5
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeting of desmoglein 1 in exfoliative toxin-mediated disease

, &
Pages 659-670 | Published online: 10 Jan 2014

References

  • Ramos-e-Silva M, Pereira AL. Life-threatening eruptions due to infectious agents. Clin. Dermatol.23, 148–156 (2005).
  • Sladden MJ, Johnston GA. Common skin infections in children. BMJ329, 95–99 (2004).
  • Nishifuji K, Sugai M, Amagai M. Staphylococcal exfoliative toxins: ‘molecular scissors’ of bacteria that attack the cutaneous defense barrier in mammals. J. Dermatol. Sci.49, 21–31 (2008).
  • Cole C, Gazewood J. Diagnosis and treatment of impetigo. Am. Fam. Physician75, 859–864 (2007).
  • Stanley JR, Amagai M. Pemphigus, bullous impetigo, and the staphylococcal scalded-skin syndrome. N. Engl. J. Med.355, 1800–1810 (2006).
  • Melish ME, Glasgow LA. The staphylococcal scalded-skin syndrome. N. Engl. J. Med.282, 1114–1119 (1970).
  • Lyell A. Toxic epidermal necrolysis: an eruption resembling scalding of the skin. Br. J. Dermatol.68, 355–361 (1956).
  • Cribier B, Piemont Y, Grosshans E. Staphylococcal scalded skin syndrome in adults. A clinical review illustrated with a new case. J. Am. Acad. Dermatol.30, 319–324 (1994).
  • Jefferson J. Lyell’s toxic epidermal necrolysis: a staphylococcal aetiology? Br. Med. J.2, 802–804 (1967).
  • Ladhani S. Understanding the mechanism of action of the exfoliative toxins of Staphylococcus aureus. FEMS Immunol. Med. Microbiol.39, 181–189 (2003).
  • Oyake S, Oh-i T, Koga M. Staphylococcal scalded skin syndrome in a healthy adult. J. Dermatol.28, 145–148 (2001).
  • Suzuki R, Iwasaki S, Ito Y et al. Adult staphylococcus scalded skin syndrome in a peritoneal dialysis patient. Clin. Exp. Nephrol.7, 77–80 (2003).
  • Shirin S, Gottlieb AB, Stahl EB. Staphylococcal scalded skin syndrome in an immunocompetent adult: possible implication of low-dosage prednisone. Cutis62, 223–224 (1998).
  • Farrell AM, Ross JS, Umasankar S, Bunker CB. Staphylococcal scalded skin syndrome in an HIV-1 seropositive man. Br. J. Dermatol.134, 962–965 (1996).
  • Opal SM, Johnson-Winegar AD, Cross AS. Staphylococcal scalded skin syndrome in two immunocompetent adults caused by exfoliatin B-producing Staphylococcus aureus. J. Clin. Microbiol.26, 1283–1286 (1988).
  • El Helali N, Carbonne A, Naas T et al. Nosocomial outbreak of staphylococcal scalded skin syndrome in neonates: epidemiological investigation and control. J. Hosp. Infect.61, 130–138 (2005).
  • Neylon O, O’Connell NH, Slevin B et al. Neonatal staphylococcal scalded skin syndrome: clinical and outbreak containment review. Eur. J. Pediatr.169(12), 1503–1509 (2010).
  • Dave J, Reith S, Nash JQ, Marples RR, Dulake C. A double outbreak of exfoliative toxin-producing strains of Staphylococcus aureus in a maternity unit. Epidemiol. Infect.112, 103–114 (1994).
  • Ladhani S. Recent developments in staphylococcal scalded skin syndrome. Clin. Microbiol. Infect.7, 301–307 (2001).
  • Ladhani S, Joannou CL, Lochrie DP, Evans RW, Poston SM. Clinical, microbial, and biochemical aspects of the exfoliative toxins causing staphylococcal scalded-skin syndrome. Clin. Microbiol. Rev.12, 224–242 (1999).
  • Patel GK. Treatment of staphylococcal scalded skin syndrome. Expert Rev. Anti Infect. Ther.2, 575–587 (2004).
  • Foster TJ. Colonization and infection of the human host by staphylococci: adhesion, survival and immune evasion. Vet. Dermatol.20, 456–470 (2009).
  • Arbuthnott JP, Kent J, Lyell A, Gemmell CG. Toxic epidermal necrolysis produced by an extracellular product of Staphylococcus aureus. Br. J. Dermatol.85, 145–149 (1971).
  • Johnson AD, Metzger JF, Spero L. Production, purification, and chemical characterization of Staphylococcus aureus exfoliative toxin. Infect. Immun.12, 1206–1210 (1975).
  • Kapral FA, Miller MM. Skin lesions produced by Staphylococcus aureus exfoliatin in hairless mice. Infect. Immun.6, 877–879 (1972).
  • Kapral FA, Miller MM. Product of Staphylococcus aureus responsible for the scalded-skin syndrome. Infect. Immun.4, 541–545 (1971).
  • Patel GK, Finlay AY. Staphylococcal scalded skin syndrome: diagnosis and management. Am. J. Clin. Dermatol.4, 165–175 (2003).
  • de Dobbeleer G, Achten G. Staphylococcal scalded skin syndrome. An ultrastructural study. J. Cutan. Pathol.2, 91–98 (1975).
  • Melish ME, Glasgow LA, Turner MD, Lillibridge CB. The staphylococcal epidermolytic toxin: its isolation, characterization, and site of action. Ann. N Y Acad. Sci.236, 317–342 (1974).
  • Lillibridge CB, Melish ME, Glasgow LA. Site of action of exfoliative toxin in the staphylococcal scaled-skin syndrome. Pediatrics50, 728–738 (1972).
  • Olivry T, Linder KE. Dermatoses affecting desmosomes in animals: a mechanistic review of acantholytic blistering skin diseases. Vet. Dermatol.20, 313–326 (2009).
  • Mahoney MG, Wang Z, Rothenberger K, Koch PJ, Amagai M, Stanley JR. Explanations for the clinical and microscopic localization of lesions in pemphigus foliaceus and vulgaris. J. Clin. Invest.103, 461–468 (1999).
  • Amagai M. Autoimmunity against desmosomal cadherins in pemphigus. J. Dermatol. Sci.20, 92–102 (1999).
  • Coulombe PA, Kerns ML, Fuchs E. Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. J. Clin. Invest.119, 1784–1793 (2009).
  • Olasz EB, Yancey KB. Bullous pemphigoid and related subepidermal autoimmune blistering diseases. Curr. Dir. Autoimmun.10, 141–166 (2008).
  • Sladden MJ, Johnston GA. Current options for the treatment of impetigo in children. Expert Opin. Pharmacother.6, 2245–2256 (2005).
  • Johnston GA. Treatment of bullous impetigo and the staphylococcal scalded skin syndrome in infants. Expert Rev. Anti Infect. Ther.2, 439–446 (2004).
  • Geria AN, Schwartz RA. Impetigo update: new challenges in the era of methicillin resistance. Cutis85, 65–70 (2010).
  • Ito Y, Funabashi Yoh M, Toda K, Shimazaki M, Nakamura T, Morita E. Staphylococcal scalded-skin syndrome in an adult due to methicillin-resistant Staphylococcus aureus. J. Infect. Chemother.8, 256–261 (2002).
  • Acland KM, Darvay A, Griffin C, Aali SA, Russell-Jones R. Staphylococcal scalded skin syndrome in an adult associated with methicillin-resistant Staphylococcus aureus. Br. J. Dermatol.140, 518–520 (1999).
  • Noguchi N, Nakaminami H, Nishijima S, Kurokawa I, So H, Sasatsu M. Antimicrobial agent of susceptibilities and antiseptic resistance gene distribution among methicillin-resistant Staphylococcus aureus isolates from patients with impetigo and staphylococcal scalded skin syndrome. J. Clin. Microbiol.44, 2119–2125 (2006).
  • Yamaguchi T, Yokota Y, Terajima J et al. Clonal association of Staphylococcus aureus causing bullous impetigo and the emergence of new methicillin-resistant clonal groups in Kansai district in Japan. J. Infect. Dis.185, 1511–1516 (2002).
  • Nakaminami H, Noguchi N, Ikeda M et al. Molecular epidemiology and antimicrobial susceptibilities of 273 exfoliative toxin-encoding-gene-positive Staphylococcus aureus isolates from patients with impetigo in Japan. J. Med. Microbiol.57, 1251–1258 (2008).
  • Kondo I, Sakurai S, Sarai Y. New type of exfoliatin obtained from staphylococcal strains, belonging to phage groups other than group II, isolated from patients with impetigo and Ritter’s disease. Infect. Immun.10, 851–861 (1974).
  • Yamaguchi T, Nishifuji K, Sasaki M et al. Identification of the Staphylococcus aureus etd pathogenicity island which encodes a novel exfoliative toxin. ETD, and EDIN-B, Infect. Immun.70, 5835–5845 (2002).
  • Yamaguchi T, Hayashi T, Takami H et al. Complete nucleotide sequence of a Staphylococcus aureus exfoliative toxin B plasmid and identification of a novel ADP-ribosyltransferase. EDIN-C, Infect. Immun.69, 7760–7771 (2001).
  • O’Toole PW, Foster TJ. Molecular cloning and expression of the epidermolytic toxin A gene of Staphylococcus aureus. Microb. Pathog.1, 583–594 (1986).
  • Lee CY, Schmidt JJ, Johnson-Winegar AD, Spero L, Iandolo JJ. Sequence determination and comparison of the exfoliative toxin A and toxin B genes from Staphylococcus aureus. J. Bacteriol.169, 3904–3909 (1987).
  • Sato H, Matsumori Y, Tanabe T, Saito H, Shimizu A, Kawano J. A new type of staphylococcal exfoliative toxin from a Staphylococcus aureus strain isolated from a horse with phlegmon. Infect. Immun.62, 3780–3785 (1994).
  • Yamasaki O, Tristan A, Yamaguchi T et al. Distribution of the exfoliative toxin D gene in clinical Staphylococcus aureus isolates in France. Clin. Microbiol. Infect.12, 585–588 (2006).
  • Elsner P, Hartmann AA, Lenz W, Brandis H. Screening of clinical S. aureus-isolates for the production of exfoliative toxin. A methodological study. Zentralbl. Bakteriol. Mikrobiol. Hyg. A.260, 216–220 (1985).
  • Yamasaki O, Yamaguchi T, Sugai M et al. Clinical manifestations of staphylococcal scalded-skin syndrome depend on serotypes of exfoliative toxins. J. Clin. Microbiol.43, 1890–1893 (2005).
  • Johnson AD, Spero L, Cades JS, de Cicco BT. Purification and characterization of different types of exfoliative toxin from Staphylococcus aureus. Infect. Immun.24, 679–684 (1979).
  • Yamaguchi T, Hayashi T, Takami H et al. Phage conversion of exfoliative toxin A production in Staphylococcus aureus. Mol. Microbiol.38, 694–705 (2000).
  • Dinges MM, Orwin PM, Schlievert PM. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev.13, 16–34 (2000).
  • Schlievert PM. Role of superantigens in human disease. J. Infect. Dis.167, 997–1002 (1993).
  • Plano LR, Gutman DM, Woischnik M, Collins CM. Recombinant Staphylococcus aureus exfoliative toxins are not bacterial superantigens. Infect. Immun.68, 3048–3052 (2000).
  • Nishioka K, Nakano T, Hirao N, Asada Y. Staphylococcal scalded skin syndrome I. Purification of exfoliatin and maternal transmission of neutralizing ability against exfoliatin. J. Dermatol.4, 13–18 (1977).
  • Machida K, Sakurai S, Kondo I, Ikawa S. Relationship between susceptibility and immune response to staphylococcal exfoliative toxin A in mammalian species. Microbiol. Immunol.32, 1079–1084 (1988).
  • Leung DY, Harbeck R, Bina P et al. Presence of IgE antibodies to staphylococcal exotoxins on the skin of patients with atopic dermatitis. Evidence for a new group of allergens. J. Clin. Invest.92, 1374–1380 (1993).
  • Monday SR, Vath GM, Ferens WA et al. Unique superantigen activity of staphylococcal exfoliative toxins. J. Immunol.162, 4550–4559 (1999).
  • Morlock BA, Spero L, Johnson AD. Mitogenic activity of staphylococcal exfoliative toxin. Infect. Immun.30, 381–384 (1980).
  • Getsios S, Simpson CL, Kojima S et al. Desmoglein 1-dependent suppression of EGFR signaling promotes epidermal differentiation and morphogenesis. J. Cell. Biol.185, 1243–1258 (2009).
  • Gentilhomme E, Faure M, Piemont Y, Binder P, Thivolet J. Action of staphylococcal exfoliative toxins on epidermal cell cultures and organotypic skin. J. Dermatol.17, 526–532 (1990).
  • Dancer SJ, Garratt R, Saldanha J, Jhoti H, Evans R. The epidermolytic toxins are serine proteases. FEBS Lett.268, 129–132 (1990).
  • Hanakawa Y, Schechter NM, Lin C, Nishifuji K, Amagai M, Stanley JR. Enzymatic and molecular characteristics of the efficiency and specificity of exfoliative toxin cleavage of desmoglein 1. J. Biol. Chem.279, 5268–5277 (2004).
  • Hanakawa Y, Selwood T, Woo D, Lin C, Schechter NM, Stanley JR. Calcium-dependent conformation of desmoglein 1 is required for its cleavage by exfoliative toxin. J. Invest. Dermatol.121, 383–389 (2003).
  • Papageorgiou AC, Plano LR, Collins CM, Acharya KR. Structural similarities and differences in Staphylococcus aureus exfoliative toxins A and B as revealed by their crystal structures. Protein Sci.9, 610–618 (2000).
  • Vath GM, Earhart CA, Monie DD, Iandolo JJ, Schlievert PM, Ohlendorf DH. The crystal structure of exfoliative toxin B: a superantigen with enzymatic activity. Biochemistry38, 10239–10246 (1999).
  • Vath GM, Earhart CA, Rago JV et al. The structure of the superantigen exfoliative toxin A suggests a novel regulation as a serine protease. Biochemistry36, 1559–1566 (1997).
  • Rago JV, Vath GM, Tripp TJ, Bohach GA, Ohlendorf DH, Schlievert PM. Staphylococcal exfoliative toxins cleave α- and β-melanocyte-stimulating hormones. Infect. Immun.68, 2366–2368 (2000).
  • Payne AS, Hanakawa Y, Amagai M, Stanley JR. Desmosomes and disease: pemphigus and bullous impetigo. Curr. Opin. Cell. Biol.16, 536–543 (2004).
  • Chernyavsky AI, Arredondo J, Kitajima Y, Sato-Nagai M, Grando SA. Desmoglein vs non-desmoglein signaling in pemphigus acantholysis: characterization of novel signaling pathways downstream of pemphigus vulgaris antigens. J. Biol. Chem.282(18), 13804–13812 (2007).
  • Nguyen VT, Ndoye A, Shultz LD, Pittelkow MR, Grando SA. Antibodies against keratinocyte antigens other than desmogleins 1 and 3 can induce pemphigus vulgaris-like lesions. J. Clin. Invest.106, 1467–1479 (2000).
  • Kurzen H, Brenner S. Significance of autoimmunity to non-desmoglein targets in pemphigus. Autoimmunity39, 549–556 (2006).
  • Ishii K, Lin C, Siegel DL, Stanley JR. Isolation of pathogenic monoclonal anti-desmoglein 1 human antibodies by phage display of pemphigus foliaceus autoantibodies. J. Invest. Dermatol.128, 939–948 (2008).
  • Desai BV, Harmon RM, Green KJ. Desmosomes at a glance. J. Cell. Sci.122, 4401–4407 (2009).
  • Dusek RL, Godsel LM, Green KJ. Discriminating roles of desmosomal cadherins. Beyond desmosomal adhesion. J. Dermatol. Sci.45, 7–21 (2007).
  • Mahoney MG, Hu Y, Brennan D, Bazzi H, Christiano AM, Wahl JK 3rd. Delineation of diversified desmoglein distribution in stratified squamous epithelia: implications in diseases. Exp. Dermatol.15, 101–109 (2006).
  • Bazzi H, Getz A, Mahoney MG et al. Desmoglein 4 is expressed in highly differentiated keratinocytes and trichocytes in human epidermis and hair follicle. Differentiation74, 129–140 (2006).
  • Green KJ, Simpson CL. Desmosomes: new perspectives on a classic. J. Invest. Dermatol.127, 2499–2515 (2007).
  • Amagai M, Koch PJ, Nishikawa T, Stanley JR. Pemphigus vulgaris antigen (desmoglein 3) is localized in the lower epidermis, the site of blister formation in patients. J. Invest. Derm.106, 351–355 (1996).
  • Stanley JR, Koulu L, Klaus-Kovtun VK, Steinberg MS. A monoclonal antibody to the desmosomal glycoprotein desmoglein I binds the same polypeptide as human autoantibodies in pemphigus foliaceus. J. Immunol.136, 1227–1230 (1986).
  • Mahoney MG, Wang ZH, Rothenberger K, Koch PJ, Amagai M, Stanley JR. Explanations for the clinical and microscopic localization of lesions in pemphigus foliaceus vulgaris. J. Clin. Invest.103, 461–468 (1999).
  • Hanakawa Y, Matsuyoshi N, Stanley JR. Expression of desmoglein 1 compensates for genetic loss of desmoglein 3 in keratinocyte adhesion. J. Invest. Dermatol.119, 27–31 (2002).
  • Brennan D, Hu Y, Medhat W, Dowling A, Mahoney MG. Superficial dsg2 expression limits epidermal blister formation mediated by pemphigus foliaceus antibodies and exfoliative toxins. Dermatol. Res. Pract.410278 (2010).
  • Amagai M, Matsuyoshi N, Wang ZH, Andl C, Stanley JR. Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1. Nat. Med.6, 1275–1277 (2000).
  • Amagai M, Yamaguchi T, Hanakawa Y, Nishifuji K, Sugai M, Stanley JR. Staphylococcal exfoliative toxin B specifically cleaves desmoglein 1. J. Invest. Dermatol.118, 845–850 (2002).
  • Posthaus H, Dubois CM, Muller E. Novel insights into cadherin processing by subtilisin-like convertases. FEBS Lett.536, 203–208 (2003).
  • Yokouchi M, Saleh MA, Kuroda K et al. Pathogenic epitopes of autoantibodies in pemphigus reside in the amino-terminal adhesive region of desmogleins which are unmasked by proteolytic processing of prosequence. J. Invest. Dermatol.129(9), 2156–2166 (2009).
  • Amagai M, Ishii K, Takayanagi A, Nishikawa T, Shimizu N. Transport to endoplasmic reticulum by signal peptide, but not proteolytic processing, is required for formation of conformational epitopes of pemphigus vulgaris antigen (Dsg3). J. Invest. Dermatol.107, 539–542 (1996).
  • Shapiro L, Weis WI. Structure and biochemistry of cadherins and catenins. Cold Spring Harb. Perspect. Biol.1, a003053 (2009).
  • Amagai M, Ishii K, Hashimoto T, Gamou S, Shimizu N, Nishikawa T. Conformational epitopes of pemphigus antigens (Dsg1 and Dsg3) are calcium dependent and glycosylation independent. J. Invest. Derm.105, 243–247 (1995).
  • Amagai M, Hashimoto T, Green KJ, Shimizu N, Nishikawa T. Antigen-specific immunoadsorption of pathogenic autoantibodies in pemphigus foliaceus. J. Invest. Derm.105, 895–901 (1995).
  • Payne AS, Ishii K, Kacir S et al. Genetic and functional characterization of human pemphigus vulgaris monoclonal autoantibodies isolated by phage display. J. Clin. Invest.115, 888–899 (2005).
  • Chitaev NA, Troyanovsky SM. Direct Ca2+-dependent heterophilic interaction between desmosomal cadherins, desmoglein and desmocollin, contributes to cell-cell adhesion. J. Cell. Biol.138, 193–201 (1997).
  • Sekiguchi M, Futei Y, Fujii Y, Iwasaki T, Nishikawa T, Amagai M. Dominant autoimmune epitopes recognized by pemphigus antibodies map to the N-terminal adhesive region of desmogleins. J. Immunol.167, 5439–5448 (2001).
  • Getsios S, Amargo EV, Dusek RL et al. Coordinated expression of desmoglein 1 and desmocollin 1 regulates intercellular adhesion. Differentiation72, 419–433 (2004).
  • Waschke J, Bruggeman P, Baumgartner W, Zillikens D, Drenckhahn D. Pemphigus foliaceus IgG causes dissociation of desmoglein 1-containing junctions without blocking desmoglein 1 transinteraction. J. Clin. Invest.115, 3157–3165 (2005).
  • Spindler V, Heupel WM, Efthymiadis A et al. Desmocollin 3-mediated binding is crucial for keratinocyte cohesion and is impaired in pemphigus. J. Biol. Chem.284, 30556–30564 (2009).
  • Wheeler GN, Parker AE, Thomas CL et al. Desmosomal glycoprotein DGI, a component of intercellular desmosome junctions, is related to the cadherin family of cell adhesion molecules. Proc. Natl. Acad. Sci.88, 4796–4800 (1991).
  • Andl CD, Stanley JR. Central role of the plakoglobin-binding domain for desmoglein 3 incorporation into desmosomes. J. Invest. Dermatol.117, 1068–1074 (2001).
  • Chitaev NA, Leube RE, Troyanovsky RB, Eshkind LG, Franke WW, Troyanovsky SM. The binding of plakoglobin to desmosomal cadherins: patterns of binding sites and topogenic potential. J. Cell. Biol.133, 359–369 (1996).
  • Chitaev NA, Averbakh AZ, Troyanovsky RB, Troyanovsky SM. Molecular organization of the desmoglein-plakoglobin complex. J. Cell. Sci.111, 1941–1949 (1998).
  • Smith EA, Fuchs E. Defining the interactions between intermediate filaments and desmosomes. J. Cell. Biol.141, 1229–1241 (1998).
  • Chen X, Bonne S, Hatzfeld M, van Roy F, Green KJ. Protein binding and functional characterization of plakophilin 2. Evidence for its diverse roles in desmosomes and β-catenin signaling. J. Biol. Chem.277, 10512–10522 (2002).
  • Bonne S, Gilbert B, Hatzfeld M, Chen X, Green KJ, van Roy F. Defining desmosomal plakophilin-3 interactions. J. Cell. Biol.161, 403–416 (2003).
  • Kami K, Chidgey M, Dafforn T, Overduin M. The desmoglein-specific cytoplasmic region is intrinsically disordered in solution and interacts with multiple desmosomal protein partners. J. Mol. Biol.386, 531–543 (2009).
  • Mahoney MG, Simpson A, Aho S, Uitto J, Pulkkinen L. Interspecies conservation and differential expression of mouse desmoglein gene family. Exp. Dermatol.11, 115–125 (2002).
  • Brennan D, Hu Y, Kljuic A et al. Differential structural properties and expression patterns suggest functional significance for multiple mouse desmoglein 1 isoforms. Differentiation72, 434–449 (2004).
  • Troyanovsky SM, Troyanovsky RB, Eshkind LG, Krutovskikh VA, Leube RE, Franke WW. Identification of the plakoglobin-binding domain in desmoglein and its role in plaque assembly and intermediate filament anchorage. J. Cell. Biol.127, 151–160 (1994).
  • Norvell SM, Green KJ. Contributions of extracellular and intracellular domains of full length and chimeric cadherin molecules to junction assembly in epithelial cells. J. Cell. Sci.111, 1305–1318 (1998).
  • Serpente N, Marcozzi C, Roberts GA et al. Extracellularly truncated desmoglein 1 compromises desmosomes in MDCK cells. Mol. Membr. Biol.17, 175–183 (2000).
  • Troyanovsky SM, Eshkind LG, Troyanovsky RB, Leube RE, Franke WW. Contributions of cytoplasmic domains of desmosomal cadherins to desmosome assembly and intermediate filament anchorage. Cell72, 561–574 (1993).
  • Hanakawa Y, Schechter NM, Lin C et al. Molecular mechanisms of blister formation in bullous impetigo and staphylococcal scalded skin syndrome. J. Clin. Invest.110, 53–60 (2002).
  • Nishifuji K, Shimizu A, Ishiko A, Iwasaki T, Amagai M. Removal of amino-terminal extracellular domains of desmoglein 1 by staphylococcal exfoliative toxin is sufficient to initiate epidermal blister formation. J. Dermatol. Sci.59, 184–191 (2010).
  • Simpson CL, Kojima S, Cooper-Whitehair V, Getsios S, Green KJ. Plakoglobin rescues adhesive defects induced by ectodomain truncation of the desmosomal cadherin, desmoglein 1. Implications for exfoliative toxin-mediated skin blistering. Am. J. Pathol. (2010) (In press).
  • Heupel WM, Zillikens D, Drenckhahn D, Waschke J. Pemphigus vulgaris IgG directly inhibit desmoglein 3-mediated transinteraction. J. Immunol.181, 1825–1834 (2008).
  • Calkins CC, Setzer SV, Jennings JM et al. Desmoglein endocytosis and desmosome disassembly are coordinated responses to pemphigus autoantibodies. J. Biol. Chem.281, 7623–7634 (2006).
  • Yamamoto Y, Aoyama Y, Shu E, Tsunoda K, Amagai M, Kitajima Y. Anti-desmoglein 3 (Dsg3) monoclonal antibodies deplete desmosomes of Dsg3 and differ in their Dsg3-depleting activities related to pathogenicity. J. Biol. Chem.282, 17866–17876 (2007).
  • Kitajima Y. Mechanisms of desmosome assembly and disassembly. Clin. Exp. Dermatol.27, 684–690 (2002).
  • Aoyama Y, Kitajima Y. Pemphigus vulgaris-IgG causes a rapid depletion of desmoglein 3 (Dsg3) from the Triton X-100 soluble pools, leading to the formation of Dsg3-depleted desmosomes in a human squamous carcinoma cell line. DJM-1 cells. J. Invest. Dermatol.112, 67–71 (1999).
  • Williamson L, Raess NA, Caldelari R et al. Pemphigus vulgaris identifies plakoglobin as key suppressor of c-Myc in the skin. EMBO J.25, 3298–3309 (2006).
  • Lee HE, Berkowitz P, Jolly PS, Diaz LA, Chua MP, Rubenstein DS. Biphasic activation of p38MAPK suggests that apoptosis is a downstream event in pemphigus acantholysis. J. Biol. Chem.284, 12524–12532 (2009).
  • Rubenstein DS, Diaz LA. Pemphigus antibody induced phosphorylation of keratinocyte proteins. Autoimmunity39, 577–586 (2006).
  • Waschke J, Spindler V, Bruggeman P, Zillikens D, Schmidt G, Drenckhahn D. Inhibition of Rho A activity causes pemphigus skin blistering. J. Cell. Biol.175, 721–727 (2006).
  • Kawasaki Y, Aoyama Y, Tsunoda K, Amagai M, Kitajima Y. Pathogenic monoclonal antibody against desmoglein 3 augments desmoglein 3 and p38 MAPK phosphorylation in human squamous carcinoma cell line. Autoimmunity39, 587–590 (2006).
  • Berkowitz P, Diaz LA, Hall RP, Rubenstein DS. Induction of p38MAPK and HSP27 phosphorylation in pemphigus patient skin. J. Invest. Dermatol.128, 738–740 (2008).
  • Berkowitz P, Hu P, Liu Z et al. Desmosome signaling. Inhibition of p38MAPK prevents pemphigus vulgaris IgG induced cytoskeleton reorganization. J. Biol. Chem.280, 23778–23784 (2005).
  • Berkowitz P, Hu P, Warren S, Liu Z, Diaz LA, Rubenstein DS. p38MAPK inhibition prevents disease in pemphigus vulgaris mice. Proc. Natl Acad. Sci. USA103, 12855–12860 (2006).
  • Ma X, Ezzeldin HH, Diasio RB. Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs69, 1911–1934 (2009).
  • Miller MM, Kapral FA. Neutralization of Staphylococcus aureus exfoliatin by antibody. Infect. Immun.6, 561–563 (1972).
  • Simpson CL, Kojima S, Getsios S. RNA interference in keratinocytes and an organotypic model of human epidermis. Methods Mol. Biol.585, 127–146 (2010).
  • Descargues P, Deraison C, Bonnart C et al. Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat. Genet.37, 56–65 (2005).
  • Descargues P, Deraison C, Prost C et al. Corneodesmosomal cadherins are preferential targets of stratum corneum trypsin- and chymotrypsin-like hyperactivity in Netherton syndrome. J. Invest. Dermatol.126, 1622–1632 (2006).
  • Hachem JP, Wagberg F, Schmuth M et al. Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome. J. Invest. Dermatol.126, 1609–1621 (2006).
  • Chao SC, Richard G, Lee JY. Netherton syndrome: report of two Taiwanese siblings with staphylococcal scalded skin syndrome and mutation of SPINK5. Br. J. Dermatol.152, 159–165 (2005).
  • Anzai H, Stanley JR, Amagai M. Production of low titers of anti-desmoglein 1 IgG autoantibodies in some patients with staphylococcal scalded skin syndrome. J. Invest. Dermatol.126, 2139–2141 (2006).
  • Kanzaki H, Ueda M, Morishita Y, Akiyama H, Arata J, Kanzaki S. Producibility of exfoliative toxin and staphylococcal coagulase types of Staphylococcus aureus strains isolated from skin infections and atopic dermatitis. Dermatology195, 6–9 (1997).
  • Yagi S, Wakaki N, Ikeda N. Presence of staphylococcal exfoliative toxin A in sera of patients with atopic dermatitis. Clin. Exp. Allergy34, 984–993 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.