22
Views
3
CrossRef citations to date
0
Altmetric
Review

Gene therapy for the treatment of pituitary tumors

, , , &
Pages 359-370 | Published online: 10 Jan 2014

References

  • Melmed S. Mechanisms of pituitary tumorigenesis: the plastic pituitary. J. Clin. Invest.112, 1603–1618 (2003).
  • Burek JD. Pathology of Aging Rats. CRC Press, Boca Raton, FL, USA (1978).
  • Monson JP. The epidemiology of endocrine tumours. Endocr. Relat. Cancer7, 29–36 (2000).
  • Arafah BM, Nasralllah MP. Pituitary tumors: pathophysiology, clinical manifestations and management. Endocr. Relat. Cancer8, 287–305 (2001).
  • Swensen R, Kirsch W. Brain neoplasms in women: a review. Clin. Obstet. Gynecol.45, 904–927 (2002).
  • Melmed S, Kleinberg D. Anterior pituitary. In: Williams Textbook of Endocrinology (11th Edition). Kornenberg HM, Melmed S, Polonsky KS, Larsen PR (Eds). Saunders–Elsevier, Philadelphia, PA, USA 155–261 (2008).
  • Kaltsas GA, Nomikos P, Kontogeorgos G, Buchfelder M, Grossman AB. Diagnosis and management of pituitary carcinomas. J. Clin. Endocrinol. Metab.90, 3089–3099 (2005).
  • Shimon I, Melmed S. Management of pituitary tumors. Annals Int. Med.129, 472–483 (1998).
  • Melmed S. General aspects of the management of pituitary tumors by surgery or radiation therapy. In: Endocrinology. DeGroot LJ (Ed.). Saunders, PA, USA, 497–503 (1997).
  • Sudhakar N, Ray A, Vafidis JA. Complications after transsphenoidal surgery: our experience and a review of the literature. Br. J. Neurosurg.18, 507–512 (2004).
  • Serri O, Chik CL, Ur E, Ezzat S. Diagnosis and management of hyperprolactinemia. CMAJ169, 575–581 (2003).
  • Webster J, Piscitelli G, Polli A, Ferrari CI, Ismail I, Scanlon MF. A comparison of cabergoline and bromocriptine in the treatment of hyperprolactinemic amenorrhea. N. Engl. J. Med.331, 904–909 (1994).
  • Sheppard MC. Aims of treatment and definition of cure. In: Treating Acromegaly – 100 Years On. Wass JAH (Ed.). Society for Endocrinology, Bristol, UK 17–31 (1994).
  • Bevan JS. Clinical review: the antitumoral effects of somatostatin analog therapy in acromegaly. J. Clin. Endocrinol. Metab.90, 1856–1863 (2005).
  • Sutton ML. Adult central nervous system. In: The Radiotherapy of Malignant Disease. Easson EC, Pointon RCS (Eds). Springer, NY, USA, 215–236 (1985).
  • Grigsby PW, Sheline GE. Pituitary. In: Principles and Practice of Radiation Oncology. Perez CA, Bray LA. (Eds). Lippincott, PA, USA 564–582 (1990).
  • Laws ER, Sheehan JP, Sheehan JM, Jagnathan J, Jane JA Jr, Oskouian R. Stereotactic radiosurgery for pituitary adenomas: a review of the literature. J. Neurooncol.69, 257–272 (2004).
  • Bergelson JM, Cunningham JA, Droguett G et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science275, 1320–1323 (1997).
  • Hidaka C, Milano E, Leopold PL et al. CAR – dependent and CAR-independent pathways of adenovirus vector – mediated gene transfer and expression in human fibroblast. J. Clin. Invest.103, 579–587 (1999).
  • Hitt M, Bett AJ, Addison CL, Prevec L, Graham FL. Techniques for human adenovirus vector construction and characterization. Methods Mol. Genet.7, 13–30 (1995).
  • Yang Y, Nunes FA, Berencsi K, Furth EE, Gonczol E, Wilson JM. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl Acad. Sci. USA91, 4407–4411 (1994).
  • Park JS, Chen L, Anton M, Sankar U, Rudnicki MA, Graham FL. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl Acad. Sci. USA93, 13565–13570 (1996).
  • Parks RJ, Graham FL. A helper-dependant system for adenovirus vector production helps define a lower limit for efficient DNA packaging. J. Virol.71, 3293–3298 (1997).
  • Ideguchi M, Kajiwara K, Yoshikawa K, Uchida T, Ito H. Local adenovirus-mediated CTLA4–immunoglobulin expression suppresses the immune responses to adenovirus vectors in the brain. Neuroscience95, 217–226 (2000).
  • Geddes BJ, Harding TC, Hughes DS et al. Persistent transgene expression in the hypothalamus following stereotaxic delivery of a recombinant adenovirus: suppression of the immune response with cyclosporin. Endocrinology137, 5166–5169 (1996).
  • Ilan Y, Prakash R, Davidson A et al. Oral tolerization to adenoviral antigens permits long-term gene expression using recombinant adenoviral vectors. J. Clin. Invest.99, 1098–1106 (1997).
  • Roizman B. The function of herpes simplex virus genes: a primer for genetic enginneering of novel vectors. Proc. Natl Acad. Sci. USA93, 11307–11312 (1996).
  • Wolfe D, Goins WF, Yamada M et al. Engineering herpes simplex virus vectors for CNS applications. Exp. Neurol.159, 34–46 (1999).
  • Tomasec P, Bain D, Castro MG, Preston CM, Lowenstein PR. Herpes simplex virus temperature-sensitive mutant tsK as a vector for neuronal gene transfer. In: Protocols for Gene Transfer in Neuroscience: Towards Gene Therapy of Neurological Disorders. Lowenstein PR, Enquist LW (Eds). Wiley, Chichester, UK 169–186 (1996).
  • Blesch A. Lentiviral and MLV based retroviral vectors for ex vivo and in vivo gene transfer. Methods33, 164–172 (2004).
  • Vogel R, Amar L, Thi AD, Saillour P, Mallet J. A single lentivirus vector mediates doxycycline-regulated expression of transgenes in the brain. Hum. Gene Ther.15, 157–165 (2004).
  • Li Z, Dullmann J, Schiedlmeier B et al. Murine leukemia induced by retroviral gene marking. Science296, 497 (2002).
  • Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet.4, 346–358 (2003).
  • Castro MG, Goya RG, Sosa YE et al. Expression of transgenes in normal and neoplastic anterior pituitary cells using recombinant adenoviruses: long term expression, cell cycle dependency, and effects on hormone secretion. Endocrinology138, 2184–2194 (1997).
  • Goya RG, Rowe J, Sosa YE, Tomasec P, Lowenstein PR, Castro MG. Use of recombinant herpes simplex virus type I vectors for gene transfer into tumour and normal anterior pituitary cells. Mol. Cell. Endocrinol.139, 199–207 (1998).
  • Davis JR, McMahon RF, Lowenstein PR, Castro MG, Lincoln GA, McNeilly AS. Adenovirus-mediated gene transfer in the ovine pituitary gland is associated with hypophysitis. J. Endocrinol.173, 265–271 (2002).
  • Lee EJ, Thimmapaya B, Jameson JL. Stereotactic injection of adenoviral vectors that target gene expression to specific pituitary cell types: implications for gene therapy. Neurosurgery46, 1461–1469 (2000).
  • Bolognani F, Albariño C, Romanowski V, Carri NG, Goya RG. In vitro and in vivo herpetic vector-mediated gene transfer in the pituitary gland: impact on hormone secretion. Eur. J. Endocrinol.145, 497–503 (2001).
  • Carri NG, Sosa YE, Brown OA, Albarino C, Romanowski V, Goya RG. Studies on in vivo gene transfer in pituitary tumors using herpes-derived and adenoviral vectors. Brain. Res. Bull.65, 17–22 (2005).
  • Roche C, Zamora AJ, Taieb D et al. Lentiviral vectors efficiently transduce human gonadotroph and somatotroph adenomas in vitro. Targeted expression of transgene by pituitary hormone promoters. J. Endocrinol.183, 217–233 (2004).
  • Windeatt S, Southgate TD, Dewey RA et al. Adenovirus-mediated herpes simplex virus type-1 thymidine kinase gene therapy suppresses oestrogen-induced pituitary prolactinomas. J. Clin. Endocr. Metab.85, 1296–1305 (2000).
  • Lee EJ, Anderson LM, Thimmapaya B, Jameson JL. Targeted expresion of toxic genes directed by pituitary hormone promoters: a potential strategy for adenovirus-mediated gene therapy of pituitary tumors. J. Clin. Endocrinol. Metab.84, 786–794 (1999).
  • Southgate TD, Windeatt S, Smith-Arica J. et al. Transcriptional targeting to anterior pituitary lactotrophic cells using recombinant adenovirus vectors in vitro and in vivo in normal and estrogen/sulpiride-induced hyperplastic anterior pituitaries. Endocrinology141, 3493–3505 (2000).
  • Southgate TD, Stone D, Williams JC, Lowenstein PR, Castro MG. Long-term transgene expression within the anterior pituitary gland in situ: impact on circulating hormone levels, cellular and antibody-mediated immune responses. Endocrinology142, 464–476 (2001).
  • Paquin A, Jaalouk DE, Galipeau J. Retrovector encoding a green fluorescent protein–herpes simplex virus thymidine kinase fusion protein serves as a versatile suicide/reporter for cell and gene therapy applications. Hum. Gene Ther.12, 13–23 (2001).
  • Cónsole G, Hereñú CB, Camihort GA, Luna GC, Bracamonte MI, Goya RG. Insulin-like growth factor-I gene therapy reduces hyperprolactinemia and reverses morphologic changes in experimental rat prolactinomas. Mol. Cancer7, 13–18 (2008).
  • Lee EJ, Jameson JL. Cell-specific Cre-mediated activation of the diphtheria toxin gene in pituitary tumor cells: potential for cytotoxic gene therapy. Hum. Gene Ther.13, 533–542 (2002).
  • Candolfi M, Jaita G, Pisera D et al. Adenoviral vectors encoding tumor necrosis factor-α and FasL induce apoptosis of normal and tumoral anterior pituitary cells. J. Endocrinol.189, 681–690 (2006).
  • Hu N, Gutsmann A, Herbert DC, Bradley A, Lee WH, Lee EY. Heterozygous Rb-1 δ20/+mice are predisposed to tumors of the pituitary gland with a nearly complete penetrance. Oncogene9, 1021–1029 (1994).
  • Riley DJ, Yu A, Lee WH. Adenovirus-mediated retinoblastoma gene therapy supresses spontaneous pituitary melanotroph tumors in Rb+/- mice. Nature Med.2, 1316–1321 (1996).
  • Webster J, Ham J, Bevan J, Scalon M . Growth factors and pituitary tumors. Trends Endocrinol. Metab.1, 85–98 (1989).
  • Halper J, Parnel P, Carter B, Ren P, Scheithauer B. Presence of growth factors in human pituitary. Lab. Invest.66, 639–645 (1992).
  • Houben H, Denef C. Bioactive peptides in anterior pituitary cells. Peptides15, 547–582 (1994).
  • D´Ercole AJ, Stiles AD, Underwood LE. Tissue concentrations of somatomedin C: further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc. Natl Acad. Sci. USA81, 935–939 (1984).
  • Console GM, Hereñú CB, Camihort GA, Luna GC, Ferese C, Goya RG. Effect of insulin-like growth factor-I gene therapy on the somatotropic axis in experimental prolactinomas. Cells Tissues Organs DOI: 10.1159/000166609 (2009) (Epub ahead of print).
  • Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline responsive promoters. Proc. Natl Acad. Sci USA88, 5547–5551 (1992).
  • Smith-Arica JR, Williams JC, Stone D, Smith J, Lowenstein PR, Castro MG. Switching on and off transgene expression within lactotrophic cells in the anterior pituitary gland in vivo. Endocrinology142, 2521–2532 (2001).
  • Williams JC, Stone D, Smith-Arica JR, Morris ID, Lowenstein PR, Castro MG. Regulated adenovirus-mediated delivery of tyrosine hydroxylase suppresses growth of estrogen-induced pituitary prolactinomas. Mol. Ther.4, 593–602 (2001).
  • Reggiani PC, Hereñú CB, Rimoldi OJ et al. Gene therapy for long-term restoration of circulating thymulin in thymectomized mice and rats. Gene Ther.13, 1214–1221 (2006).
  • Morel GR, Brown OA, Reggiani PC et al. Peripheral and mesencephalic transfer of a synthetic gene for the thymic peptide thymulin. Brain Res. Bull.69, 647–651 (2006).
  • Freese A, During MJ, Davidson BL et al. Transfection of human lactotroph adenoma cells with an adenovirus vector expressing tyrosine hydroxylase decreases prolactin release. J. Clin. Endocrinol. Metab.81, 2401–2404 (1996).
  • Littley MD, Shalet SM, Beardwell CG, Ahmed SR, Applegate G, Sutton ML. Hypopituitarism following external radiotherapy for pituitary tumours in adults. Q. J. Med.70, 145–160 (1991).
  • Castro MG, Southgate T, Lowenstein PR. Molecular therapy in a model of neuroendocrine disease: developing clinical gene therapy for pituitary tumours. Trends Endocrinol. Metab.12, 58–64 (2001).
  • Hoganson DK, Batra RK, Olsen JC, Boucher RC. Comparison of the effects of three different toxin genes and their levels of expression on cell growth and bystander effect in lung adenocarcinoma. Cancer Res.56, 1315–1323 (1996).
  • Aoki T, Kato S, Fox JC, Okamoto K, Morimatsu M, Shigemori M. Inhibition of autocrine fibroblast growth factor signaling by the adenovirus-mediated expression of an antisense transgene or a dominant negative receptor in human glioma cells. Int.J. Oncol.21, 629–636 (2002).
  • Goya RG, Sarkar DK, Brown OA, Hereñú CB. Potential of gene therapy for the treatment of pituitary tumors. Curr. Gene Ther.4, 79–87 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.