17
Views
2
CrossRef citations to date
0
Altmetric
Review

Cytokines in cutaneous lupus erythematosus

&
Pages 381-394 | Published online: 10 Jan 2014

References

  • Lee HJ, Sinha AA. Cutaneous lupus erythematosus: understanding of clinical features, genetic basis, and pathobiology of disease guides therapeutic strategies. Autoimmunity39(6), 433–444 (2006).
  • Millard TP, McGregor JM. Molecular genetics of cutaneous lupus erythematosus. Clin. Exp. Dermatol.26(2), 184–191 (2001).
  • Sestak AL, Furnrohr BG, Harley JB, Merrill JT, Namjou B. The genetics of systemic lupus erythematosus and implications for targeted therapy. Ann. Rheum. Dis.70(Suppl. 1), i37–i43 (2011).
  • Albrecht J, Taylor L, Berlin JA et al. The CLASI (Cutaneous Lupus Erythematosus Disease Area and Severity Index): an outcome instrument for cutaneous lupus erythematosus. J. Invest. Dermatol.125(5), 889–894 (2005).
  • Kuhn A, Meuth AM, Bein D et al. Revised Cutaneous Lupus Erythematosus Disease Area and Severity Index (RCLASI): a modified outcome instrument for cutaneous lupus erythematosus. Br. J. Dermatol.163(1), 83–92 (2010).
  • Kuhn A, Sticherling M, Bonsmann G. Clinical manifestations of cutaneous lupus erythematosus. J. Dtsch. Dermatol. Ges.5(12), 1124–1137 (2007).
  • Al-Refu K, Goodfield M. Scar classification in cutaneous lupus erythematosus: morphological description. Br. J. Dermatol.161(5), 1052–1058 (2009).
  • Lipsker D. The need to revisit the nosology of cutaneous lupus erythematosus: the current terminology and morphologic classification of cutaneous LE: difficult, incomplete and not always applicable. Lupus19(9), 1047–1049 (2010).
  • Ronnblom L, Elkon KB. Cytokines as therapeutic targets in SLE. Nat. Rev. Rheumatol.6(6), 339–347 (2010).
  • Kuhn A, Bijl M. Pathogenesis of cutaneous lupus erythematosus. Lupus17(5), 389–393 (2008).
  • Wenzel J, Zahn S, Tuting T. Pathogenesis of cutaneous lupus erythematosus: common and different features in distinct subsets. Lupus19(9), 1020–1028 (2010).
  • Lin JH, Dutz JP, Sontheimer RD, Werth VP. Pathophysiology of cutaneous lupus erythematosus. Clin. Rev. Allergy Immunol.33(1–2), 85–106 (2007).
  • Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J. Immunol.172(5), 2731–2738 (2004).
  • Cho YN, Kee SJ, Lee SJ et al. Numerical and functional deficiencies of natural killer T cells in systemic lupus erythematosus: their deficiency related to disease activity. Rheumatology (Oxford)50(6), 1054–1063 (2011).
  • Gabriel L, Morley BJ, Rogers NJ. The role of iNKT cells in the immunopathology of systemic lupus erythematosus. Ann. NY Acad. Sci.1173, 435–441 (2009).
  • Wermeling F, Lind SM, Jordo ED, Cardell SL, Karlsson MC. Invariant NKT cells limit activation of autoreactive CD1d-positive B cells. J. Exp. Med.207(5), 943–952 (2010).
  • Franz B, Fritzsching B, Riehl A et al. Low number of regulatory T cells in skin lesions of patients with cutaneous lupus erythematosus. Arthritis Rheum.56(6), 1910–1920 (2007).
  • Antiga E, Del Bianco E, Difonzo EM, Fabbri P, Caproni M. Serum levels of the regulatory cytokines transforming growth factor-{β} and interleukin-10 are reduced in patients with discoid lupus erythematosus. Lupus20(6), 556–560 (2011).
  • Crispin JC, Kyttaris VC, Terhorst C, Tsokos GC. T cells as therapeutic targets in SLE. Nat. Rev. Rheumatol.6(6), 317–325 (2010).
  • Wouters CH, Diegenant C, Ceuppens JL, Degreef H, Stevens EA. The circulating lymphocyte profiles in patients with discoid lupus erythematosus and systemic lupus erythematosus suggest a pathogenetic relationship. Br. J. Dermatol.150(4), 693–700 (2004).
  • Wenzel J, Henze S, Brahler S, Bieber T, Tuting T. The expression of human leukocyte antigen-DR and CD25 on circulating T cells in cutaneous lupus erythematosus and correlation with disease activity. Exp. Dermatol.14(6), 454–459 (2005).
  • Tebbe B, Mazur L, Stadler R, Orfanos CE. Immunohistochemical analysis of chronic discoid and subacute cutaneous lupus erythematosus – relation to immunopathological mechanisms. Br. J. Dermatol.132(1), 25–31 (1995).
  • Al-Refu K, Goodfield M. Immunohistochemistry of ultrastructural changes in scarring lupus erythematosus. Clin. Exp. Dermatol.36(1), 63–68 (2011).
  • Nyberg F, Fransson J, Stephansson E. Proliferation and effects of UVA irradiation in cultured fibroblasts from lesions in cutaneous lupus erythematosus. Exp. Dermatol.9(1), 53–57 (2000).
  • Van Nguyen H, Di Girolamo N, Jackson N et al. Ultraviolet radiation-induced cytokines promote mast cell accumulation and matrix metalloproteinase production: potential role in cutaneous lupus erythematosus. Scand. J. Rheumatol.40(3), 197–204 (2011).
  • Yildirim-Toruner C, Diamond B. Current and novel therapeutics in the treatment of systemic lupus erythematosus. J. Allergy Clin. Immunol.127(2), 303–312; quiz 313–304 (2011).
  • Meller S, Winterberg F, Gilliet M et al. Ultraviolet radiation-induced injury, chemokines, and leukocyte recruitment: an amplification cycle triggering cutaneous lupus erythematosus. Arthritis Rheum.52(5), 1504–1516 (2005).
  • Wittmann M, Purwar R, Hartmann C, Gutzmer R, Werfel T. Human keratinocytes respond to interleukin-18: implication for the course of chronic inflammatory skin diseases. J. Invest. Dermatol.124(6), 1225–1233 (2005).
  • Baima B, Sticherling M. Apoptosis in different cutaneous manifestations of lupus erythematosus. Br. J. Dermatol.144(5), 958–966 (2001).
  • Wenzel J, Henze S, Worenkamper E et al. Role of the chemokine receptor CCR4 and its ligand thymus- and activation-regulated chemokine/CCL17 for lymphocyte recruitment in cutaneous lupus erythematosus. J. Invest. Dermatol.124(6), 1241–1248 (2005).
  • Wittmann M, Werfel T. Interaction of keratinocytes with infiltrating lymphocytes in allergic eczematous skin diseases. Curr. Opin. Allergy Clin. Immunol.6(5), 329–334 (2006).
  • Popovic K, Ek M, Espinosa A et al. Increased expression of the novel proinflammatory cytokine high mobility group box chromosomal protein 1 in skin lesions of patients with lupus erythematosus. Arthritis Rheum.52(11), 3639–3645 (2005).
  • Wang D, Drenker M, Eiz-Vesper B, Werfel T, Wittmann M. Evidence for a pathogenetic role of interleukin-18 in cutaneous lupus erythematosus. Arthritis Rheum.58(10), 3205–3215 (2008).
  • Zahn S, Rehkamper C, Kummerer BM et al. Evidence for a pathophysiological role of keratinocyte-derived type III interferon (IFNλ) in cutaneous lupus erythematosus. J. Invest. Dermatol.131(1), 133–140 (2011).
  • Abdulahad DA, Westra J, Limburg PC, Kallenberg CG, Bijl M. HMGB1 in systemic lupus erythematosus: its role in cutaneous lesions development. Autoimmun. Rev.9(10), 661–665 (2010).
  • Sticherling M. Update on the use of topical calcineurin inhibitors in cutaneous lupus erythematosus. Biologics5, 21–31 (2011).
  • Neurath MF, Finotto S. IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev.22(2), 83–89 (2011).
  • Kruse K, Janko C, Urbonaviciute V et al. Inefficient clearance of dying cells in patients with SLE: anti-dsDNA autoantibodies, MFG-E8, HMGB-1 and other players. Apoptosis15(9), 1098–1113 (2010).
  • Shao WH, Cohen PL. Disturbances of apoptotic cell clearance in systemic lupus erythematosus. Arthritis Res. Ther.13(1), 202 (2011).
  • Munoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat. Rev. Rheumatol.6(5), 280–289 (2010).
  • Chen Gy, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol.10(12), 826–837 (2010).
  • Urbonaviciute V, Furnrohr BG, Meister S et al. Induction of inflammatory and immune responses by HMGB1–nucleosome complexes: implications for the pathogenesis of SLE. J. Exp. Med.205(13), 3007–3018 (2008).
  • Voll RE, Urbonaviciute V, Furnrohr B, Herrmann M, Kalden JR. The role of high-mobility group box 1 protein in the pathogenesis of autoimmune diseases. Curr. Rheumatol. Rep.10(5), 341–342 (2008).
  • Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol.28, 367–388 (2010).
  • Lande R, Ganguly D, Facchinetti V et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA–peptide complexes in systemic lupus erythematosus. Sci. Transl. Med.3(73), 73ra19 (2011).
  • Lande R, Gregorio J, Facchinetti V et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature449(7162), 564–569 (2007).
  • Fang S, Zeng F, Guo Q. Comparative proteomics analysis of cytokeratin and involucrin expression in lesions from patients with systemic lupus erythematosus. Acta Biochim. Biophys. Sin. (Shanghai)40(12), 989–995 (2008).
  • Ghoreishi M, Katayama I, Yokozeki H, Nishioka K. Analysis of 70 kD heat shock protein (HSP70) expression in the lesional skin of lupus erythematosus (LE) and LE related diseases. J. Dermatol.20(7), 400–405 (1993).
  • Villalobos-Hurtado R, Sanchez-Rogriguez SH, Avalos-Diaz E, Herrera-Esparza R. Possible role of HSP70 in autoantigen shuttling to the dermo–epidermal junction in systemic lupus erythematosus. Reumatismo55(3), 155–158 (2003).
  • Loser K, Vogl T, Voskort M et al. The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells. Nat. Med.16(6), 713–717 (2010).
  • Tveita AA. The danger model in deciphering autoimmunity. Rheumatology (Oxford)49(4), 632–639 (2010).
  • Barkauskaite V, Ek M, Popovic K, Harris HE, Wahren-Herlenius M, Nyberg F. Translocation of the novel cytokine HMGB1 to the cytoplasm and extracellular space coincides with the peak of clinical activity in experimentally UV-induced lesions of cutaneous lupus erythematosus. Lupus16(10), 794–802 (2007).
  • Hreggvidsdottir HS, Ostberg T, Wahamaa H et al. The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation. J. Leukoc. Biol.86(3), 655–662 (2009).
  • Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol.28, 367–388 (2010).
  • Kuhn A, Herrmann M, Kleber S et al. Accumulation of apoptotic cells in the epidermis of patients with cutaneous lupus erythematosus after ultraviolet irradiation. Arthritis Rheum.54(3), 939–950 (2006).
  • Wang D, Eiz-Vesper B, Zeitvogel J, Dressel R, Werfel T, Wittmann M. Human keratinocytes release high levels of inducible heat shock protein 70 which enhances peptide uptake. Exp. Dermatol. DOI: 10.1111/j.1600-0625.2011.01287.x (Epub ahead of print).
  • Figueiredo C, Wittmann M, Wang D et al. Heat shock protein 70 (HSP70) induces cytotoxicity of T-helper cells. Blood113(13), 3008–3016 (2009).
  • Kreuter A, Jaouhar M, Skrygan M et al. Expression of antimicrobial peptides in different subtypes of cutaneous lupus erythematosus. J. Am. Acad. Dermatol.65(1), 125–133 (2011).
  • Yousefi S, Gold JA, Andina N et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med.14(9), 949–953 (2008).
  • Banchereau J, Pascual V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity25(3), 383–392 (2006).
  • Pascual V, Farkas L, Banchereau J. Systemic lupus erythematosus: all roads lead to type I interferons. Curr. Opin. Immunol.18(6), 676–682 (2006).
  • Wenzel J, Zahn S, Bieber T, Tuting T. Type I interferon-associated cytotoxic inflammation in cutaneous lupus erythematosus. Arch. Dermatol. Res.301(1), 83–86 (2009).
  • Hall JC, Rosen A. Type I interferons: crucial participants in disease amplification in autoimmunity. Nat. Rev. Rheumatol.6(1), 40–49 (2010).
  • Meyer O. Interferons and autoimmune disorders. Joint Bone Spine76(5), 464–473 (2009).
  • Fah J, Pavlovic J, Burg G. Expression of MxA protein in inflammatory dermatoses. J. Histochem. Cytochem.43(1), 47–52 (1995).
  • Farkas L, Beiske K, Lund-Johansen F, Brandtzaeg P, Jahnsen FL. Plasmacytoid dendritic cells (natural interferon-α/β-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am. J. Pathol.159(1), 237–243 (2001).
  • Vermi W, Lonardi S, Morassi M et al. Cutaneous distribution of plasmacytoid dendritic cells in lupus erythematosus. Selective tropism at the site of epithelial apoptotic damage. Immunobiology214(9–10), 877–886 (2009).
  • Wenzel J, Uerlich M, Worrenkamper E, Freutel S, Bieber T, Tuting T. Scarring skin lesions of discoid lupus erythematosus are characterized by high numbers of skin-homing cytotoxic lymphocytes associated with strong expression of the type I interferon-induced protein MxA. Br. J. Dermatol.153(5), 1011–1015 (2005).
  • Wenzel J, Zahn S, Mikus S, Wiechert A, Bieber T, Tuting T. The expression pattern of interferon-inducible proteins reflects the characteristic histological distribution of infiltrating immune cells in different cutaneous lupus erythematosus subsets. Br. J. Dermatol.157(4), 752–757 (2007).
  • Naschberger E, Wenzel J, Kretz CC, Herrmann M, Sturzl M, Kuhn A. Increased expression of guanylate binding protein-1 in lesional skin of patients with cutaneous lupus erythematosus. Exp. Dermatol.20(2), 102–106 (2011).
  • Reefman E, Kuiper H, Limburg PC, Kallenberg CG, Bijl M. Type I interferons are involved in the development of ultraviolet B-induced inflammatory skin lesions in systemic lupus erythaematosus patients. Ann. Rheum. Dis.67(1), 11–18 (2008).
  • Witte K, Witte E, Sabat R, Wolk K. IL-28A, IL-28B, and IL-29: promising cytokines with type I interferon-like properties. Cytokine Growth Factor Rev.21(4), 237–251 (2010).
  • Witte K, Gruetz G, Volk HD et al. Despite IFN-λ receptor expression, blood immune cells, but not keratinocytes or melanocytes, have an impaired response to type III interferons: implications for therapeutic applications of these cytokines. Genes Immun.10(8), 702–714 (2009).
  • Wenzel J, Worenkamper E, Freutel S et al. Enhanced type I interferon signalling promotes Th1-biased inflammation in cutaneous lupus erythematosus. J. Pathol.205(4), 435–442 (2005).
  • Albanesi C, Scarponi C, Giustizieri ML, Girolomoni G. Keratinocytes in inflammatory skin diseases. Curr. Drug Targets Inflamm. Allergy4(3), 329–334 (2005).
  • Trautmann A, Akdis M, Schmid-Grendelmeier P et al. Targeting keratinocyte apoptosis in the treatment of atopic dermatitis and allergic contact dermatitis. J. Allergy Clin. Immunol.108(5), 839–846 (2001).
  • Ardern-Jones MR, Black AP, Bateman EA, Ogg GS. Bacterial superantigen facilitates epithelial presentation of allergen to T helper 2 cells. Proc. Natl Acad. Sci. USA104(13), 5557–5562 (2007).
  • Black AP, Ardern-Jones MR, Kasprowicz V et al. Human keratinocyte induction of rapid effector function in antigen-specific memory CD4+ and CD8+ T cells. Eur. J. Immunol.37(6), 1485–1493 (2007).
  • Albanesi C, Cavani A, Girolomoni G. Interferon-γ-stimulated human keratinocytes express the genes necessary for the production of peptide-loaded MHC class II molecules. J. Invest. Dermatol.110(2), 138–142 (1998).
  • Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J. Induction of dendritic cell differentiation by IFN-α in systemic lupus erythematosus. Science294(5546), 1540–1543 (2001).
  • Theofilopoulos AN, Baccala R, Beutler B, Kono DH. Type I interferons (α/β) in immunity and autoimmunity. Annu. Rev. Immunol.23, 307–336 (2005).
  • Blomberg S, Eloranta ML, Magnusson M, Alm GV, Ronnblom L. Expression of the markers BDCA-2 and BDCA-4 and production of interferon-α by plasmacytoid dendritic cells in systemic lupus erythematosus. Arthritis Rheum.48(9), 2524–2532 (2003).
  • Richards KH, Macdonald A. Putting the brakes on the anti-viral response: negative regulators of type I interferon (IFN) production. Microbes Infect.13(4), 291–302 (2011).
  • Li J, Fu Q, Cui H et al. Interferon-α priming promotes lipid uptake and macrophage-derived foam cell formation: a novel link between interferon-α and atherosclerosis in lupus. Arthritis Rheum.63(2), 492–502 (2011).
  • Kaplan MJ, Salmon JE. How does interferon-α insult the vasculature? Let me count the ways. Arthritis Rheum.63(2), 334–336 (2011).
  • Naschberger E, Croner RS, Merkel S et al. Angiostatic immune reaction in colorectal carcinoma: impact on survival and perspectives for antiangiogenic therapy. Int. J. Cancer123(9), 2120–2129 (2008).
  • Song LL, Ponomareva L, Shen H, Duan X, Alimirah F, Choubey D. Interferon-inducible IFI16, a negative regulator of cell growth, down-regulates expression of human telomerase reverse transcriptase (hTERT) gene. PLoS One5(1), e8569 (2010).
  • Zeitvogel J, Werfel T, Wittmann M. Keratinocytes enriched for epidermal stem cells differ in their response to IFN-γ from other proliferative keratinocytes. Exp. Dermatol.17(12), 998–1003 (2008).
  • Al-Refu K, Goodfield M. Hair follicle stem cells in the pathogenesis of the scarring process in cutaneous lupus erythematosus. Autoimmun. Rev.8(6), 474–477 (2009).
  • Decker P, Singh-Jasuja H, Haager S, Kotter I, Rammensee HG. Nucleosome, the main autoantigen in systemic lupus erythematosus, induces direct dendritic cell activation via a MyD88-independent pathway: consequences on inflammation. J. Immunol.174(6), 3326–3334 (2005).
  • Pisetsky DS. HMGB1: a dangerous player in lupus pathogenesis. J. Rheumatol.37(4), 689–691 (2010).
  • Unterholzner L, Keating SE, Baran M et al. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol.11(11), 997–1004 (2010).
  • Barber GN. Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses. Curr. Opin. Immunol.23(1), 10–20 (2011).
  • Lee-Kirsch MA, Chowdhury D, Harvey S et al. A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J. Mol. Med.85(5), 531–537 (2007).
  • Lee-Kirsch MA, Gong M, Chowdhury D et al. Mutations in the gene encoding the 3´-5´ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet.39(9), 1065–1067 (2007).
  • Levine D, Switlyk SA, Gottlieb A. Cutaneous lupus erythematosus and anti-TNF-α therapy: a case report with review of the literature. J. Drugs Dermatol.9(10), 1283–1287 (2010).
  • Bave U, Alm GV, Ronnblom L. The combination of apoptotic U937 cells and lupus IgG is a potent IFN-α inducer. J. Immunol.165(6), 3519–3526 (2000).
  • Deng Y, Tsao BP. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat. Rev. Rheumatol.6(12), 683–692 (2010).
  • Jarvinen TM, Hellquist A, Koskenmies S et al. Tyrosine kinase 2 and interferon regulatory factor 5 polymorphisms are associated with discoid and subacute cutaneous lupus erythematosus. Exp. Dermatol.19(2), 123–131 (2010).
  • Yao Y, Richman L, Higgs BW et al. Neutralization of interferon-α/β-inducible genes and downstream effect in a phase I trial of an anti-interferon-α monoclonal antibody in systemic lupus erythematosus. Arthritis Rheum.60(6), 1785–1796 (2009).
  • Kuznik A, Bencina M, Svajger U, Jeras M, Rozman B, Jerala R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J. Immunol.186(8), 4794–4804 (2011).
  • Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y. Hydroxychloroquine: from malaria to autoimmunity. Clin. Rev. Allergy Immunol. DOI: 10.1007/s12016-010-8243-x (2011) (Epub ahead of print).
  • Sjolin-Forsberg G, Berne B, Eggelte TA, Karlsson-Parra A. In situ localization of chloroquine and immunohistological studies in UVB-irradiated skin of photosensitive patients. Acta Derm. Venereol.75(3), 228–231 (1995).
  • Dickie LJ, Church LD, Coulthard LR, Mathews RJ, Emery P, McDermott MF. Vitamin D3 down-regulates intracellular Toll-like receptor 9 expression and Toll-like receptor 9-induced IL-6 production in human monocytes. Rheumatology (Oxford)49(8), 1466–1471 (2010).
  • Wenzel J, Tuting T. An IFN-associated cytotoxic cellular immune response against viral, self-, or tumor antigens is a common pathogenetic feature in ‘interface dermatitis’. J. Invest. Dermatol.128(10), 2392–2402 (2008).
  • Vanbervliet B, Bendriss-Vermare N, Massacrier C et al. The inducible CXCR3 ligands control plasmacytoid dendritic cell responsiveness to the constitutive chemokine stromal cell-derived factor 1 (SDF-1)/CXCL12. J. Exp. Med.198(5), 823–830 (2003).
  • Klunker S, Trautmann A, Akdis M et al. A second step of chemotaxis after transendothelial migration: keratinocytes undergoing apoptosis release IFN-γ-inducible protein 10, monokine induced by IFN-γ, and IFN-γ-inducible α-chemoattractant for T cell chemotaxis toward epidermis in atopic dermatitis. J. Immunol.171(2), 1078–1084 (2003).
  • De Palma G, Castellano G, Del Prete A et al. The possible role of ChemR23/chemerin axis in the recruitment of dendritic cells in lupus nephritis. Kidney Int.79(11), 1228–1235 (2011).
  • Wittamer V, Franssen JD, Vulcano M et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med.198(7), 977–985 (2003).
  • Vermi W, Riboldi E, Wittamer V et al. Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin. J. Exp. Med.201(4), 509–515 (2005).
  • Guillabert A, Wittamer V, Bondue B et al. Role of neutrophil proteinase 3 and mast cell chymase in chemerin proteolytic regulation. J. Leukoc. Biol.84(6), 1530–1538 (2008).
  • Albanesi C, Scarponi C, Pallotta S et al. Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment. J. Exp. Med.206(1), 249–258 (2009).
  • Skrzeczynska-Moncznik J, Wawro K, Stefanska A et al. Potential role of chemerin in recruitment of plasmacytoid dendritic cells to diseased skin. Biochem. Biophys. Res. Commun.380(2), 323–327 (2009).
  • Gutzmer R, Kother B, Zwirner J et al. Human plasmacytoid dendritic cells express receptors for anaphylatoxins C3a and C5a and are chemoattracted to C3a and C5a. J. Invest. Dermatol.126(11), 2422–2429 (2006).
  • Tanasescu C, Balanescu E, Balanescu P et al. IL-17 in cutaneous lupus erythematosus. Eur. J. Intern. Med.21(3), 202–207 (2010).
  • Larsen JM, Bonefeld CM, Poulsen SS, Geisler C, Skov L. IL-23 and T(H)17-mediated inflammation in human allergic contact dermatitis. J. Allergy Clin. Immunol.123(2), 486–492 (2009).
  • Zhu YI, Stiller MJ. Dapsone and sulfones in dermatology: overview and update. J. Am. Acad. Dermatol.45(3), 420–434 (2001).
  • Favilli F, Anzilotti C, Martinelli L et al. IL-18 activity in systemic lupus erythematosus. Ann. NY Acad. Sci.1173, 301–309 (2009).
  • Wittmann M, Macdonald A, Renne J. IL-18 and skin inflammation. Autoimmun. Rev.9(1), 45–48 (2009).
  • Kanda N, Shimizu T, Tada Y, Watanabe S. IL-18 enhances IFN-γ-induced production of CXCL9, CXCL10, and CXCL11 in human keratinocytes. Eur. J. Immunol.37(2), 338–350 (2007).
  • Hu D, Liu X, Chen S, Bao C. Expressions of IL-18 and its binding protein in peripheral blood leukocytes and kidney tissues of lupus nephritis patients. Clin. Rheumatol.29(7), 717–721 (2010).
  • Novick D, Elbirt D, Miller G, Dinarello CA, Rubinstein M, Sthoeger ZM. High circulating levels of free interleukin-18 in patients with active SLE in the presence of elevated levels of interleukin-18 binding protein. J. Autoimmun.34(2), 121–126 (2010).
  • Dorner T, Hucko M, Mayet WJ, Trefzer U, Burmester GR, Hiepe F. Enhanced membrane expression of the 52 kDa Ro(SS-A) and La(SS-B) antigens by human keratinocytes induced by TNF α. Ann. Rheum. Dis.54(11), 904–909 (1995).
  • Casciola-Rosen L, Rosen A. Ultraviolet light-induced keratinocyte apoptosis: a potential mechanism for the induction of skin lesions and autoantibody production in LE. Lupus6(2), 175–180 (1997).
  • Werth VP, Zhang W, Dortzbach K, Sullivan K. Association of a promoter polymorphism of tumor necrosis factor-α with subacute cutaneous lupus erythematosus and distinct photoregulation of transcription. J. Invest. Dermatol.115(4), 726–730 (2000).
  • Millard TP, Kondeatis E, Cox A et al. A candidate gene analysis of three related photosensitivity disorders: cutaneous lupus erythematosus, polymorphic light eruption and actinic prurigo. Br. J. Dermatol.145(2), 229–236 (2001).
  • Aringer M, Smolen Js. TNF inhibition in SLE: where do we stand? Lupus18(1), 5–8 (2009).
  • Lu KQ, Brenneman S, Burns R Jr et al. Thalidomide inhibits UVB-induced mouse keratinocyte apoptosis by both TNF-α-dependent and TNF-α-independent pathways. Photodermatol. Photoimmunol. Photomed.19(6), 272–280 (2003).
  • Seneschal J, Milpied B, Vergier B, Lepreux S, Schaeverbeke T, Taieb A. Cytokine imbalance with increased production of interferon-α in psoriasiform eruptions associated with antitumour necrosis factor-α treatments. Br. J. Dermatol.161(5), 1081–1088 (2009).
  • Palucka AK, Blanck JP, Bennett L, Pascual V, Banchereau J. Cross-regulation of TNF and IFN-α in autoimmune diseases. Proc. Natl Acad. Sci. USA102(9), 3372–3377 (2005).
  • Bave U, Vallin H, Alm GV, Ronnblom L. Activation of natural interferon-α producing cells by apoptotic U937 cells combined with lupus IgG and its regulation by cytokines. J. Autoimmun.17(1), 71–80 (2001).
  • Sturfelt G, Roux-Lombard P, Wollheim FA, Dayer JM. Low levels of interleukin-1 receptor antagonist coincide with kidney involvement in systemic lupus erythematosus. Br. J. Rheumatol.36(12), 1283–1289 (1997).
  • Brugos B, Kiss E, Dul C et al. Measurement of interleukin-1 receptor antagonist in patients with systemic lupus erythematosus could predict renal manifestation of the disease. Hum. Immunol.71(9), 874–877 (2010).
  • Abe M, Shimizu A, Yokoyama Y, Takeuchi Y, Ishikawa O. A possible inhibitory action of diaminodiphenyl sulfone on tumour necrosis factor-α production from activated mononuclear cells on cutaneous lupus erythematosus. Clin. Exp. Dermatol.33(6), 759–763 (2008).
  • Wozniacka A, Lesiak A, Boncela J, Smolarczyk K, Mccauliffe DP, Sysa-Jedrzejowska A. The influence of antimalarial treatment on IL-1β, IL-6 and TNF-α mRNA expression on UVB-irradiated skin in systemic lupus erythematosus. Br. J. Dermatol.159(5), 1124–1130 (2008).
  • Wozniacka A, Lesiak A, Narbutt J, McCauliffe DP, Sysa-Jedrzejowska A. Chloroquine treatment influences proinflammatory cytokine levels in systemic lupus erythematosus patients. Lupus15(5), 268–275 (2006).
  • Horwitz DA, Gray JD, Behrendsen SC et al. Decreased production of interleukin-12 and other Th1-type cytokines in patients with recent-onset systemic lupus erythematosus. Arthritis Rheum.41(5), 838–844 (1998).
  • Liu TF, Jones BM. Impaired production of IL-12 in system lupus erythematosus. II: IL-12 production in vitro is correlated negatively with serum IL-10, positively with serum IFN-γ and negatively with disease activity in SLE. Cytokine10(2), 148–153 (1998).
  • Tsai CY, Wu TH, Yu CL, Tsai YY, Chou CT. Decreased IL-12 production by polymorphonuclear leukocytes in patients with active systemic lupus erythematosus. Immunol. Invest.31(3–4), 177–189 (2002).
  • Werth VP, Bashir MM, Zhang W. IL-12 completely blocks ultraviolet-induced secretion of tumor necrosis factor α from cultured skin fibroblasts and keratinocytes. J. Invest. Dermatol.120(1), 116–122 (2003).
  • Schwarz A, Stander S, Berneburg M et al. Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair. Nat. Cell Biol.4(1), 26–31 (2002).
  • Nurnberg W, Haas N, Schadendorf D, Czarnetzki BM. Interleukin-6 expression in the skin of patients with lupus erythematosus. Exp. Dermatol.4(1), 52–57 (1995).
  • Illei GG, Shirota Y, Yarboro CH et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label Phase I dosage-escalation study. Arthritis Rheum.62(2), 542–552 (2010).
  • Kido M, Takeuchi S, Sugiyama N et al. T cell-specific overexpression of interleukin-27 receptor α-subunit (WSX-1) prevents spontaneous skin inflammation in MRL/lpr mice. Br. J. Dermatol.164(6), 1214–1220 (2011).
  • Sugiyama N, Nakashima H, Yoshimura T et al. Amelioration of human lupus-like phenotypes in MRL/lpr mice by overexpression of interleukin 27 receptor α (WSX-1). Ann. Rheum. Dis.67(10), 1461–1467 (2008).
  • Li TT, Zhang T, Chen GM et al. Low level of serum interleukin 27 in patients with systemic lupus erythematosus. J. Investig. Med.58(5), 737–739 (2010).
  • Llorente L, Richaud-Patin Y. The role of interleukin-10 in systemic lupus erythematosus. J. Autoimmun.20(4), 287–289 (2003).
  • Llorente L, Richaud-Patin Y, Garcia-Padilla C et al. Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus. Arthritis Rheum.43(8), 1790–1800 (2000).
  • Ruan BH, Li X, Winkler AR et al. Complement C3a, CpG oligos, and DNA/C3a complex stimulate IFN-α production in a receptor for advanced glycation end product-dependent manner. J. Immunol.185(7), 4213–4222 (2010).
  • Purwar R, Wittmann M, Zwirner J et al. Induction of C3 and CCL2 by C3a in keratinocytes: a novel autocrine amplification loop of inflammatory skin reactions. J. Immunol.177(7), 4444–4450 (2006).
  • Thacker SG, Berthier CC, Mattinzoli D, Rastaldi MP, Kretzler M, Kaplan MJ. The detrimental effects of IFN-α on vasculogenesis in lupus are mediated by repression of IL-1 pathways: potential role in atherogenesis and renal vascular rarefaction. J. Immunol.185(7), 4457–4469 (2010).
  • Jarvinen TM, Hellquist A, Koskenmies S et al. Polymorphisms of the ITGAM gene confer higher risk of discoid cutaneous than of systemic lupus erythematosus. PLoS One5(12), e14212 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.