301
Views
8
CrossRef citations to date
0
Altmetric
Review

Treating the obese diabetic

, &
Pages 171-183 | Published online: 10 Jan 2014

References

  • Sims EA, Danforth E Jr, Horton ES, Bray GA, Glennon JA, Salans LB. Endocrine and metabolic effects of experimental obesity in man. Recent Prog. Horm. Res. 29, 457–496 (1973).
  • de Jager J, Kooy A, Lehert P et al. Long term treatment with metformin in patients with Type 2 diabetes and risk of vitamin B-12 deficiency: randomised placebo controlled trial. BMJ 340, c2181 (2010).
  • Johansen K. Efficacy of metformin in the treatment of NIDDM. Meta-analysis. Diabetes Care 22(1), 33–37 (1999).
  • Rao AD, Kuhadiya N, Reynolds K, Fonseca VA. Is the combination of sulfonylureas and metformin associated with an increased risk of cardiovascular disease or all-cause mortality? A meta-analysis of observational studies. Diabetes Care 31(8), 1672–1678 (2008).
  • Bolen S, Feldman L, Vassy J et al. Systematic review: comparative effectiveness and safety of oral medications for Type 2 diabetes mellitus. Ann. Intern. Med. 147(6), 386–399 (2007).
  • Krentz AJ. Management of Type 2 diabetes in the obese patient: current concerns and emerging therapies. Curr. Med. Res. Opin. 24(2), 401–417 (2008).
  • Phung OJ, Scholle JM, Talwar M, Coleman CI. Effect of noninsulin antidiabetic drugs added to metformin therapy on glycemic control, weight gain, and hypoglycemia in Type 2 diabetes. JAMA 303(14), 1410–1418 (2010).
  • Nathan DM, Buse JB, Davidson MB et al.; American Diabetes Association; European Association for Study of Diabetes. Medical management of hyperglycemia in Type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32(1), 193–203 (2009).
  • Singh-Franco D, Perez A, Harrington C. The effect of pramlintide acetate on glycemic control and weight in patients with Type 2 diabetes mellitus and in obese patients without diabetes: a systematic review and meta-analysis. Diabetes. Obes. Metab. 13(2), 169–180 (2011).
  • Younk LM, Davis SN. Evaluation of colesevelam hydrochloride for the treatment of Type 2 diabetes. Expert Opin. Drug Metab. Toxicol. 8(4), 515–525 (2012).
  • Defronzo RA. Bromocriptine: a sympatholytic, d2-dopamine agonist for the treatment of Type 2 diabetes. Diabetes Care 34(4), 789–794 (2011).
  • Pontiroli AE, Miele L, Morabito A. Increase of body weight during the first year of intensive insulin treatment in Type 2 diabetes: systematic review and meta-analysis. Diabetes. Obes. Metab. 13(11), 1008–1019 (2011).
  • UK Prospective Diabetes Study (UKPDS) Group. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with Type 2 diabetes (UKPDS 33). Lancet 352(9131), 837–853 (1998).
  • Vilsbøll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ 344, d7771 (2012).
  • Karagiannis T, Paschos P, Paletas K, Matthews DR, Tsapas A. Dipeptidyl peptidase-4 inhibitors for treatment of Type 2 diabetes mellitus in the clinical setting: systematic review and meta-analysis. BMJ 344, e1369 (2012).
  • Foote C, Perkovic V, Neal B. Effects of SGLT2 inhibitors on cardiovascular outcomes. Diab. Vasc. Dis. Res. 9(2), 117–123 (2012).
  • Whaley JM, Tirmenstein M, Reilly TP et al. Targeting the kidney and glucose excretion with dapagliflozin: preclinical and clinical evidence for SGLT2 inhibition as a new option for treatment of Type 2 diabetes mellitus. Diabetes. Metab. Syndr. Obes. 5, 135–148 (2012).
  • Jones D. Diabetes field cautiously upbeat despite possible setback for leading SGLT2 inhibitor. Nat. Rev. Drug Discov. 10(9), 645–646 (2011).
  • Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. 122(6), 253–270 (2012).
  • Kirpichnikov D, McFarlane SI, Sowers JR. Metformin: an update. Ann. Intern. Med. 137(1), 25–33 (2002).
  • Boussageon R, Supper I, Bejan-Angoulvant T et al. Reappraisal of metformin efficacy in the treatment of Type 2 diabetes: a meta-analysis of randomised controlled trials. PLoS Med. 9(4), e1001204 (2012).
  • Lamanna C, Monami M, Marchionni N, Mannucci E. Effect of metformin on cardiovascular events and mortality: a meta-analysis of randomized clinical trials. Diabetes. Obes. Metab. 13(3), 221–228 (2011).
  • Golay A. Metformin and body weight. Int. J. Obes. (Lond.) 32(1), 61–72 (2008).
  • Saenz A, Fernandez-Esteban I, Mataix A, Ausejo M, Roque M, Moher D. Metformin monotherapy for Type 2 diabetes mellitus. Cochrane Database Syst. Rev. 3, CD002966 (2005).
  • Diabetes Prevention Program Research Group. Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care 35(4), 731–737 (2012).
  • Bell GI, Santerre RF, Mullenbach GT. Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature 302(5910), 716–718 (1983).
  • Holst JJ. Enteroglucagon. Annu. Rev. Physiol. 59, 257–271 (1997).
  • Creutzfeldt W. The incretin concept today. Diabetologia 16(2), 75–85 (1979).
  • Perfetti R, Merkel P. Glucagon-like peptide-1: a major regulator of pancreatic beta-cell function. Eur. J. Endocrinol. 143(6), 717–725 (2000).
  • Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Invest. 101(3), 515–520 (1998).
  • Todd JF, Edwards CM, Ghatei MA, Mather HM, Bloom SR. Subcutaneous glucagon-like peptide-1 improves postprandial glycaemic control over a 3-week period in patients with early Type 2 diabetes. Clin. Sci. 95(3), 325–329 (1998).
  • Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem. 214(3), 829–835 (1993).
  • Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in Type 2 diabetes: systematic review and meta-analysis. JAMA 298(2), 194–206 (2007).
  • Meier JJ. GLP-1 receptor agonists for individualized treatment of Type 2 diabetes mellitus. Nat. Rev. Endocrinol. 8(12), 728–742 (2012).
  • Turton MD, O’Shea D, Gunn I et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379(6560), 69–72 (1996).
  • Näslund E, Bogefors J, Skogar S et al. GLP-1 slows solid gastric emptying and inhibits insulin, glucagon, and PYY release in humans. Am. J. Physiol. 277(3 Pt 2), R910–R916 (1999).
  • Drucker DJ. Incretin-based therapy and the quest for sustained improvements in β-cell health. Diabetes Care 34(9), 2133–2135 (2011).
  • Thong KY, Jose B, Sukumar N et al.; ABCD Nationwide Exenatide Audit Contributors. Safety, efficacy and tolerability of exenatide in combination with insulin in the Association of British Clinical Diabetologists nationwide exenatide audit. Diabetes. Obes. Metab. 13(8), 703–710 (2011).
  • Balena R, Hensley IE, Miller S, Barnett AH. Combination therapy with GLP-1 receptor agonists and basal insulin: a systematic review of the literature. Diabetes. Obes. Metab. doi:10.1111/dom.12025 (2012) (Epub ahead of print).
  • Holst JJ, Vilsbøll T. Combining GLP-1 receptor agonists with insulin: therapeutic rationales and clinical findings. Diabetes. Obes. Metab. 15(1), 3–14 (2013).
  • Drucker DJ. Dipeptidyl peptidase-4 inhibition and the treatment of Type 2 diabetes: preclinical biology and mechanisms of action. Diabetes Care 30(6), 1335–1343 (2007).
  • Richter B, Bandeira-Echtler E, Bergerhoff K, Lerch CL. Dipeptidyl peptidase-4 (DPP-4) inhibitors for Type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2, CD006739 (2008).
  • Kim Y, Babu AR. Clinical potential of sodium-glucose cotransporter 2 inhibitors in the management of Type 2 diabetes. Diabetes. Metab. Syndr. Obes. 5, 313–327 (2012).
  • Ghosh RK, Ghosh SM, Chawla S, Jasdanwala SA. SGLT2 inhibitors: a new emerging therapeutic class in the treatment of Type 2 diabetes mellitus. J. Clin. Pharmacol. 52(4), 457–463 (2012).
  • Bailey CJ, Gross JL, Pieters A, Bastien A, List JF. Effect of dapagliflozin in patients with Type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet 375(9733), 2223–2233 (2010).
  • Look AHEAD Research Group, Pi-Sunyer X, Blackburn G, Brancati FL et al. Reduction in weight and cardiovascular disease risk factors in individuals with Type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care 30(6), 1374–1383 (2007).
  • Ayyad C, Andersen T. Long-term efficacy of dietary treatment of obesity: a systematic review of studies published between 1931 and 1999. Obes. Rev. 1(2), 113–119 (2000).
  • Norris SL, Zhang X, Avenell A et al. Long-term non-pharmacological weight loss interventions for adults with Type 2 diabetes (Review). Cochrane Database Syst. Rev. 2, CD004095 (2005).
  • Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R. Reversal of Type 2 diabetes: normalisation of β cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 54(10), 2506–2514 (2011).
  • Picot J, Jones J, Colquitt JL et al. The clinical effectiveness and cost–effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation. Health Technol. Assess. 13(41), 1–190, 215 (2009).
  • Carlsson LM, Peltonen M, Ahlin S et al. Bariatric surgery and prevention of Type 2 diabetes in Swedish obese subjects. N. Engl. J. Med. 367(8), 695–704 (2012).
  • Pories WJ, Swanson MS, MacDonald KG et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann. Surg. 222(3), 339–350; discussion 350 (1995).
  • Sjöström L. Bariatric surgery and reduction in morbidity and mortality: experiences from the SOS study. Int. J. Obes. (Lond.) 32(Suppl. 7), S93–S97 (2008).
  • Adams TD, Gress RE, Smith SC et al. Long-term mortality after gastric bypass surgery. N. Engl. J. Med. 357(8), 753–761 (2007).
  • Romeo S, Maglio C, Burza MA et al. Cardiovascular events after bariatric surgery in obese subjects with Type 2 diabetes. Diabetes Care 35(12), 2613–2617 (2012).
  • Trus TL, Pope GD, Finlayson SR. National trends in utilization and outcomes of bariatric surgery. Surg. Endosc. 19(5), 616–620 (2005).
  • Buchwald H, Oien DM. Metabolic/bariatric surgery Worldwide 2008. Obes. Surg. 19(12), 1605–1611 (2009).
  • American Diabetes Association. Executive summary: standards of medical care in diabetes-2011. Diabetes Care 34(Suppl. 1), S4–10 (2011).
  • Dixon JB, Zimmet P, Alberti KG, Rubino F; International Diabetes Federation Taskforce on Epidemiology and Prevention. Bariatric surgery: an IDF statement for obese Type 2 diabetes. Diabet. Med. 28(6), 628–642 (2011).
  • Lanzarini E, Csendes A, Gutierrez L et al. Type 2 diabetes mellitus in patients with mild obesity: preliminary results of surgical treatment. Obes. Surg. doi:10.1007/s11695-012-0780-3 (2012) (Epub ahead of print).
  • Buchwald H, Estok R, Fahrbach K et al. Weight and Type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am. J. Med. 122(3), 248–256.e5 (2009).
  • Pournaras DJ, Aasheim ET, Søvik TT et al. Effect of the definition of Type II diabetes remission in the evaluation of bariatric surgery for metabolic disorders. Br. J. Surg. 99(1), 100–103 (2012).
  • Schauer PR, Kashyap SR, Wolski K et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N. Engl. J. Med. 366(17), 1567–1576 (2012).
  • Mingrone G, Panunzi S, De Gaetano A et al. Bariatric surgery versus conventional medical therapy for Type 2 diabetes. N. Engl. J. Med. 366(17), 1577–1585 (2012).
  • Dixon JB, le Roux CW, Rubino F, Zimmet P. Bariatric surgery for Type 2 diabetes. Lancet 379(9833), 2300–2311 (2012).
  • Wickremesekera K, Miller G, Naotunne TD, Knowles G, Stubbs RS. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes. Surg. 15(4), 474–481 (2005).
  • Laurenius A, Larsson I, Bueter M et al. Changes in eating behaviour and meal pattern following Roux-en-Y gastric bypass. Int. J. Obes. (Lond.) 36(3), 348–355 (2012).
  • le Roux CW, Aylwin SJ, Batterham RL et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann. Surg. 243(1), 108–114 (2006).
  • Batterham RL, Cohen MA, Ellis SM et al. Inhibition of food intake in obese subjects by peptide YY3-36. N. Engl. J. Med. 349(10), 941–948 (2003).
  • Neary NM, Small CJ, Druce MR et al. Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively. Endocrinology 146(12), 5120–5127 (2005).
  • van den Hoek AM, Heijboer AC, Corssmit EPM et al. PYY3–36 reinforces insulin action on glucose disposal in mice fed a high-fat diet. Diabetes 53(8), 1949–1952 (2004).
  • Wynne K, Park AJ, Small CJ et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int. J. Obes. (Lond.) 30(12), 1729–1736 (2006).
  • Wynne K, Park AJ, Small CJ et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 54(8), 2390–2395 (2005).
  • Laferrère B, Swerdlow N, Bawa B et al. Rise of oxyntomodulin in response to oral glucose after gastric bypass surgery in patients with Type 2 diabetes. J. Clin. Endocrinol. Metab. 95(8), 4072–4076 (2010).
  • Parlevliet ET, Heijboer AC, Schröder-van der Elst JP et al. Oxyntomodulin ameliorates glucose intolerance in mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 294(1), E142–E147 (2008).
  • Beckman LM, Beckman TR, Earthman CP. Changes in gastrointestinal hormones and leptin after Roux-en-Y gastric bypass procedure: a review. J. Am. Diet. Assoc. 110(4), 571–584 (2010).
  • Rubino F, Gagner M, Gentileschi P et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann. Surg. 240(2), 236–242 (2004).
  • Chia CW, Carlson OD, Kim W et al. Exogenous glucose-dependent insulinotropic polypeptide worsens post prandial hyperglycemia in Type 2 diabetes. Diabetes 58(6), 1342–1349 (2009).
  • Yip RG, Wolfe MM. GIP biology and fat metabolism. Life Sci. 66(2), 91–103 (2000).
  • Pournaras DJ, Glicksman C, Vincent RP et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology 153(8), 3613–3619 (2012).
  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122), 1027–1031 (2006).
  • Holmes E, Kinross J, Gibson GR et al. Therapeutic modulation of microbiota–host metabolic interactions. Sci. Transl. Med. 4(137), 137rv6 (2012).
  • Rucker D, Padwal R, Li SK, Curioni C, Lau DC. Long term pharmacotherapy for obesity and overweight: updated meta-analysis. BMJ 335(7631), 1194–1199 (2007).
  • Li Z, Maglione M, Tu W et al. Meta-analysis: pharmacologic treatment of obesity. Ann. Intern. Med. 142(7), 532–546 (2005).
  • Hollander PA, Elbein SC, Hirsch IB et al. Role of orlistat in the treatment of obese patients with Type 2 diabetes. A 1-year randomized double-blind study. Diabetes Care 21(8), 1288–1294 (1998).
  • Miles JM, Leiter L, Hollander P et al. Effect of orlistat in overweight and obese patients with Type 2 diabetes treated with metformin. Diabetes Care 25(7), 1123–1128 (2002).
  • Torgerson JS, Hauptman J, Boldrin MN, Sjöström L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of Type 2 diabetes in obese patients. Diabetes Care 27(1), 155–161 (2004).
  • Derosa G, Maffioli P. Anti-obesity drugs: a review about their effects and their safety. Expert Opin. Drug Saf. 11(3), 459–471 (2012).
  • Leibowitz SF, Alexander JT. Hypothalamic serotonin in control of eating behavior, meal size, and body weight. Biol. Psychiatry 44(9), 851–864 (1998).
  • Lam DD, Przydzial MJ, Ridley SH et al. Serotonin 5-HT2C receptor agonist promotes hypophagia via downstream activation of melanocortin 4 receptors. Endocrinology 149(3), 1323–1328 (2008).
  • O’Neil PM, Smith SR, Weissman NJ et al. Randomized placebo-controlled clinical trial of lorcaserin for weight loss in Type 2 diabetes mellitus: the BLOOM-DM study. Obesity (Silver Spring) 20(7), 1426–1436 (2012).
  • Astrup A. Drug management of obesity – efficacy versus safety. N. Engl. J. Med. 363(3), 288–290 (2010).
  • Colman E, Golden J, Roberts M, Egan A, Weaver J, Rosebraugh C. The FDA’s assessment of two drugs for chronic weight management. N. Engl. J. Med. 367(17), 1577–1579 (2012).
  • Thomsen WJ, Grottick AJ, Menzaghi F et al. Lorcaserin, a novel selective human 5-hydroxytryptamine2C agonist: in vitro and in vivo pharmacological characterization. J. Pharmacol. Exp. Ther. 325(2), 577–587 (2008).
  • Colman E. Anorectics on trial: a half century of federal regulation of prescription appetite suppressants. Ann. Intern. Med. 143(5), 380–385 (2005).
  • Haddock CK, Poston WS, Dill PL, Foreyt JP, Ericsson M. Pharmacotherapy for obesity: a quantitative analysis of four decades of published randomized clinical trials. Int. J. Obes. Relat. Metab. Disord. 26(2), 262–273 (2002).
  • Kang JG, Park CY. Anti-obesity drugs: a review about their effects and safety. Diabetes Metab. J. 36(1), 13–25 (2012).
  • Astrup A, Caterson I, Zelissen P et al. Topiramate: long-term maintenance of weight loss induced by a low-calorie diet in obese subjects. Obes. Res. 12(10), 1658–1669 (2004).
  • Bray GA, Hollander P, Klein S et al. A 6-month randomized, placebo-controlled, dose-ranging trial of topiramate for weight loss in obesity. Obes. Res. 11(6), 722–733 (2003).
  • Gadde KM, Allison DB, Ryan DH et al. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, Phase 3 trial. Lancet 377(9774), 1341–1352 (2011).
  • Garvey WT, Ryan DH, Look M et al. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, Phase 3 extension study. Am. J. Clin. Nutr. 95(2), 297–308 (2012).
  • Hollander P, Plodkowski R, Gupta AK et al. COR-Diabetes: naltrexone SR/bupropion SR combination therapy led to significant and sustained weight loss and improved HbA1c in overweight/obese subjects with Type 2 diabetes. Diabetes 59(Suppl. 1), Abstract 56-OR (2010).
  • Katsiki N, Hatzitolios AI, Mikhailidis DP. Naltrexone sustained-release (SR) + bupropion SR combination therapy for the treatment of obesity: ‘a new kid on the block’? Ann. Med. 43(4), 249–258 (2011).
  • Batterham RL, Cowley MA, Small CJ et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 418(6898), 650–654 (2002).
  • Gantz I, Erondu N, Mallick M et al. Efficacy and safety of intranasal peptide YY3-36 for weight reduction in obese adults. J. Clin. Endocrinol. Metab. 92(5), 1754–1757 (2007).
  • Batterham RL, Le Roux CW, Cohen MA et al. Pancreatic polypeptide reduces appetite and food intake in humans. J. Clin. Endocrinol. Metab. 88(8), 3989–3992 (2003).
  • Jesudason DR, Monteiro MP, McGowan BM et al. Low-dose pancreatic polypeptide inhibits food intake in man. Br. J. Nutr. 97(3), 426–429 (2007).
  • Tan TM, Field BC, Minnion JS et al. Pharmacokinetics, adverse effects and tolerability of a novel analogue of human pancreatic polypeptide, PP 1420. Br. J. Clin. Pharmacol. 73(2), 232–239 (2012).
  • Field BC, Wren AM, Peters V et al. PYY3-36 and oxyntomodulin can be additive in their effect on food intake in overweight and obese humans. Diabetes 59(7), 1635–1639 (2010).
  • Flint A, Raben A, Rehfeld JF, Holst JJ, Astrup A. The effect of glucagon-like peptide-1 on energy expenditure and substrate metabolism in humans. Int. J. Obes. Relat. Metab. Disord. 24(3), 288–298 (2000).
  • Geary N. Pancreatic glucagon signals postprandial satiety. Neurosci. Biobehav. Rev. 14(3), 323–338 (1990).
  • Nair KS. Hyperglucagonemia increases resting metabolic rate in man during insulin deficiency. J. Clin. Endocrinol. Metab. 64(5), 896–901 (1987).
  • Pocai A, Carrington PE, Adams JR et al. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 58(10), 2258–2266 (2009).
  • Tan TM, Field BC, McCullough KA et al. Coadministration of glucagon-like peptide-1 during glucagon infusion in man results in increased energy expenditure and amelioration of hyperglycemia. Diabetes doi:10.2337/db12-0797 (2012) (Epub ahead of print).
  • Gerrald KR, Van Scoyoc E, Wines RC, Runge T, Jonas DE. Saxagliptin and sitagliptin in adult patients with Type 2 diabetes: a systematic review and meta-analysis. Diabetes. Obes. Metab. 14(6), 481–492 (2012).
  • Fakhoury WK, Lereun C, Wright D. A meta-analysis of placebo-controlled clinical trials assessing the efficacy and safety of incretin-based medications in patients with Type 2 diabetes. Pharmacology 86(1), 44–57 (2010).
  • Neumiller JJ, Setter SM. Review of linagliptin for the treatment of Type 2 diabetes mellitus. Clin. Ther. 34(5), 993–1005 (2012).
  • Esposito K, Cozzolino D, Bellastella G et al. Dipeptidyl peptidase-4 inhibitors and HbA1c target of <7% in Type 2 diabetes: meta-analysis of randomized controlled trials. Diabetes. Obes. Metab. 13(7), 594–603 (2011).
  • Rendell M, Drincic A, Andukuri R. Alogliptin benzoate for the treatment of Type 2 diabetes. Expert Opin. Pharmacother. 13(4), 553–563 (2012).
  • Spanakis E, Gragnoli C. Bariatric surgery, safety and Type 2 diabetes. Obes. Surg. 19(3), 363–368 (2009).
  • Buchwald H. A bariatric surgery algorithm. Obes. Surg. 12(6), 733–46; discussion 747 (2002).
  • Buchwald H, Avidor Y, Braunwald E et al. Bariatric surgery: a systematic review and meta-analysis. JAMA 292(14), 1724–1737 (2004).
  • Hutter MM, Schirmer BD, Jones DB et al. First report from the American College of Surgeons Bariatric Surgery Center Network: laparoscopic sleeve gastrectomy has morbidity and effectiveness positioned between the band and the bypass. Ann. Surg. 254(3), 410–420; discussion 420 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.