7
Views
4
CrossRef citations to date
0
Altmetric
Review

T-cell subsets in scleroderma patients

, , &
Pages 403-415 | Published online: 10 Jan 2014

References

  • Chifflot H, Fautrel B, Sordet C, Chatelus E, Sibilia J. Incidence and prevalence of systemic sclerosis: a systematic literature review. Semin. Arthritis Rheum.37(4), 223–235 (2008).
  • Mayes MD, Lacey JV Jr, Beebe-Dimmer J et al. Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum.48(8), 2246–2255 (2003).
  • Walker UA, Tyndall A, Czirjak L et al. Geographical variation of disease manifestations in systemic sclerosis: a report from the EULAR Scleroderma Trials and Research (EUSTAR) group database. Ann. Rheum. Dis.68(6), 856–862 (2009).
  • Walker UA, Tyndall A, Czirjak L et al. Clinical risk assessment of organ manifestations in systemic sclerosis: a report from the EULAR Scleroderma Trials And Research group database. Ann. Rheum. Dis.66(6), 754–763 (2007).
  • Scussel-Lonzetti L, Joyal F, Raynauld JP et al. Predicting mortality in systemic sclerosis: analysis of a cohort of 309 French Canadian patients with emphasis on features at diagnosis as predictive factors for survival. Medicine (Baltimore)81(2), 154–167 (2002).
  • Krieg T, Takehara K. Skin disease: a cardinal feature of systemic sclerosis. Rheumatology (Oxford)48(Suppl. 3), iii14–iii18 (2009).
  • Grassegger A, Pohla-Gubo G, Frauscher M, Hintner H. Autoantibodies in systemic sclerosis (scleroderma): clues for clinical evaluation, prognosis and pathogenesis. Wien. Med. Wochenschr.158(1–2), 19–28 (2008).
  • Hamaguchi Y. Autoantibody profiles in systemic sclerosis: predictive value for clinical evaluation and prognosis. J. Dermatol.37(1), 42–53 (2010).
  • Kahaleh MB, LeRoy EC. Autoimmunity and vascular involvement in systemic sclerosis (SSc). Autoimmunity31(3), 195–214 (1999).
  • Lunardi C, Bason C, Navone R et al. Systemic sclerosis immunoglobulin G autoantibodies bind the human cytomegalovirus late protein UL94 and induce apoptosis in human endothelial cells. Nat. Med.6(10), 1183–1186 (2000).
  • Lunardi C, Dolcino M, Peterlana D et al. Antibodies against human cytomegalovirus in the pathogenesis of systemic sclerosis: a gene array approach. PLoS Med.3(1), e2 (2006).
  • Arnett FC, Cho M, Chatterjee S et al. Familial occurrence frequencies and relative risks for systemic sclerosis (scleroderma) in three United States cohorts. Arthritis Rheum.44(6), 1359–1362 (2001).
  • Feghali-Bostwick C, Medsger TA Jr, Wright TM. Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum.48(7), 1956–1963 (2003).
  • Allanore Y, Dieude P, Boileau C. Genetic background of systemic sclerosis: autoimmune genes take centre stage. Rheumatology (Oxford)49(2), 203–210 (2010).
  • Vargas-Alarcon G, Granados J, Ibanez de Kasep G, Alcocer-Varela J, Alarcon-Segovia D. Association of HLA-DR5 (DR11) with systemic sclerosis (scleroderma) in Mexican patients. Clin. Exp. Rheumatol.13(1), 11–16 (1995).
  • Arnett FC, Howard RF, Tan F et al. Increased prevalence of systemic sclerosis in a Native American tribe in Oklahoma. Association with an Amerindian HLA haplotype. Arthritis Rheum.39(8), 1362–1370 (1996).
  • Allanore Y, Wipff J, Kahan A, Boileau C. Genetic basis for systemic sclerosis. Joint Bone Spine74(6), 577–583 (2007).
  • Agarwal SK, Reveille JD. The genetics of scleroderma (systemic sclerosis). Curr. Opin. Rheumatol.22(2), 133–138 (2010).
  • Radstake TR, Gorlova O, Rueda B et al. Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat. Genet.42(5), 426–429 (2010).
  • Assassi S, Mayes MD, Arnett FC et al. Systemic sclerosis and lupus: points in an interferon-mediated continuum. Arthritis Rheum.62(2), 589–598 (2010).
  • Dieude P, Guedj M, Wipff J et al. Association between the IRF5 rs2004640 functional polymorphism and systemic sclerosis: a new perspective for pulmonary fibrosis. Arthritis Rheum.60(1), 225–233 (2009).
  • Ito I, Kawaguchi Y, Kawasaki A et al. Association of a functional polymorphism in the IRF5 region with systemic sclerosis in a Japanese population. Arthritis Rheum.60(6), 1845–1850 (2009).
  • Dieude P, Guedj M, Wipff J et al. STAT4 is a genetic risk factor for systemic sclerosis having additive effects with IRF5 on disease susceptibility and related pulmonary fibrosis. Arthritis Rheum.60(8), 2472–2479 (2009).
  • Muller-Ladner U, Distler O, Ibba-Manneschi L, Neumann E, Gay S. Mechanisms of vascular damage in systemic sclerosis. Autoimmunity42(7), 587–595 (2009).
  • Distler O, Distler JH, Scheid A et al. Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ. Res.95(1), 109–116 (2004).
  • Abraham DJ, Krieg T, Distler J, Distler O. Overview of pathogenesis of systemic sclerosis. Rheumatology (Oxford)48(Suppl. 3), iii3–iii7 (2009).
  • Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J. Clin. Invest.117(3), 557–567 (2007).
  • Varga J. Systemic sclerosis: an update. Bull. NYU Hosp. Jt Dis.66(3), 198–202 (2008).
  • Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N. Engl. J. Med.360(19), 1989–2003 (2009).
  • Rosenbloom J, Castro SV, Jimenez SA. Narrative review: fibrotic diseases: cellular and molecular mechanisms and novel therapies. Ann. Intern. Med.152(3), 159–166 (2010).
  • Annunziato F, Romagnani S. Heterogeneity of human effector CD4+ T cells. Arthritis Res. Ther.11(6), 257 (2009).
  • Mavalia C, Scaletti C, Romagnani P et al. Type 2 helper T-cell predominance and high CD30 expression in systemic sclerosis. Am. J. Pathol.151(6), 1751–1758 (1997).
  • Cosmi L, Annunziato F, Maggi E, Romagnani S, Manetti R. Chemoattractant receptors expressed on type 2 T cells and their role in disease. Int. Arch. Allergy Immunol.125(4), 273–279 (2001).
  • Zhou L, Chong MM, Littman DR. Plasticity of CD4+ T cell lineage differentiation. Immunity30(5), 646–655 (2009).
  • Zhu J, Paul WE. Heterogeneity and plasticity of T helper cells. Cell Res.20(1), 4–12 (2010).
  • Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol.10(8), 857–863 (2009).
  • Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat. Immunol.10(8), 864–871 (2009).
  • Giacomelli R, Matucci-Cerinic M, Cipriani P et al. Circulating Vδ1+ T cells are activated and accumulate in the skin of systemic sclerosis patients. Arthritis Rheum.41(2), 327–334 (1998).
  • Clark RA, Chong B, Mirchandani N et al. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol.176(7), 4431–4439 (2006).
  • Clark RA. Skin-resident T cells: the ups and downs of on site immunity. J. Invest. Dermatol.130(2), 362–370 (2010).
  • Zhu J, Koelle DM, Cao J et al. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J. Exp. Med.204(3), 595–603 (2007).
  • Schaerli P, Ebert L, Willimann K et al. A skin-selective homing mechanism for human immune surveillance T cells. J. Exp. Med.199(9), 1265–1275 (2004).
  • Tamaki K, Nakamura K. The role of lymphocytes in healthy and eczematous skin. Curr. Opin. Allergy Clin. Immunol.1(5), 455–460 (2001).
  • Prescott RJ, Freemont AJ, Jones CJ, Hoyland J, Fielding P. Sequential dermal microvascular and perivascular changes in the development of scleroderma. J. Pathol.166(3), 255–263 (1992).
  • Kalogerou A, Gelou E, Mountantonakis S et al. Early T-cell activation in the skin from patients with systemic sclerosis. Ann. Rheum. Dis.64(8), 1233–1235 (2005).
  • Scharffetter K, Lankat-Buttgereit B, Krieg T. Localization of collagen mRNA in normal and scleroderma skin by in-situ hybridization. Eur. J. Clin. Invest.18(1), 9–17 (1988).
  • Hussein MR, Hassan HI, Hofny ER et al. Alterations of mononuclear inflammatory cells, CD4/CD8+ T cells, interleukin 1β, and tumour necrosis factor α in the bronchoalveolar lavage fluid, peripheral blood, and skin of patients with systemic sclerosis. J. Clin. Pathol.58(2), 178–184 (2005).
  • Sondergaard K, Stengaard-Pedersen K, Zachariae H et al. Soluble intercellular adhesion molecule-1 (sICAM-1) and soluble interleukin-2 receptors (sIL-2R) in scleroderma skin. Br. J. Rheumatol.37(3), 304–310 (1998).
  • Sakkas LI, Xu B, Artlett CM et al. Oligoclonal T cell expansion in the skin of patients with systemic sclerosis. J. Immunol.168(7), 3649–3659 (2002).
  • Yurovsky VV, Sutton PA, Schulze DH et al. Expansion of selected Vδ1+ γδ T cells in systemic sclerosis patients. J. Immunol.153(2), 881–891 (1994).
  • Ferrarini M, Steen V, Medsger TA Jr, Whiteside TL. Functional and phenotypic analysis of T lymphocytes cloned from the skin of patients with systemic sclerosis. Clin. Exp. Immunol.79(3), 346–352 (1990).
  • Gruschwitz MS, Vieth G. Up-regulation of class II major histocompatibility complex and intercellular adhesion molecule 1 expression on scleroderma fibroblasts and endothelial cells by interferon-γ and tumor necrosis factor α in the early disease stage. Arthritis Rheum.40(3), 540–550 (1997).
  • Salmon-Ehr V, Serpier H, Nawrocki B et al. Expression of interleukin-4 in scleroderma skin specimens and scleroderma fibroblast cultures. Potential role in fibrosis. Arch. Dermatol.132(7), 802–806 (1996).
  • Serpier H, Gillery P, Salmon-Ehr V et al. Antagonistic effects of interferon-γ and interleukin-4 on fibroblast cultures. J. Invest. Dermatol.109(2), 158–162 (1997).
  • Scaletti C, Vultaggio A, Maggi E, Romagnani S, Piccinni MP. Microchimerism and systemic sclerosis. Int. Arch. Allergy Immunol.125(3), 196–202 (2001).
  • Scaletti C, Vultaggio A, Bonifacio S et al. Th2-oriented profile of male offspring T cells present in women with systemic sclerosis and reactive with maternal major histocompatibility complex antigens. Arthritis Rheum.46(2), 445–450 (2002).
  • Parel Y, Aurrand-Lions M, Scheja A et al. Presence of CD4+CD8+ double-positive T cells with very high interleukin-4 production potential in lesional skin of patients with systemic sclerosis. Arthritis Rheum.56(10), 3459–3467 (2007).
  • Chizzolini C, Parel Y, De Luca C et al. Systemic sclerosis Th2 cells inhibit collagen production by dermal fibroblasts via membrane-associated tumor necrosis factor α. Arthritis Rheum.48(9), 2593–2604 (2003).
  • Kurasawa K, Hirose K, Sano H et al. Increased interleukin-17 production in patients with systemic sclerosis. Arthritis Rheum.43(11), 2455–2463 (2000).
  • Radstake TR, van Bon L, Broen J et al. The pronounced Th17 profile in systemic sclerosis (SSc) together with intracellular expression of TGFβ and IFNγ distinguishes SSc phenotypes. PLoS One4(6), e5903 (2009).
  • Eyerich S, Eyerich K, Pennino D et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Invest.119(12), 3573–3585 (2009).
  • Antiga E, Quaglino P, Bellandi S et al. Regulatory T cells in the skin lesions and blood of patients with systemic sclerosis and morphea. Br. J. Dermatol.162(5), 1056–1063 (2010).
  • Chizzolini C, Parel Y, Scheja A, Dayer JM. Polarized subsets of human T-helper cells induce distinct patterns of chemokine production by normal and systemic sclerosis dermal fibroblasts. Arthritis Res. Ther.8(1), R10 (2005).
  • Atamas SP, White B. The role of chemokines in the pathogenesis of scleroderma. Curr. Opin. Rheumatol.15(6), 772–777 (2003).
  • Scala E, Paganelli R, Sampogna F et al. α4β1 and α4β7 CD4 T cell numbers increase and CLA CD4 T cell numbers decrease in systemic sclerosis. Clin. Exp. Immunol.139(3), 551–557 (2005).
  • Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat. Rev. Immunol.4(8), 583–594 (2004).
  • Famularo G, Procopio A, Giacomelli R et al. Soluble interleukin-2 receptor, interleukin-2 and interleukin-4 in sera and supernatants from patients with progressive systemic sclerosis. Clin. Exp. Immunol.81(3), 368–372 (1990).
  • Giacomelli R, Cipriani P, Lattanzio R et al. Circulating levels of soluble CD30 are increased in patients with systemic sclerosis (SSc) and correlate with serological and clinical features of the disease. Clin. Exp. Immunol.108(1), 42–46 (1997).
  • Fuschiotti P, Medsger TA Jr, Morel PA. Effector CD8+ T cells in systemic sclerosis patients produce abnormally high levels of interleukin-13 associated with increased skin fibrosis. Arthritis Rheum.60(4), 1119–1128 (2009).
  • Granel B, Chevillard C, Dessein A. [Interleukin 13 and interleukin 13 receptor involvement in systemic sclerosis]. Rev. Med. Interne28(9), 613–622 (2007).
  • Wood N, Whitters MJ, Jacobson BA et al. Enhanced interleukin (IL)-13 responses in mice lacking IL-13 receptor α 2. J. Exp. Med.197(6), 703–709 (2003).
  • Matsushita T, Hasegawa M, Hamaguchi Y, Takehara K, Sato S. Longitudinal analysis of serum cytokine concentrations in systemic sclerosis: association of interleukin 12 elevation with spontaneous regression of skin sclerosis. J. Rheumatol.33(2), 275–284 (2006).
  • Valentini G, Baroni A, Esposito K et al. Peripheral blood T lymphocytes from systemic sclerosis patients show both Th1 and Th2 activation. J. Clin. Immunol.21(3), 210–217 (2001).
  • Sato S, Hanakawa H, Hasegawa M et al. Levels of interleukin 12, a cytokine of type 1 helper T cells, are elevated in sera from patients with systemic sclerosis. J. Rheumatol.27(12), 2838–2842 (2000).
  • Liu ZJ, Yadav PK, Su JL, Wang JS, Fei K. Potential role of Th17 cells in the pathogenesis of inflammatory bowel disease. World J. Gastroenterol.15(46), 5784–5788 (2009).
  • Sarkar S, Cooney LA, Fox DA. The role of T helper type 17 cells in inflammatory arthritis. Clin. Exp. Immunol.159(3), 225–237 (2010).
  • Fossiez F, Djossou O, Chomarat P et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med.183(6), 2593–2603 (1996).
  • Deleuran B, Abraham DJ. Possible implication of the effector CD4+ T-cell subpopulation TH17 in the pathogenesis of systemic scleroderma. Nat. Clin. Pract. Rheumatol.3(12), 682–683 (2007).
  • Murata M, Fujimoto M, Matsushita T et al. Clinical association of serum interleukin-17 levels in systemic sclerosis: is systemic sclerosis a Th17 disease? J. Dermatol. Sci.50(3), 240–242 (2008).
  • Komura K, Fujimoto M, Hasegawa M et al. Increased serum interleukin 23 in patients with systemic sclerosis. J. Rheumatol.35(1), 120–125 (2008).
  • Radstake TR, van Bon L, Broen J et al. Increased frequency and compromised function of T regulatory cells in systemic sclerosis (SSc) is related to a diminished CD69 and TGFβ expression. PLoS One4(6), e5981 (2009).
  • Beetz S, Wesch D, Marischen L et al. Innate immune functions of human γδ T cells. Immunobiology213(3–4), 173–182 (2008).
  • Carding SR, Egan PJ. γδ T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol.2(5), 336–345 (2002).
  • Simonian PL, Roark CL, Diaz del Valle F et al. Regulatory role of γδ T cells in the recruitment of CD4+ and CD8+ T cells to lung and subsequent pulmonary fibrosis. J. Immunol.177(7), 4436–4443 (2006).
  • Bendersky A, Markovits N, Bank I. Vγ9+ γδ T cells in systemic sclerosis patients are numerically and functionally preserved and induce fibroblast apoptosis. Immunobiology215(5), 380–394 (2009).
  • Riccieri V, Parisi G, Spadaro A et al. Reduced circulating natural killer T cells and γ/δ T cells in patients with systemic sclerosis. J. Rheumatol.32(2), 283–286 (2005).
  • Kahaleh MB, Fan PS, Otsuka T. γδ receptor bearing T cells in scleroderma: enhanced interaction with vascular endothelial cells in vitro.Clin. Immunol. (Orlando)91(2), 188–195 (1999).
  • Ohtsuka T. Effect of γδ T cell supernatant on human skin fibroblast proliferation and collagen production – possible role of transforming growth factor-β and basic fibroblast growth factor. Int. J. Dermatol.47(11), 1135–1140 (2008).
  • Giacomelli R, Cipriani P, Fulminis A et al. Circulating γ/δ T lymphocytes from systemic sclerosis (SSc) patients display a T helper (Th) 1 polarization. Clin. Exp. Immunol.125(2), 310–315 (2001).
  • Generini S, Giacomelli R, Fedi R et al. Infliximab in spondyloarthropathy associated with Crohn’s disease: an open study on the efficacy of inducing and maintaining remission of musculoskeletal and gut manifestations. Ann. Rheum. Dis.63(12), 1664–1669 (2004).
  • Wells AU, Steen V, Valentini G. Pulmonary complications: one of the most challenging complications of systemic sclerosis. Rheumatology (Oxford)48(Suppl. 3), iii40–iii44 (2009).
  • Boin F, De Fanis U, Bartlett SJ et al. T cell polarization identifies distinct clinical phenotypes in scleroderma lung disease. Arthritis Rheum.58(4), 1165–1174 (2008).
  • Schmidt K, Martinez-Gamboa L, Meier S et al. Bronchoalveoloar lavage fluid cytokines and chemokines as markers and predictors for the outcome of interstitial lung disease in systemic sclerosis patients. Arthritis Res. Ther.11(4), R111 (2009).
  • Atamas SP, Yurovsky VV, Wise R et al. Production of type 2 cytokines by CD8+ lung cells is associated with greater decline in pulmonary function in patients with systemic sclerosis. Arthritis Rheum.42(6), 1168–1178 (1999).
  • Meloni F, Solari N, Cavagna L et al. Frequency of Th1, Th2 and Th17 producing T lymphocytes in bronchoalveolar lavage of patients with systemic sclerosis. Clin. Exp. Rheumatol.27(5), 765–772 (2009).
  • Denton CP, Lapadula G, Mouthon L, Muller-Ladner U. Renal complications and scleroderma renal crisis. Rheumatology (Oxford)48(Suppl. 3), iii32–iii35 (2009).
  • Pope JE, Bellamy N, Seibold JR et al. A randomized, controlled trial of methotrexate versus placebo in early diffuse scleroderma. Arthritis Rheum.44(6), 1351–1358 (2001).
  • Roos N, Poulalhon N, Farge D et al.In vitro evidence for a direct antifibrotic role of the immunosuppressive drug mycophenolate mofetil. J. Pharmacol. Exp. Ther.321(2), 583–589 (2007).
  • Quillinan NP, Denton CP. Disease-modifying treatment in systemic sclerosis: current status. Curr. Opin. Rheumatol.21(6), 636–641 (2009).
  • Tashkin DP, Elashoff R, Clements PJ et al. Cyclophosphamide versus placebo in scleroderma lung disease. N. Engl. J. Med.354(25), 2655–2666 (2006).
  • Wells AU, Latsi P, McCune WJ. Daily cyclophosphamide for scleroderma: are patients with the most to gain underrepresented in this trial? Am. J. Respir. Crit. Care Med.176(10), 952–953 (2007).
  • Distler JH, Schett G, Gay S, Distler O. The controversial role of tumor necrosis factor α in fibrotic diseases. Arthritis Rheum.58(8), 2228–2235 (2008).
  • Lafyatis R, Kissin E, York M et al. B cell depletion with rituximab in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum.60(2), 578–583 (2009).
  • Smith V, Van Praet JT, Vandooren B et al. Rituximab in diffuse cutaneous systemic sclerosis: an open-label clinical and histopathological study. Ann. Rheum. Dis.69(1), 193–197 (2010).
  • Nash RA, McSweeney PA, Nelson JL et al. Allogeneic marrow transplantation in patients with severe systemic sclerosis: resolution of dermal fibrosis. Arthritis Rheum.54(6), 1982–1986 (2006).
  • van Baarsen LG, Bos CL, van der Pouw Kraan TC, Verweij CL. Transcription profiling of rheumatic diseases. Arthritis Res. Ther.11(1), 207 (2009).
  • Hoyles RK, Ellis RW, Wellsbury J et al. A multicenter, prospective, randomized, double-blind, placebo-controlled trial of corticosteroids and intravenous cyclophosphamide followed by oral azathioprine for the treatment of pulmonary fibrosis in scleroderma. Arthritis Rheum.54(12), 3962–3970 (2006).
  • Distler JH, Distler O. Tyrosine kinase inhibitors for the treatment of fibrotic diseases such as systemic sclerosis: towards molecular targeted therapies. Ann. Rheum. Dis.69(Suppl. 1), i48–i51 (2010).
  • Rueda B, Gourh P, Broen J et al. BANK1 functional variants are associated with susceptibility to diffuse systemic sclerosis in Caucasians. Ann. Rheum. Dis.69(4), 700–705 (2010).
  • Gourh P, Agarwal SK, Martin E et al. Association of the C8orf13-BLK region with systemic sclerosis in North-American and European populations. J. Autoimmun.34(2), 155–162 (2010).
  • Agarwal SK, Gourh P, Shete S et al. Association of interleukin 23 receptor polymorphisms with anti-topoisomerase-I positivity and pulmonary hypertension in systemic sclerosis. J. Rheumatol.36(12), 2715–2723 (2009).
  • Gourh P, Agarwal SK, Divecha D et al. Polymorphisms in TBX21 and STAT4 increase the risk of systemic sclerosis: evidence of possible gene–gene interaction and alterations in Th1/Th2 cytokines. Arthritis Rheum.60(12), 3794–3806 (2009).
  • Gourh P, Arnett FC, Tan FK et al. Association of TNFSF4 (OX40L) polymorphisms with susceptibility to systemic sclerosis. Ann. Rheum. Dis.69(3), 550–555 (2009).
  • Dieude P, Guedj M, Wipff J et al. The PTPN22 620W allele confers susceptibility to systemic sclerosis: findings of a large case–control study of European Caucasians and a meta-analysis. Arthritis Rheum.58(7), 2183–2188 (2008).
  • Granel B, Allanore Y, Chevillard C et al.IL13Rα2 gene polymorphisms are associated with systemic sclerosis. J. Rheumatol.33(10), 2015–2019 (2006).
  • Granstein RD, Flotte TJ, Amento EP. Interferons and collagen production. J. Invest. Dermatol.95(6 Suppl.), S75–S80 (1990).
  • Gillery P, Serpier H, Polette M et al. g-interferon inhibits extracellular matrix synthesis and remodeling in collagen lattice cultures of normal and scleroderma skin fibroblasts. Eur. J. Cell. Biol.57(2), 244–253 (1992).
  • Feghali CA, Bost KL, Boulware DW, Levy LS. Human recombinant interleukin-4 induces proliferation and interleukin-6 production by cultured human skin fibroblasts. Clin. Immunol. Immunopathol.63(2), 182–187 (1992).
  • Postlethwaite AE, Holness MA, Katai H, Raghow R. Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4. J. Clin. Invest.90(4), 1479–1485 (1992).
  • Wynn TA. IL-13 effector functions. Annu. Rev. Immunol.21, 425–456 (2003).
  • Sonnenberg GF, Nair MG, Kirn TJ et al. Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. J. Exp. Med.207(6), 1293–305 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.