16
Views
0
CrossRef citations to date
0
Altmetric
Review

Immunotherapy for melanoma

, &
Pages 51-68 | Published online: 10 Jan 2014

References

  • Balch CM, Soong SJ, Gershenwald JE et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J. Clin. Oncol.19(16), 3622–3634 (2001).
  • McCardle TW, Messina JL, Sondak VK. Completely regressed cutaneous melanocytic lesion revisited. Semin. Oncol.36(6), 498–503 (2009).
  • Oble DA, Loewe R, Yu P, Mihm MC Jr. Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human melanoma. Cancer Immun.9, 3 (2009).
  • Culver ME, Gatesman ML, Mancl EE, Lowe DK. Ipilimumab: a novel treatment for metastatic melanoma. Annals Pharmacother.45(4), 510–519 (2011).
  • Julia F, Thomas L, Dumontet C, Dalle S. Targeted therapies in metastatic melanoma: toward a clinical breakthrough? Anticancer Agents Med. Chem.10(9), 661–665 (2010).
  • Pennock GK, Waterfield W, Wolchok JD. Patient responses to ipilimumab, a novel immunopotentiator for metastatic melanoma: how different are these from conventional treatment responses? Am. J. Clin. Oncol. doi: 10.1097/COC.0b013e318209cda9 (2011) (Epub ahead of print).
  • Demaria S, Pikarsky E, Karin M et al. Cancer and inflammation: promise for biologic therapy. J. Immunother.33(4), 335–351 (2010).
  • Johansson M, Denardo DG, Coussens LM. Polarized immune responses differentially regulate cancer development. Immunol. Rev.222, 145–154 (2008).
  • Nestle FO, Burg G, Dummer R. New perspectives on immunobiology and immunotherapy of melanoma. Immunol. Today20(1), 5–7 (1999).
  • Brigati C, Noonan DM, Albini A, Benelli R. Tumors and inflammatory infiltrates: friends or foes? Clin. Exp. Metastasis19(3), 247–258 (2002).
  • Charles KA, Kulbe H, Soper R et al. The tumor-promoting actions of TNF-alpha involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J. Clin. Invest.119(10), 3011–3023 (2009).
  • Gilbert AE, Karagiannis P, Dodev T et al. Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies. PLoS One6(4), e19330 (2011).
  • Lin EY, Pollard JW. Role of infiltrated leucocytes in tumour growth and spread. Br. J. Cancer90(11), 2053–2058 (2004).
  • Allavena P, Germano G, Marchesi F, Mantovani A. Chemokines in cancer related inflammation. Exp. Cell Res.317(5), 664–673 (2011).
  • Bonecchi R, Locati M, Mantovani A. Chemokines and cancer: a fatal attraction. Cancer Cell19(4), 434–435 (2011).
  • Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell8(5), 369–380 (2005).
  • Lee JC, Lee KM, Ahn YO, Suh B, Heo DS. A possible mechanism of impaired NK cytotoxicity in cancer patients: down-regulation of DAP10 by TGF-beta1. Tumori97(3), 350–357 (2011).
  • Lee JC, Lee KM, Kim DW, Heo DS. Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J. Immunol.172(12), 7335–7340 (2004).
  • Kim SG, Jong HS, Kim TY et al. Transforming growth factor-beta 1 induces apoptosis through Fas ligand-independent activation of the Fas death pathway in human gastric SNU-620 carcinoma cells. Mol. Biol. Cell15(2), 420–434 (2004).
  • Kim R, Emi M, Tanabe K, Arihiro K. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res.66(11), 5527–5536 (2006).
  • Garrido F, Algarra I, Garcia-Lora AM. The escape of cancer from T lymphocytes: immunoselection of MHC class I loss variants harboring structural-irreversible “hard” lesions. Cancer Immunol. Immunother.59(10), 1601–1606 (2010).
  • Gerlini G, Tun-Kyi A, Dudli C, Burg G, Pimpinelli N, Nestle FO. Metastatic melanoma secreted IL-10 down-regulates CD1 molecules on dendritic cells in metastatic tumor lesions. Am. J. Pathol.165(6), 1853–1863 (2004).
  • Villablanca EJ, Raccosta L, Zhou D et al. Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nature Med.16(1), 98–105 (2010).
  • Golmoghaddam H, Pezeshki AM, Ghaderi A, Doroudchi M. CD1a and CD1d genes polymorphisms in breast, colorectal and lung cancers. Pathol. Oncol. Res.17(3), 669–675 (2011).
  • Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol. Immunother.54(4), 307–314 (2005).
  • Blank C, Mackensen A. Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol. Immunother.56(5), 739–745 (2007).
  • Frumento G, Piazza T, Di Carlo E, Ferrini S. Targeting tumor-related immunosuppression for cancer immunotherapy. Endocr. Metab. Immune Disord. Drug Targets6(3), 233–237 (2006).
  • Nathan FE, Mastrangelo MJ. Systemic therapy in melanoma. Semin. Surg. Oncol.14(4), 319–327 (1998).
  • Chapman PB, Hauschild A, Robert C et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med.364(26), 2507–2516 (2011).
  • Guo J, Si L, Kong Y et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J. Clin. Oncol.29(21), 2904–2909 (2011).
  • Atkins MB. Cytokine-based therapy and biochemotherapy for advanced melanoma. Clin. Cancer Res.12(7 Pt 2), 2353s–2358s (2006).
  • Malek TR. The biology of interleukin-2. Annu. Rev. Immunol.26, 453–479 (2008).
  • Rosenberg SA, Yang JC, Topalian SL et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA271(12), 907–913 (1994).
  • Atkins MB, Lotze MT, Dutcher JP et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol.17(7), 2105–2116 (1999).
  • Keilholz U, Conradt C, Legha SS et al. Results of interleukin-2-based treatment in advanced melanoma: a case record-based analysis of 631 patients. J. Clin. Onco.16(9), 2921–2929 (1998).
  • Petrella T, Quirt I, Verma S, Haynes AE, Charette M, Bak K. Single-agent interleukin-2 in the treatment of metastatic melanoma: a systematic review. Cancer Treat. Rev.33(5), 484–496 (2007).
  • Atkins MB, Kunkel L, Sznol M, Rosenberg SA. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J. Sci. Am.6(Suppl. 1), S11–S14 (2000).
  • Rosenberg SA, Yang JC, White DE, Steinberg SM. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response. Ann. Surg.228(3), 307–319 (1998).
  • Sasse AD, Sasse EC, Clark LG, Ulloa L, Clark OA. Chemoimmunotherapy versus chemotherapy for metastatic malignant melanoma. Cochrane Database Syst. Rev.1, CD005413 (2007).
  • Rosenberg SA, Yang JC, Schwartzentruber DJ et al. Prospective randomized trial of the treatment of patients with metastatic melanoma using chemotherapy with cisplatin, dacarbazine, and tamoxifen alone or in combination with interleukin-2 and interferon alfa-2b. J. Clin. Oncol.17(3), 968–975 (1999).
  • Dudley ME, Wunderlich JR, Robbins PF et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science298(5594), 850–854 (2002).
  • Rosenberg SA, Yang JC, Schwartzentruber DJ et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat. Med.4(3), 321–327 (1998).
  • Krieg C, Letourneau S, Pantaleo G, Boyman O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc. Natl Acad. Sci. USA107(26), 11906–11911 (2010).
  • van der Vliet HJ, Koon HB, Yue SC et al. Effects of the administration of high-dose interleukin-2 on immunoregulatory cell subsets in patients with advanced melanoma and renal cell cancer. Clin. Cancer Res.13(7), 2100–2108 (2007).
  • Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood107(6), 2409–2414 (2006).
  • Bart RS, Porzio NR, Kopf AW, Vilcek JT, Cheng EH, Farcet Y. Inhibition of growth of B16 murine malignant melanoma by exogenous interferon. Cancer Res.40(3), 614–619 (1980).
  • Borden EC. Interferons: pleiotropic cellular modulators. Clin. Immunol. Immunopathol.62(1 Pt 2), S18–S24 (1992).
  • Pestka S, Langer JA, Zoon KC, Samuel CE. Interferons and their actions. Annu. Rev. Biochem.56, 727–777 (1987).
  • Grander D, Einhorn S. Interferon and malignant disease – how does it work and why doesn’t it always? Acta Oncol.37(4), 331–338 (1998).
  • Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J. Clin. Oncol.14(1), 7–17 (1996).
  • Kirkwood JM, Ibrahim JG, Sondak VK et al. High- and low-dose interferon alfa-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190. J. Clin. Oncol.18(12), 2444–2458 (2000).
  • Wheatley K, Ives N, Hancock B, Gore M, Eggermont A, Suciu S. Does adjuvant interferon-alpha for high-risk melanoma provide a worthwhile benefit? A meta-analysis of the randomised trials. Cancer Treat. Rev.29(4), 241–252 (2003).
  • Gogas H, Ioannovich J, Dafni U et al. Prognostic significance of autoimmunity during treatment of melanoma with interferon. N. Engl. J. Med.354(7), 709–718 (2006).
  • Garbe C, Eigentler TK. Diagnosis and treatment of cutaneous melanoma: state of the art 2006. Melanoma Res.17(2), 117–127 (2007).
  • Manns MP, McHutchison JG, Gordon SC et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet358(9286), 958–965 (2001).
  • Eggermont AM, Suciu S, Santinami M et al. Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised Phase III trial. Lancet372(9633), 117–126 (2008).
  • Hwu WJ, Panageas KS, Menell JH et al. Phase II study of temozolomide plus pegylated interferon-alpha-2b for metastatic melanoma. Cancer106(11), 2445–2451 (2006).
  • Nestle FO, Banchereau J, Hart D. Dendritic cells: On the move from bench to bedside. Nat. Med.7(7), 761–765 (2001).
  • Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res.17(11), 3520–3526 (2011).
  • Nakai N, Hartmann G, Kishimoto S, Katoh N. Dendritic cell vaccination in human melanoma: relationships between clinical effects and vaccine parameters. Pigment Cell Melanoma Res.23(5), 607–619 (2010).
  • Gilboa E. DC-based cancer vaccines. J. Clin. Invest.117(5), 1195–1203 (2007).
  • Nestle FO, Alijagic S, Gilliet M et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med.4(3), 328–332 (1998).
  • Thurner B, Haendle I, Roder C et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med.190(11), 1669–1678 (1999).
  • Schadendorf D, Ugurel S, Schuler-Thurner B et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized Phase III trial of the DC study group of the DeCOG. Ann. Oncol.17(4), 563–570 (2006).
  • Fong L, Brockstedt D, Benike C, Wu L, Engleman EG. Dendritic cells injected via different routes induce immunity in cancer patients. J. Immunol.166(6), 4254–4259 (2001).
  • Morse MA, Coleman RE, Akabani G, Niehaus N, Coleman D, Lyerly HK. Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res.59(1), 56–58 (1999).
  • Ridolfi R, Riccobon A, Galassi R et al. Evaluation of in vivo labelled dendritic cell migration in cancer patients. J. Transl. Med.2(1), 27 (2004).
  • Bedrosian I, Mick R, Xu S et al. Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T-cell function in melanoma patients. J. Clin. Oncol.21(20), 3826–3835 (2003).
  • Escobar A, Lopez M, Serrano A et al. Dendritic cell immunizations alone or combined with low doses of interleukin-2 induce specific immune responses in melanoma patients. Clin. Exp. Immunol.142(3), 555–568 (2005).
  • Panelli MC, Wunderlich J, Jeffries J et al. Phase 1 study in patients with metastatic melanoma of immunization with dendritic cells presenting epitopes derived from the melanoma-associated antigens MART-1 and gp100. J. Immunother.23(4), 487–498 (2000).
  • Redman BG, Chang AE, Whitfield J et al. Phase Ib trial assessing autologous, tumor-pulsed dendritic cells as a vaccine administered with or without IL-2 in patients with metastatic melanoma. J. Immunother.31(6), 591–598 (2008).
  • Ribas A, Comin-Anduix B, Chmielowski B et al. Dendritic cell vaccination combined with CTLA4 blockade in patients with metastatic melanoma. Clin. Cancer Res.15(19), 6267–6276 (2009).
  • Zanetti M, Castiglioni P, Rizzi M, Wheeler M, Gerloni M. B lymphocytes as antigen-presenting cell-based genetic vaccines. Immunol. Rev.199, 264–278 (2004).
  • Hunder NN, Wallen H, Cao J et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med.358(25), 2698–2703 (2008).
  • Rosenberg SA, Lotze MT, Yang JC et al. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J. Natl Cancer Inst.85(8), 622–632 (1993).
  • Bristol JA, Schlom J, Abrams SI. Persistence, immune specificity, and functional ability of murine mutant ras epitope-specific CD4(+) and CD8(+) T lymphocytes following in vivo adoptive transfer. Cell Immunol.194(1), 78–89 (1999).
  • Dudley ME, Wunderlich J, Nishimura MI et al. Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J. Immunother.24(4), 363–373 (2001).
  • Rosenberg SA, Yang JC, Sherry RM et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res.17(13), 4550–4557 (2011).
  • Khammari A, Labarriere N, Vignard V et al. Treatment of metastatic melanoma with autologous Melan-A/MART-1-specific cytotoxic T lymphocyte clones. J. Invest. Dermatol.129(12), 2835–2842 (2009).
  • Mackensen A, Meidenbauer N, Vogl S, Laumer M, Berger J, Andreesen R. Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma. J. Clin. Oncol.24(31), 5060–5069 (2006).
  • Morgan RA, Dudley ME, Wunderlich JR et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science314(5796), 126–129 (2006).
  • Robbins PF, Morgan RA, Feldman SA et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol.29(7), 917–924 (2011).
  • Butler MO, Friedlander P, Milstein MI et al. Establishment of antitumor memory in humans using in vitro-educated CD8+ T cells. Sci. Transl. Med.3(80), 80ra34 (2011).
  • Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr. Opin. Immunol.21(2), 233–240 (2009).
  • Copier J, Ward S, Dalgleish A. Cell based cancer vaccines: regulatory and commercial development. Vaccine25(Suppl. 2), B35–B46 (2007).
  • Selvan SR, Carbonell DJ, Fowler AW, Beatty AR, Ravindranath MH, Dillman RO. Establishment of stable cell lines for personalized melanoma cell vaccine. Melanoma Res.20(4), 280–292 (2010).
  • Dillman RO, DePriest C, DeLeon C et al. Patient-specific vaccines derived from autologous tumor cell lines as active specific immunotherapy: results of exploratory Phase I/II trials in patients with metastatic melanoma. Cancer Biother. Radiopharm.22(3), 309–321 (2007).
  • Soiffer R, Lynch T, Mihm M et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA95(22), 13141–13146 (1998).
  • Li B, Simmons A, Du T et al. Allogeneic GM-CSF-secreting tumor cell immunotherapies generate potent anti-tumor responses comparable to autologous tumor cell immunotherapies. Clin. Immunol.133(2), 184–197 (2009).
  • Lotem M, Peretz T, Drize O et al. Autologous cell vaccine as a post operative adjuvant treatment for high-risk melanoma patients (AJCC stages III and IV). The new American Joint Committee on Cancer. Br. J. Cancer86(10), 1534–1539 (2002).
  • Morton DL, Hsueh EC, Essner R et al. Prolonged survival of patients receiving active immunotherapy with Canvaxin therapeutic polyvalent vaccine after complete resection of melanoma metastatic to regional lymph nodes. Ann. Surg.236(4), 438–448; discussion 448–439 (2002).
  • Hsueh EC, Essner R, Foshag LJ et al. Prolonged survival after complete resection of disseminated melanoma and active immunotherapy with a therapeutic cancer vaccine. J. Clin. Oncol.20(23), 4549–4554 (2002).
  • Kelland L. Discontinued drugs in 2005: oncology drugs. Expert Opin. Investig. Drugs15(11), 1309–1318 (2006).
  • Mitchell MS, Abrams J, Thompson JA et al. Randomized trial of an allogeneic melanoma lysate vaccine with low-dose interferon alfa-2b compared with high-dose interferon alfa-2b for resected stage III cutaneous melanoma. J. Clin. Oncol.25(15), 2078–2085 (2007).
  • Sondak VK, Sosman JA. Results of clinical trials with an allogenic melanoma tumor cell lysate vaccine: Melacine. Semin. Cancer Biol.13(6), 409–415 (2003).
  • Sosman JA, Unger JM, Liu PY et al. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: impact of HLA class I antigen expression on outcome. J. Clin. Oncol.20(8), 2067–2075 (2002).
  • Pilla L, Rivoltini L, Patuzzo R, Marrari A, Valdagni R, Parmiani G. Multipeptide vaccination in cancer patients. Expert Opin. Biol. Ther.9(8), 1043–1055 (2009).
  • Schwartzentruber DJ, Lawson DH, Richards JM et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N. Engl. J. Med.364(22), 2119–2127 (2011).
  • Slingluff CL, Petroni GR, Smolkin ME et al. Immunogenicity for CD8+ and CD4+ T cells of 2 formulations of an incomplete freund’s adjuvant for multipeptide melanoma vaccines. J. Immunother.33(6), 630–638 (2010).
  • Slingluff CL Jr, Petroni GR, Olson WC et al. Effect of granulocyte/macrophage colony-stimulating factor on circulating CD8+ and CD4+ T-cell responses to a multipeptide melanoma vaccine: outcome of a multicenter randomized trial. Clin. Cancer Res.15(22), 7036–7044 (2009).
  • Triozzi PL, Aldrich W, Ponnazhagan S. Regulation of the activity of an adeno-associated virus vector cancer vaccine administered with synthetic Toll-like receptor agonists. Vaccine28(50), 7837–7843 (2010).
  • Slingluff CL Jr, Petroni GR, Olson W et al. Helper T-cell responses and clinical activity of a melanoma vaccine with multiple peptides from MAGE and melanocytic differentiation antigens. J. Clin. Oncol.26(30), 4973–4980 (2008).
  • Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat. Med.10(9), 909–915 (2004).
  • Fourcade J, Kudela P, Andrade Filho PA et al. Immunization with analog peptide in combination with CpG and montanide expands tumor antigen-specific CD8+ T cells in melanoma patients. J. Immunother.31(8), 781–791 (2008).
  • Sosman JA, Carrillo C, Urba WJ et al. Three Phase II cytokine working group trials of gp100 (210M) peptide plus high-dose interleukin-2 in patients with HLA-A2-positive advanced melanoma. J. Clin. Oncol.26(14), 2292–2298 (2008).
  • Hodi FS, O’Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med.363(8), 711–723 (2010).
  • Francois V, Ottaviani S, Renkvist N et al. The CD4(+) T-cell response of melanoma patients to a MAGE-A3 peptide vaccine involves potential regulatory T cells. Cancer Res.69(10), 4335–4345 (2009).
  • Nicholaou T, Ebert LM, Davis ID et al. Regulatory T-cell-mediated attenuation of T-cell responses to the NY-ESO-1 ISCOMATRIX vaccine in patients with advanced malignant melanoma. Clin. Cancer Res.15(6), 2166–2173 (2009).
  • Adams S, O’Neill DW, Nonaka D et al. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J. Immunol.181(1), 776–784 (2008).
  • Melief CJ, van der Burg SH. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat. Rev. Cancer8(5), 351–360 (2008).
  • Rogel A, Vignard V, Bobinet M, Labarriere N, Lang F. A long peptide from MELOE-1 contains multiple HLA class II T cell epitopes in addition to the HLA-A*0201 epitope: an attractive candidate for melanoma vaccination. Cancer Immunol. Immunother.60(3), 327–337 (2011).
  • Prud’homme GJ. DNA vaccination against tumors. J. Gene Med.7(1), 3–17 (2005).
  • Tang CK, Pietersz GA. Intracellular detection and immune signaling pathways of DNA vaccines. Expert Rev. Vaccines8(9), 1161–1170 (2009).
  • Weber J, Boswell W, Smith J et al. Phase 1 trial of intranodal injection of a Melan-A/MART-1 DNA plasmid vaccine in patients with stage IV melanoma. J. Immunother.31(2), 215–223 (2008).
  • Yuan J, Ku GY, Gallardo HF et al. Safety and immunogenicity of a human and mouse gp100 DNA vaccine in a Phase I trial of patients with melanoma. Cancer Immun.9, 5 (2009).
  • Cassaday RD, Sondel PM, King DM et al. A phase I study of immunization using particle-mediated epidermal delivery of genes for gp100 and GM-CSF into uninvolved skin of melanoma patients. Clin. Cancer Res.13(2 Pt 1), 540–549 (2007).
  • Heller LC, Heller R. Electroporation gene therapy preclinical and clinical trials for melanoma. Curr. Gene Ther.10(4), 312–317 (2010).
  • Daud AI, DeConti RC, Andrews S et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J. Clin. Oncol.26(36), 5896–5903 (2008).
  • Low L, Mander A, McCann K et al. DNA vaccination with electroporation induces increased antibody responses in patients with prostate cancer. Hum. Gene Ther.20(11), 1269–1278 (2009).
  • Hu JC, Coffin RS, Davis CJ et al. A Phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin. Cancer Res.12(22), 6737–6747 (2006).
  • Senzer NN, Kaufman HL, Amatruda T et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J. Clin. Oncol.27(34), 5763–5771 (2009).
  • Schmidt C. Amgen spikes interest in live virus vaccines for hard-to-treat cancers. Nat. Biotechnol.29(4), 295–296 (2011).
  • Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat. Rev. Immunol.10(5), 317–327 (2010).
  • Chambers CA, Kuhns MS, Allison JP. Cytotoxic T lymphocyte antigen-4 (CTLA-4) regulates primary and secondary peptide-specific CD4(+) T cell responses. Proc. Natl Acad. Sci. USA96(15), 8603–8608 (1999).
  • Brunner MC, Chambers CA, Chan FK, Hanke J, Winoto A, Allison JP. CTLA-4-mediated inhibition of early events of T cell proliferation. J. Immunol.162(10), 5813–5820 (1999).
  • Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med.182(2), 459–465 (1995).
  • Gozalo-Sanmillan S, McNally JM, Lin MY, Chambers CA, Berg LJ. Cutting edge: two distinct mechanisms lead to impaired T cell homeostasis in Janus kinase 3- and CTLA-4-deficient mice. J. Immunol.166(2), 727–730 (2001).
  • Karandikar NJ, Vanderlugt CL, Walunas TL, Miller SD, Bluestone JA. CTLA-4: a negative regulator of autoimmune disease. J. Exp. Med.184(2), 783–788 (1996).
  • Waterhouse P, Penninger JM, Timms E et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science270(5238), 985–988 (1995).
  • Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol.19, 565–594 (2001).
  • Peggs KS, Quezada SA, Allison JP. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol. Rev.224, 141–165 (2008).
  • Allison JP, Hurwitz AA, Leach DR. Manipulation of costimulatory signals to enhance antitumor T-cell responses. Curr. Opin. Immunol.7(5), 682–686 (1995).
  • Gregor PD, Wolchok JD, Ferrone CR et al. CTLA-4 blockade in combination with xenogeneic DNA vaccines enhances T-cell responses, tumor immunity and autoimmunity to self antigens in animal and cellular model systems. Vaccine22(13–14), 1700–1708 (2004).
  • Hurwitz AA, Foster BA, Kwon ED et al. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res.60(9), 2444–2448 (2000).
  • Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science271(5256), 1734–1736 (1996).
  • van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med.190(3), 355–366 (1999).
  • van Elsas A, Sutmuller RP, Hurwitz AA et al. Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J. Exp. Med.194(4), 481–489 (2001).
  • Phan GQ, Yang JC, Sherry RM et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA100(14), 8372–8377 (2003).
  • Ribas A, Camacho LH, Lopez-Berestein G et al. Antitumor activity in melanoma and anti-self responses in a Phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J. Clin. Oncol.23(35), 8968–8977 (2005).
  • Ribas A. Clinical development of the anti-CTLA-4 antibody tremelimumab. Semin. Oncol.37(5), 450–454 (2010).
  • Robert C, Thomas L, Bondarenko I et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med.364(26), 2517–2526 (2011).
  • Mehnert JM, McCarthy MM, Jilaveanu L et al. Quantitative expression of VEGF, VEGF-R1, VEGF-R2, and VEGF-R3 in melanoma tissue microarrays. Hum. Pathol.41(3), 375–384 (2010).
  • Molhoek KR, Griesemann H, Shu J, Gershenwald JE, Brautigan DL, Slingluff CL Jr. Human melanoma cytolysis by combined inhibition of mammalian target of rapamycin and vascular endothelial growth factor/vascular endothelial growth factor receptor-2. Cancer Res.68(11), 4392–4397 (2008).
  • Hsu JY, Wakelee HA. Monoclonal antibodies targeting vascular endothelial growth factor: current status and future challenges in cancer therapy. BioDrugs23(5), 289–304 (2009).
  • Jenab-Wolcott J, Giantonio BJ. Bevacizumab: current indications and future development for management of solid tumors. Expert Opin. Biol. Ther.9(4), 507–517 (2009).
  • Varker KA, Biber JE, Kefauver C et al. A randomized Phase 2 trial of bevacizumab with or without daily low-dose interferon alfa-2b in metastatic malignant melanoma. Ann. Surg. Oncol.14(8), 2367–2376 (2007).
  • Perez DG, Suman VJ, Fitch TR et al. Phase 2 trial of carboplatin, weekly paclitaxel, and biweekly bevacizumab in patients with unresectable stage IV melanoma: a North Central Cancer Treatment Group study, N047A. Cancer115(1), 119–127 (2009).
  • Del Vecchio M, Mortarini R, Canova S et al. Bevacizumab plus fotemustine as first-line treatment in metastatic melanoma patients: clinical activity and modulation of angiogenesis and lymphangiogenesis factors. Clin. Cancer Res.16(23), 5862–5872 (2010).
  • Campoli MR, Chang CC, Kageshita T, Wang X, McCarthy JB, Ferrone S. Human high molecular weight-melanoma-associated antigen (HMW-MAA): a melanoma cell surface chondroitin sulfate proteoglycan (MSCP) with biological and clinical significance. Crit. Rev. Immunol.24(4), 267–296 (2004).
  • Castello G, Mansi L, Leonardi E, Lastoria S, Melillo G. Short-term effects of i.v. injected murine 99MTc-F(ab’)2 fragments of an anti-melanoma antibody (HMW-MAA 225.28 S) on haemato-immunological parameters in patients with melanoma. Int. J. Biol. Markers3(2), 140–144 (1988).
  • Kang N, Hamilton S, Odili J, Wilson G, Kupsch J. In vivo targeting of malignant melanoma by 125Iodine- and 99mTechnetium-labeled single-chain Fv fragments against high molecular weight melanoma-associated antigen. Clin. Cancer Res.6(12), 4921–4931 (2000).
  • Hafner C, Breiteneder H, Ferrone S et al. Suppression of human melanoma tumor growth in SCID mice by a human high molecular weight-melanoma associated antigen (HMW-MAA) specific monoclonal antibody. Int. J. Cancer114(3), 426–432 (2005).
  • Buraggi GL, Callegaro L, Mariani G et al. Imaging with 131I-labeled monoclonal antibodies to a high-molecular-weight melanoma-associated antigen in patients with melanoma: efficacy of whole immunoglobulin and its F(ab’)2 fragments. Cancer Res.45(7), 3378–3387 (1985).
  • Sgouros G, Roeske JC, McDevitt MR et al. MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy. J. Nucl. Med.51(2), 311–328 (2010).
  • Allen BJ. Can alpha-radioimmunotherapy increase efficacy for the systemic control of cancer? Immunotherapy3(4), 455–458 (2011).
  • Allen BJ, Raja C, Rizvi S et al. Intralesional targeted alpha therapy for metastatic melanoma. Cancer Biol. Ther.4(12), 1318–1324 (2005).
  • Allen BJ, Singla AA, Rizvi SM et al. Analysis of patient survival in a Phase I trial of systemic targeted alpha-therapy for metastatic melanoma. Immunotherapy3(9), 1041–1050 (2011).
  • Raja C, Graham P, Abbas Rizvi SM et al. Interim analysis of toxicity and response in phase 1 trial of systemic targeted alpha therapy for metastatic melanoma. Cancer Biol. Ther.6(6), 846–852 (2007).
  • Ferrone S, Chen ZJ, Liu CC, Hirai S, Kageshita T, Mittelman A. Human high molecular weight-melanoma associated antigen mimicry by mouse anti-idiotypic monoclonal antibodies MK2–23. Experimental studies and clinical trials in patients with malignant melanoma. Pharmacol. Ther.57(2–3), 259–290 (1993).
  • Mittelman A, Chen GZ, Wong GY, Liu C, Hirai S, Ferrone S. Human high molecular weight-melanoma associated antigen mimicry by mouse anti-idiotypic monoclonal antibody MK2–23: modulation of the immunogenicity in patients with malignant melanoma. Clin. Cancer Res.1(7), 705–713 (1995).
  • Mittelman A, Chen ZJ, Yang H, Wong GY, Ferrone S. Human high molecular weight melanoma-associated antigen (HMW-MAA) mimicry by mouse anti-idiotypic monoclonal antibody MK2–23: induction of humoral anti-HMW-MAA immunity and prolongation of survival in patients with stage IV melanoma. Proc. Natl Acad. Sci. USA89(2), 466–470 (1992).
  • Mittelman A, Wang X, Matsumoto K, Ferrone S. Antiantiidiotypic response and clinical course of the disease in patients with malignant melanoma immunized with mouse antiidiotypic monoclonal antibody MK2–23. Hybridoma14(2), 175–181 (1995).
  • Wang X, Ko EC, Peng L, Gillies SD, Ferrone S. Human high molecular weight melanoma-associated antigen mimicry by mouse anti-idiotypic monoclonal antibody MK2–23: enhancement of immunogenicity of anti-idiotypic monoclonal antibody MK2–23 by fusion with interleukin 2. Cancer Res.65(15), 6976–6983 (2005).
  • Campoli M, Ferrone S, Wang X. Functional and clinical relevance of chondroitin sulfate proteoglycan 4. Adv. Cancer Res.109, 73–121 (2010).
  • Ahmadzadeh M, Johnson LA, Heemskerk B et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood114(8), 1537–1544 (2009).
  • Hino R, Kabashima K, Kato Y et al. Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer116(7), 1757–1766 (2010).
  • Brahmer JR, Drake CG, Wollner I et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol.28(19), 3167–3175 (2010).
  • Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl Acad. Sci. USA107(9), 4275–4280 (2010).
  • Wang HY, Wang RF. Regulatory T cells and cancer. Curr. Opin. Immunol.19(2), 217–223 (2007).
  • Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol.163(10), 5211–5218 (1999).
  • Klages K, Mayer CT, Lahl K et al. Selective depletion of Foxp3+ regulatory T cells improves effective therapeutic vaccination against established melanoma. Cancer Res.70(20), 7788–7799 (2010).
  • De Panfilis G, Campanini N, Santini M et al. Phase- and stage-related proportions of T cells bearing the transcription factor FOXP3 infiltrate primary melanoma. J. Invest. Dermatol.128(3), 676–684 (2008).
  • Jandus C, Bioley G, Speiser DE, Romero P. Selective accumulation of differentiated FOXP3(+) CD4 (+) T cells in metastatic tumor lesions from melanoma patients compared to peripheral blood. Cancer Immunol. Immunother.57(12), 1795–1805 (2008).
  • Miracco C, Mourmouras V, Biagioli M et al. Utility of tumour-infiltrating CD25+FOXP3+ regulatory T cell evaluation in predicting local recurrence in vertical growth phase cutaneous melanoma. Oncol. Rep.18(5), 1115–1122 (2007).
  • Baumgartner JM, Gonzalez R, Lewis KD et al. Increased survival from stage IV melanoma associated with fewer regulatory T cells. J. Surg. Res.154(1), 13–20 (2009).
  • Agius E, Lacy KE, Vukmanovic-Stejic M et al. Decreased TNF-alpha synthesis by macrophages restricts cutaneous immunosurveillance by memory CD4+ T cells during aging. J. Exp. Med.206(9), 1929–1940 (2009).
  • de Vries IJ, Castelli C, Huygens C et al. Frequency of circulating Tregs with demethylated FOXP3 intron 1 in melanoma patients receiving tumor vaccines and potentially Treg-depleting agents. Clin. Cancer Res.17(4), 841–848 (2011).
  • Jacobs JF, Punt CJ, Lesterhuis WJ et al. Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin. Cancer Res.16(20), 5067–5078 (2010).
  • Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L. Immunostimulatory monoclonal antibodies for cancer therapy. Nat. Rev. Cancer7(2), 95–106 (2007).
  • Hirschhorn-Cymerman D, Rizzuto GA, Merghoub T et al. OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. J. Exp. Med.206(5), 1103–1116 (2009).
  • Melero I, Murillo O, Dubrot J, Hervas-Stubbs S, Perez-Gracia JL. Multi-layered action mechanisms of CD137 (4-1BB)-targeted immunotherapies. Trends Pharmacol. Sci.29(8), 383–390 (2008).
  • Taraban VY, Rowley TF, O’Brien L et al. Expression and costimulatory effects of the TNF receptor superfamily members CD134 (OX40) and CD137 (4-1BB), and their role in the generation of anti-tumor immune responses. Eur. J. Immunol.32(12), 3617–3627 (2002).
  • Redmond WL, Ruby CE, Weinberg AD. The role of OX40-mediated co-stimulation in T-cell activation and survival. Crit. Rev. Immunol.29(3), 187–201 (2009).
  • Flynn S, Toellner KM, Raykundalia C, Goodall M, Lane P. CD4 T cell cytokine differentiation: the B cell activation molecule, OX40 ligand, instructs CD4 T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1. J. Exp. Med.188(2), 297–304 (1998).
  • Ohshima Y, Tanaka Y, Tozawa H, Takahashi Y, Maliszewski C, Delespesse G. Expression and function of OX40 ligand on human dendritic cells. J. Immunol.159(8), 3838–3848 (1997).
  • Gough MJ, Ruby CE, Redmond WL, Dhungel B, Brown A, Weinberg AD. OX40 agonist therapy enhances CD8 infiltration and decreases immune suppression in the tumor. Cancer Res.68(13), 5206–5215 (2008).
  • Broll K, Richter G, Pauly S, Hofstaedter F, Schwarz H. CD137 expression in tumor vessel walls. High correlation with malignant tumors. Am. J. Clin. Pathol.115(4), 543–549 (2001).
  • Narazaki H, Zhu Y, Luo L, Zhu G, Chen L. CD137 agonist antibody prevents cancer recurrence: contribution of CD137 on both hematopoietic and nonhematopoietic cells. Blood115(10), 1941–1948 (2010).
  • Choi BK, Kim YH, Kang WJ et al. Mechanisms involved in synergistic anticancer immunity of anti-4-1BB and anti-CD4 therapy. Cancer Res.67(18), 8891–8899 (2007).
  • Ju SA, Lee SC, Kwon TH et al. Immunity to melanoma mediated by 4-1BB is associated with enhanced activity of tumour-infiltrating lymphocytes. Immunol. Cell Biol.83(4), 344–351 (2005).
  • Molckovsky A, Siu LL. First-in-class, first-in-human Phase I results of targeted agents: highlights of the 2008 American society of clinical oncology meeting. J. Hematol. Oncol.1, 20 (2008).
  • Kalbasi A, Fonsatti E, Natali PG et al. CD40 expression by human melanocytic lesions and melanoma cell lines and direct CD40 targeting with the therapeutic anti-CD40 antibody CP-870,893. J. Immunother.33(8), 810–816 (2010).
  • Buhtoiarov IN, Lum H, Berke G, Paulnock DM, Sondel PM, Rakhmilevich AL. CD40 ligation activates murine macrophages via an IFN-gamma-dependent mechanism resulting in tumor cell destruction in vitro. J. Immunol.174(10), 6013–6022 (2005).
  • Lum HD, Buhtoiarov IN, Schmidt BE et al.In vivo CD40 ligation can induce T-cell-independent antitumor effects that involve macrophages. J. Leukoc. Biol.79(6), 1181–1192 (2006).
  • Aranda F, Llopiz D, Diaz-Valdes N et al. Adjuvant combination and antigen targeting as a strategy to induce polyfunctional and high-avidity T-cell responses against poorly immunogenic tumors. Cancer Res.71(9), 3214–3224 (2011).
  • Garber K. Beyond ipilimumab: new approaches target the immunological synapse. J. Natl Cancer Inst.103(14), 1079–1082 (2011).
  • Mulgrew K, Kinneer K, Yao XT et al. Direct targeting of alphavbeta3 integrin on tumor cells with a monoclonal antibody, Abegrin. Mol. Cancer Ther.5(12), 3122–3129 (2006).
  • Trikha M, Zhou Z, Nemeth JA et al. CNTO 95, a fully human monoclonal antibody that inhibits alphav integrins, has antitumor and antiangiogenic activity in vivo. Int. J. Cancer110(3), 326–335 (2004).
  • Hersey P, Sosman J, O’Day S et al. A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin alpha(v)beta(3), + or - dacarbazine in patients with stage IV metastatic melanoma. Cancer116(6), 1526–1534 (2010).
  • Zhang D, Pier T, McNeel DG, Wilding G, Friedl A. Effects of a monoclonal anti-alphavbeta3 integrin antibody on blood vessels – a pharmacodynamic study. Invest. New Drugs25(1), 49–55 (2007).
  • Menrad A, Menssen HD. ED-B fibronectin as a target for antibody-based cancer treatments. Expert Opin. Ther. Targets9(3), 491–500 (2005).
  • Midulla M, Verma R, Pignatelli M, Ritter MA, Courtenay-Luck NS, George AJ. Source of oncofetal ED-B-containing fibronectin: implications of production by both tumor and endothelial cells. Cancer Res.60(1), 164–169 (2000).
  • Lo KM, Lan Y, Lauder S et al. huBC1-IL12, an immunocytokine which targets EDB-containing oncofetal fibronectin in tumors and tumor vasculature, shows potent anti-tumor activity in human tumor models. Cancer Immunol. Immunother.56(4), 447–457 (2007).
  • Gollob JA, Mier JW, Veenstra K et al. Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-gamma induction is associated with clinical response. Clin. Cancer Res.6(5), 1678–1692 (2000).
  • Rudman SM, Jameson MB, McKeage MJ et al. A Phase 1 study of AS1409, a novel antibody-cytokine fusion protein, in patients with malignant melanoma or renal cell carcinoma. Clin. Cancer Res.17(7), 1998–2005 (2011).
  • Hamilton E, Clay TM, Blackwell KL. New perspectives on zoledronic acid in breast cancer: potential augmentation of anticancer immune response. Cancer Invest.29(8), 533–541 (2011).
  • Kobayashi H, Tanaka Y, Yagi J et al. Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol. Immunother.56(4), 469–476 (2007).
  • Dieli F, Vermijlen D, Fulfaro F et al. Targeting human {gamma}delta} T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res.67(15), 7450–7457 (2007).
  • Wilhelm M, Kunzmann V, Eckstein S et al. Gammadelta T cells for immune therapy of patients with lymphoid malignancies. Blood102(1), 200–206 (2003).
  • Holoch PA, Griffith TS. TNF-related apoptosis-inducing ligand (TRAIL): a new path to anti-cancer therapies. Eur. J. Pharmacol.625(1–3), 63–72 (2009).
  • Laggner U, Lopez JS, Perera G et al. Regression of melanoma metastases following treatment with the n-bisphosphonate zoledronate and localised radiotherapy. Clin. Immunol.131(3), 367–373 (2009).
  • Laggner U, Di Meglio P, Perera GK et al. Identification of a novel proinflammatory human skin-homing Vgamma9Vdelta2 T cell subset with a potential role in psoriasis. J. Immunol.187(5), 2783–2793 (2011).
  • Triozzi PL, Tuthill RJ, Borden E. Re-inventing intratumoral immunotherapy for melanoma. Immunotherapy3(5), 653–671 (2011).
  • Weide B, Derhovanessian E, Pflugfelder A et al. High response rate after intratumoral treatment with interleukin-2: results from a phase 2 study in 51 patients with metastasized melanoma. Cancer116(17), 4139–4146 (2010).
  • Ridolfi L, Ridolfi R, Ascari-Raccagni A et al. Intralesional granulocyte-monocyte colony-stimulating factor followed by subcutaneous interleukin-2 in metastatic melanoma: a pilot study in elderly patients. J. Eur. Acad. Dermatol. Venereol.15(3), 218–223 (2001).
  • Hoeller C, Jansen B, Heere-Ress E et al. Perilesional injection of r-GM-CSF in patients with cutaneous melanoma metastases. J. Invest. Dermatol.117(2), 371–374 (2001).
  • Weiss DW. MER and other mycobacterial fractions in the immunotherapy of cancer. Med. Clin. North Am.60(3), 473–497 (1976).
  • Cohen MH, Jessup JM, Felix EL, Weese JL, Herberman RB. Intralesional treatment of recurrent metastatic cutaneous malignant melanoma: a randomized prospective study of intralesional Bacillus Calmette-Guerin versus intralesional dinitrochlorobenzene. Cancer41(6), 2456–2463 (1978).
  • Rosenberg SA, Rapp HJ. Intralesional immunotherapy of melanoma with BCG. Med. Clin. North Am.60(3), 419–430 (1976).
  • Barth A, Morton DL. The role of adjuvant therapy in melanoma management. Cancer75(2 Suppl.), 726–734 (1995).
  • Gutterman JU, Mavligit G, McBride C, Frei E 3rd, Hersh EM. Immunoprophylaxis of malignant melanoma with systemic BCG: study of strain, dose, and schedule. Natl Cancer Inst. Monogr.39, 205–212 (1973).
  • Agarwala SS, Neuberg D, Park Y, Kirkwood JM. Mature results of a Phase III randomized trial of bacillus Calmette–Guerin (BCG) versus observation and BCG plus dacarbazine versus BCG in the adjuvant therapy of American Joint Committee on Cancer Stage I-III melanoma (E1673): a trial of the Eastern Oncology Group. Cancer100(8), 1692–1698 (2004).
  • Veronesi U, Adamus J, Aubert C et al. A randomized trial of adjuvant chemotherapy and immunotherapy in cutaneous melanoma. N. Engl. J. Med.307(15), 913–916 (1982).
  • Green DS, Bodman-Smith MD, Dalgleish AG, Fischer MD. Phase I/II study of topical imiquimod and intralesional interleukin-2 in the treatment of accessible metastases in malignant melanoma. Br. J. Dermatol.156(2), 337–345 (2007).
  • Green DS, Dalgleish AG, Belonwu N, Fischer MD, Bodman-Smith MD. Topical imiquimod and intralesional interleukin-2 increase activated lymphocytes and restore the Th1/Th2 balance in patients with metastatic melanoma. Br. J. Dermatol.159(3), 606–614 (2008).
  • Amos SM, Pegram HJ, Westwood JA et al. Adoptive immunotherapy combined with intratumoral TLR agonist delivery eradicates established melanoma in mice. Cancer Immunol. Immunother.60(5), 671–683 (2011).
  • Hofmann MA, Kors C, Audring H, Walden P, Sterry W, Trefzer U. Phase 1 evaluation of intralesionally injected TLR9-agonist PF-3512676 in patients with basal cell carcinoma or metastatic melanoma. J. Immunother.31(5), 520–527 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.