-Rousseau C, Seksik P, Cortot A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology140(6), 1785.e4–1794.e4 (2011).
  • Turner JR. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am. J. Pathol.169(6), 1901–1909 (2006).
  • Dietrich CG, Geier A, Oude Elferink RP. ABC of oral bioavailability: transporters as gatekeepers in the gut. Gut52(12), 1788–1795 (2003).
  • Maclean C, Moenning U, Reichel A, Fricker G. Closing the gaps: a full scan of the intestinal expression of p-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2 in male and female rats. Drug Metab. Dispos.36(7), 1249–1254 (2008).
  • Stephens RH, Tanianis-Hughes J, Higgs NB, Humphrey M, Warhurst G. Region-dependent modulation of intestinal permeability by drug efflux transporters: in vitro studies in Mdr1a(-/-) mouse intestine. J. Pharmacol. Exp. Ther.303(3), 1095–1101 (2002).
  • Van Herwaarden AE, Jonker JW, Wagenaar E et al. The breast cancer resistance protein (Bcrp1/Abcg2) restricts exposure to the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Res.63(19), 6447–6452 (2003).
  • Schneider RE, Babb J, Bishop H, Mitchard M, Hoare AM. Plasma levels of propranolol in treated patients with coeliac disease and patients with Crohn’s disease. Br. Med. J.2(6039), 794–795 (1976).
  • Langmann T, Moehle C, Mauerer R et al. Loss of detoxification in inflammatory bowel disease: dysregulation of pregnane X receptor target genes. Gastroenterology127(1), 26–40 (2004).
  • Iizasa H, Genda N, Kitano T et al. Altered expression and function of P-glycoprotein in dextran sodium sulfate-induced colitis in mice. J. Pharm. Sci.92(3), 569–576 (2003).
  • Suzuki R, Miyamoto S, Yasui Y, Sugie S, Tanaka T. Global gene expression analysis of the mouse colonic mucosa treated with azoxymethane and dextran sodium sulfate. BMC Cancer7, 84 (2007).
  • Buyse M, Radeva G, Bado A, Farinotti R. Intestinal inflammation induces adaptation of P-glycoprotein expression and activity. Biochem. Pharmacol.69(12), 1745–1754 (2005).
  • Jahnel J, Fickert P, Langner C et al. Impact of experimental colitis on hepatobiliary transporter expression and bile duct injury in mice. Liver Int.29(9), 1316–1325 (2009).
  • Panwala CM, Jones JC, Viney JL. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, Mdr1a, spontaneously develop colitis. J. Immunol.161(10), 5733–5744 (1998).
  • Englund G, Jacobson A, Rorsman F, Artursson P, Kindmark A, Rönnblom A. Efflux transporters in ulcerative colitis: decreased expression of BCRP (ABCG2) and Pgp (ABCB1). Inflamm. Bowel Dis.13(3), 291–297 (2007).
  • Blokzijl H, Van Steenpaal A, Vander Borght S et al. Up-regulation and cytoprotective role of epithelial multidrug resistance-associated protein 1 in inflammatory bowel disease. J. Biol. Chem.283(51), 35630–35637 (2008).
  • Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science220(4597), 568–575 (1983).
  • Loe DW, Almquist KC, Deeley RG, Cole SP. Multidrug resistance protein (MRP)-mediated transport of leukotriene C4 and chemotherapeutic agents in membrane vesicles. Demonstration of glutathione-dependent vincristine transport. J. Biol. Chem.271(16), 9675–9682 (1996).
  • Wojtal KA, Eloranta JJ, Hruz P et al. Changes in mRNA expression levels of solute carrier transporters in inflammatory bowel disease patients. Drug Metab. Dispos.37(9), 1871–1877 (2009).
  • Naud J, Michaud J, Beauchemin S et al. Effects of chronic renal failure on kidney drug transporters and cytochrome P450 in rats. Drug Metab. Dispos.39(8), 1363–1369 (2011).
  • Michaud J, Nolin TD, Naud J et al. Effect of hemodialysis on hepatic cytochrome P450 functional expression. J. Pharmacol. Sci.108(2), 157–163 (2008).
  • Michaud J, Dube P, Naud J et al. Effects of serum from patients with chronic renal failure on rat hepatic cytochrome P450. Br. J. Pharmacol.144(8), 1067–1077 (2005).
  • Villeneuve JP, Pichette V. Cytochrome P450 and liver diseases. Curr. Drug Metab.5(3), 273–282 (2004).
  • Guevin C, Michaud J, Naud J, Leblond FA, Pichette V. Down-regulation of hepatic cytochrome p450 in chronic renal failure: role of uremic mediators. Br. J. Pharmacol.137(7), 1039–1046 (2002).
  • Leblond FA, Petrucci M, Dube P, Bernier G, Bonnardeaux A, Pichette V. Downregulation of intestinal cytochrome p450 in chronic renal failure. J. Am. Soc. Nephrol.13(6), 1579–1585 (2002).
  • Leblond F, Guevin C, Demers C, Pellerin I, Gascon-Barre M, Pichette V. Downregulation of hepatic cytochrome P450 in chronic renal failure. J. Am. Soc. Nephrol.12(2), 326–332 (2001).
  • Sun H, Frassetto L, Benet LZ. Effects of renal failure on drug transport and metabolism. Pharmacol. Ther.109(1–2), 1–11 (2006).
  • Nolin TD, Frye RF, Matzke GR. Hepatic drug metabolism and transport in patients with kidney disease. Am. J. Kidney Dis.42(5), 906–925 (2003).
  • Nolin TD, Naud J, Leblond FA, Pichette V. Emerging evidence of the impact of kidney disease on drug metabolism and transport. Clin. Pharmacol. Ther.83(6), 898–903 (2008).
  • Naud J, Michaud J, Leblond FA, Lefrancois S, Bonnardeaux A, Pichette V. Effects of chronic renal failure on liver drug transporters. Drug Metab. Dispos.36(1), 124–128 (2008).
  • Vanholder R, De Smet R, Glorieux G et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int.63(5), 1934–1943 (2003).
  • Mak RH, Cheung W, Cone RD, Marks DL. Mechanisms of disease: cytokine and adipokine signaling in uremic cachexia. Nat. Clin. Pract. Nephrol.2(9), 527–534 (2006).
  • Naud J, Michaud J, Boisvert C et al. Down-regulation of intestinal drug transporters in chronic renal failure in rats. J. Pharmacol. Exp. Ther.320(3), 978–985 (2007).
  • Ji L, Masuda S, Saito H, Inui K. Down-regulation of rat organic cation transporter rOCT2 by 5/6 nephrectomy. Kidney Int.62(2), 514–524 (2002).
  • Laouari D, Yang R, Veau C, Blanke I, Friedlander G. Two apical multidrug transporters, P-gp and MRP2, are differently altered in chronic renal failure. Am. J. Physiol. Renal Physiol.280(4), F636–F645 (2001).
  • Berzins SP, Smyth MJ, Baxter AG. Presumed guilty: natural killer T cell defects and human disease. Nat. Rev. Immunol.11(2), 131–142 (2011).
  • Morohoshi M, Fujisawa K, Uchimura I, Numano F. The effect of glucose and advanced glycosylation end products on IL-6 production by human monocytes. Ann. NY Acad. Sci.748, 562–570 (1995).
  • Morohoshi M, Fujisawa K, Uchimura I, Numano F. Glucose-dependent interleukin 6 and tumor necrosis factor production by human peripheral blood monocytes in vitro. Diabetes45(7), 954–959 (1996).
  • Esposito K, Nappo F, Marfella R et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation106(16), 2067–2072 (2002).
  • Weisberg SP, Mccann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest.112(12), 1796–1808 (2003).
  • Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science259(5091), 87–91 (1993).
  • Xu H, Barnes GT, Yang Q et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest.112(12), 1821–1830 (2003).
  • Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing Type 2 diabetes mellitus. JAMA286(3), 327–334 (2001).
  • Spranger J, Kroke A, Mohlig M et al. Inflammatory cytokines and the risk to develop Type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Diabetes52(3), 812–817 (2003).
  • Pickup JC, Mattock MB, Chusney GD, Burt D. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia40(11), 1286–1292 (1997).
  • Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol.11(2), 136–140 (2010).
  • Maedler K, Sergeev P, Ris F et al. Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest.110(6), 851–860 (2002).
  • Ehses JA, Perren A, Eppler E et al. Increased number of islet-associated macrophages in Type 2 diabetes. Diabetes56(9), 2356–2370 (2007).
  • Hanley MJ, Abernethy DR, Greenblatt DJ. Effect of obesity on the pharmacokinetics of drugs in humans. Clin. Pharmacokinet.49(2), 71–87 (2010).
  • Lee JH, Yang SH, Oh JM, Lee MG. Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with Type I diabetes mellitus. J. Pharm. Pharmacol.62(1), 1–23 (2010).
  • Yu S, Yu Y, Liu L et al. Increased plasma exposures of five protoberberine alkaloids from coptidis rhizoma in streptozotocin-induced diabetic rats: is P-GP involved? Planta Medica76(09), 876–881 (2010).
  • Hasegawa Y, Kishimoto S, Shibatani N et al. The pharmacokinetics of morphine and its glucuronide conjugate in a rat model of streptozotocin-induced diabetes and the expression of MRP2, MRP3 and UGT2B1 in the liver. J. Pharm. Pharmacol.62(3), 310–314 (2010).
  • Hasegawa Y, Kishimoto S, Shibatani N, Inotsume N, Takeuchi Y, Fukushima S. The disposition of pravastatin in a rat model of streptozotocin-induced diabetes and organic anion transporting polypeptide 2 and multidrug resistance-associated protein 2 expression in the liver. Biol. Pharm. Bull.33(1), 153–156 (2010).
  • Anger GJ, Magomedova L, Piquette-Miller M. Impact of acute streptozotocin-induced diabetes on ABC transporter expression in rats. Chem. Biodivers.6(11), 1943–1959 (2009).
  • Liu Y, Liu H, Yang J et al. Increased amyloid β-peptide (1-40) level in brain of streptozotocin-induced diabetic rats. Neuroscience153(3), 796–802 (2008).
  • Liu YC, Liu HY, Yang HW et al. Impaired expression and function of breast cancer resistance protein (Bcrp) in brain cortex of streptozocin-induced diabetic rats. Biochem. Pharmacol.74(12), 1766–1772 (2007).
  • Yang ZH, Liu XD. P-glycoprotein-mediated efflux of phenobarbital at the blood-brain barrier evidence from transport experiments in vitro. Epilepsy Res.78(1), 40–49 (2008).
  • Liu H, Zhang D, Xu X et al. Attenuated function and expression of P-glycoprotein at blood-brain barrier and increased brain distribution of phenobarbital in streptozotocin-induced diabetic mice. Eur. J. Pharmacol.561(1–3), 226–232 (2007).
  • Reichel V, Burghard S, John I, Huber O. P-glycoprotein and breast cancer resistance protein expression and function at the blood–brain barrier and blood–cerebrospinal fluid barrier (choroid plexus) in streptozotocin-induced diabetes in rats. Brain Res.1370, 238–245 (2011).
  • Maeng HJ, Kim MH, Jin HE et al. Functional induction of P-glycoprotein in the blood–brain barrier of streptozotocin-induced diabetic rats: evidence for the involvement of nuclear factor-κβ, a nitrosative stress-sensitive transcription factor, in the regulation. Drug Metab. Dispos.35(11), 1996–2005 (2007).
  • Hawkins BT, Ocheltree SM, Norwood KM, Egleton RD. Decreased blood–brain barrier permeability to fluorescein in streptozotocin-treated rats. Neurosci. Lett.411(1), 1–5 (2007).
  • Wu KC, Pan HJ, Yin HS, Chen MR, Lu SC, Lin CJ. Change in P-glycoprotein and caveolin protein expression in brain striatum capillaries in New Zealand obese mice with Type 2 diabetes. Life Sci.85(23–26), 775–781 (2009).
  • Liu H, Xu X, Yang Z, Deng Y, Liu X, Xie L. Impaired function and expression of P-glycoprotein in blood-brain barrier of streptozotocin-induced diabetic rats. Brain Res.1123(1), 245–252 (2006).
  • Liu H, Liu X, Jia L et al. Insulin therapy restores impaired function and expression of P-glycoprotein in blood–brain barrier of experimental diabetes. Biochem. Pharmacol.75(8), 1649–1658 (2008).
  • Anger GJ, Piquette-Miller M. Impact of hyperlipidemia on plasma protein binding and hepatic drug transporter and metabolic enzyme regulation in a rat model of gestational diabetes. J. Pharmacol. Exp. Ther.334(1), 21–32 (2010).
  • Kameyama N, Arisawa S, Ueyama J et al. Increase in P-glycoprotein accompanied by activation of protein kinase Cα and NF-κB p65 in the livers of rats with streptozotocin-induced diabetes. Biochim. Biophys. Acta1782(5), 355–360 (2008).
  • Nawa A, Fujita Hamabe W, Tokuyama S. Inducible nitric oxide synthase-mediated decrease of intestinal P-glycoprotein expression under streptozotocin-induced diabetic conditions. Life Sci.86(11–12), 402–409 (2010).
  • Ghosh S, Ting S, Lau H et al. Increased efflux of glutathione conjugate in acutely diabetic cardiomyocytes. Can. J. Physiol. Pharmacol.82(10), 879–887 (2004).
  • Quezada C, Alarcon S, Carcamo JG et al. Increased expression of the multidrug resistance-associated protein 1 (MRP1) in kidney glomeruli of streptozotocin-induced diabetic rats. Biol. Chem.392(6), 529–537 (2011).
  • Anger G, Piquette-Miller M. Mechanisms of reduced maternal and fetal lopinavir exposure in a rat model of gestational diabetes. Drug Metab. Dispos.39(10), 1850–1859 (2011).
  • Handschin C, Meyer UA. Regulatory network of lipid-sensing nuclear receptors: roles for CAR, PXR, LXR, and FXR. Arch. Biochem. Biophys.433(2), 387–396 (2005).
  • Nowicki MT, Aleksunes LM, Sawant SP, Dnyanmote AV, Mehendale HM, Manautou JE. Renal and hepatic transporter expression in Type 2 diabetic rats. Drug Metab. Lett.2(1), 11–17 (2008).
  • More VR, Slitt AL. Alteration of hepatic but not renal transporter expression in diet-induced obese mice. Drug Metab. Dispos.39(6), 992–999 (2011).
  • Sugioka N, Haraya K, Fukushima K, Ito Y, Takada K. Effects of obesity induced by high-fat diet on the pharmacokinetics of nelfinavir, a HIV protease inhibitor, in laboratory rats. Biopharm. Drug Dispos.30(9), 532–541 (2009).
  • Ghose R, Omoluabi O, Gandhi A et al. Role of high-fat diet in regulation of gene expression of drug metabolizing enzymes and transporters. Life Sci.89(1–2), 57–64 (2011).
  • Cheng Q, Aleksunes LM, Manautou JE et al. Drug-metabolizing enzyme and transporter expression in a mouse model of diabetes and obesity. Mol. Pharm.5(1), 77–91 (2008).
  • Aleixandre De Artinano A, Miguel Castro M. Experimental rat models to study the metabolic syndrome. Br. J. Nutr.102(9), 1246–1253 (2009).
  • Pizarro M, Balasubramaniyan N, Solis N et al. Bile secretory function in the obese Zucker rat: evidence of cholestasis and altered canalicular transport function. Gut53(12), 1837–1843 (2004).
  • Geier A, Dietrich CG, Grote T et al. Characterization of organic anion transporter regulation, glutathione metabolism and bile formation in the obese Zucker rat. J. Hepatol.43(6), 1021–1030 (2005).
  • Tirona RG. Molecular mechanisms of drug transporter regulation. Handb. Exp. Pharmacol.201, 373–402 (2011).
  • Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol. Rev.83(2), 633–671 (2003).
  • Kosters A, Karpen S. The role of inflammation in cholestasis: clinical and basic aspects. Semin. Liver Dis.30(2), 186–194 (2010).
  • Yang H, Plosch T, Lisman T et al. Inflammation mediated down-regulation of hepatobiliary transporters contributes to intrahepatic cholestasis and liver damage in murine biliary atresia. Pediatr. Res.66(4), 380–385 (2009).
  • Zollner G, Marschall HU, Wagner M, Trauner M. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol. Pharm.3(3), 231–251 (2006).
  • Zollner G, Fickert P, Silbert D et al. Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. J. Hepatol.38(6), 717–727 (2003).
  • Wagner M, Zollner G, Trauner M. Nuclear receptor regulation of the adaptive response of bile acid transporters in cholestasis. Semin. Liver Dis.30(2), 160–177 (2010).
  • Robertson GR, Liddle C, Clarke SJ. Inflammation and altered drug clearance in cancer: transcriptional repression of a human CYP3A4 transgene in tumor-bearing mice. Clin. Pharmacol. Ther.83(6), 894–897 (2008).
  • Kacevska M, Robertson GR, Clarke SJ, Liddle C. Inflammation and CYP3A4-mediated drug metabolism in advanced cancer: impact and implications for chemotherapeutic drug dosing. Exp. Opin. Drug Metab. Toxicol.4(2), 137–149 (2008).
  • Henningsson A, Marsh S, Loos WJ et al. Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel. Clin. Cancer Res.11(22), 8097–8104 (2005).
  • Porta C, Larghi P, Rimoldi M et al. Cellular and molecular pathways linking inflammation and cancer. Immunobiology214(9–10), 761–777 (2009).
  • Moore MM, Chua W, Charles KA, Clarke SJ. Inflammation and cancer: causes and consequences. Clin. Pharmacol. Ther.87(4), 504–508 (2010).
  • Aitken AE, Richardson TA, Morgan ET. Regulation of drug-metabolizing enzymes and transporters in inflammation. Ann. Rev. Pharmacol. Toxicol.46, 123–149 (2006).
  • Sharma R, Kacevska M, London R, Clarke SJ, Liddle C, Robertson G. Downregulation of drug transport and metabolism in mice bearing extra-hepatic malignancies. Br. J. Cancer98(1), 91–97 (2008).
  • Charles KA, Rivory LP, Brown SL, Liddle C, Clarke SJ, Robertson GR. Transcriptional repression of hepatic cytochrome P450 3A4 gene in the presence of cancer. Clin. Cancer Res.12(24), 7492–7497 (2006).
  • Kacevska M, Downes MR, Sharma R et al. Extrahepatic cancer suppresses nuclear receptor-regulated drug metabolism. Clin. Cancer Res.17(10), 3170–3180 (2011).
  • Balkwill F, Mantovani A. Cancer and inflammation: implications for pharmacology and therapeutics. Clin. Pharmacol. Ther.87(4), 401–406 (2010).
  • Ho EA, Piquette-Miller M. KLF6 and HSF4 transcriptionally regulate multidrug resistance transporters during inflammation. Biochem. Biophys. Res. Commun.353(3), 679–685 (2007).
  • Teng S, Piquette-Miller M. Regulation of transporters by nuclear hormone receptors: implications during inflammation. Mol. Pharm.5(1), 67–76 (2008).
  • Yu C, Argyropoulos G, Zhang Y, Kastin AJ, Hsuchou H, Pan W. Neuroinflammation activates Mdr1b efflux transport through NFκB: promoter analysis in BBB endothelia. Cell. Physiol. Biochem.22(5–6), 745–756 (2008).
  • Pan W, Yu C, Hsuchou H, Kastin AJ. The role of cerebral vascular NFκB in LPS-induced inflammation: differential regulation of efflux transporter and transporting cytokine receptors. Cell. Physiol. Biochem.25(6), 623–630 (2010).
  • Mulder J, Karpen SJ, Tietge UJ, Kuipers F. Nuclear receptors: mediators and modifiers of inflammation-induced cholestasis. Front. Biosci.14, 2599–2630 (2009).
  • Ghose R, Zimmerman TL, Thevananther S, Karpen SJ. Endotoxin leads to rapid subcellular re-localization of hepatic RXRα: a novel mechanism for reduced hepatic gene expression in inflammation. Nucl. Recept.2(1), 4 (2004).
  • Kosters A, White DD, Sun H, Thevananther S, Karpen SJ. Redundant roles for cJun-N-terminal kinase 1 and 2 in interleukin-1β-mediated reduction and modification of murine hepatic nuclear retinoid X receptor α. J. Hepatol.51(5), 898–908 (2009).
  • Zimmerman TL, Thevananther S, Ghose R, Burns AR, Karpen SJ. Nuclear export of retinoid X receptor α in response to interleukin-1β-mediated cell signaling: roles for JNK and SER260. J. Biol. Chem.281(22), 15434–15440 (2006).
  • Kosters A, Karpen SJ. The role of inflammation in cholestasis: clinical and basic aspects. Semin. Liver Dis.30(2), 186–194 (2010).
  • Teng S, Piquette-Miller M. The involvement of the pregnane X receptor in hepatic gene regulation during inflammation in mice. J. Pharmacol. Exp. Ther.312(2), 841–848 (2005).
  • Zinchuk V, Zinchuk O, Okada T. Experimental LPS-induced cholestasis alters subcellular distribution and affects colocalization of Mrp2 and Bsep proteins: a quantitative colocalization study. Microsc. Res. Tech.67(2), 65–70 (2005).
  • Saeki J, Sekine S, Horie T. LPS-induced dissociation of multidrug resistance-associated protein 2 (Mrp2) and radixin is associated with Mrp2 selective internalization in rats. Biochem. Pharmacol.81(1), 178–184 (2011).
  • Mottino AD, Cao J, Veggi LM, Crocenzi F, Roma MG, Vore M. Altered localization and activity of canalicular Mrp2 in estradiol-17beta-D-glucuronide-induced cholestasis. Hepatology35(6), 1409–1419 (2002).
  • Crocenzi FA, Mottino AD, Cao J et al. Estradiol-17beta-D-glucuronide induces endocytic internalization of Bsep in rats. Am. J. Physiol. Gastrointest. Liver Physiol.285(2), G449–G459 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.